- All News & Features
- All Events
-
- Archived Events
-
-
2013
-
2012
-
2011
-
2010
-
2009
-
2008
-
2007
-
2006
-
2005
-
-
2003
-
2002
-
2001
-
2000
-
1999
-
HEP Astro
-
Astronomy Colloquium
-
Biophysics Seminar
-
CM - AMO Seminars
-
CM Theory Seminars
-
Complex Systems
-
Department Colloquia
-
Quantitative Biology Seminars
-
HET Brown Bag Series
-
HET Seminars
-
Life After Grad School Seminars
-
Farrand Memorial Lecture
-
Workshops & Conferences
-
Miscellaneous
-
Saturday Morning Physics
-
Special Lectures
- Search Events
-
- Special Lectures
- K-12 Programs
- Saturday Morning Physics
- Seminars & Colloquia
Dark matter is a vital component of the current best model of our universe, Lambda-CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. I will discuss the general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and square centimeters, respectively -- we refer to these macroscopic candidates as Macros. Such dark matter objects could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. I will also discuss the earth-based, astrophysical, and cosmological observations used to constrain part of the Macro parameter space. Large regions remain unconstrained, however, most notably for nuclear-dense objects with masses in the range between about 50 - 1017 and 1020 - 1024 grams.
| Speaker: |
|---|
