HET SEMINAR <br> Directional Neutrino Detection: from Characterizing the Cosmic Neutrino Background to Imaging Nuclear Reactors
- All News & Features
- All Events
-
- Archived Events
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Search Events
-
- Special Lectures
- K-12 Programs
- Saturday Morning Physics
- Seminars & Colloquia
Friday, November 14, 2014
5:00 AM
335 West Hall
I will discuss two exciting prospects for future neutrino measurements. New technological advancements make neutrino capture on tritium a promising path forward towards the detection of the CvB. I will show that gravitational focusing by the Sun causes the expected neutrino capture rate to modulate annually. The amplitude and phase of the modulation depend on the phase-space distribution of the local neutrino background, which is perturbed by structure formation. Gravitational focusing is the only source of modulation for neutrino capture experiments, in contrast to dark-matter direct-detection searches where the Earth’s time-dependent velocity relative to the Sun also plays a role. I will also show that CvB observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets.
In the second part of my talk, I will propose the first truly directional antineutrino detector for antineutrinos above the hydrogen inverse beta decay threshold, with potential applications including monitoring for nuclear nonproliferation, spatially mapping geo-neutrinos, characterizing the diffuse supernova neutrino background, and searching for new physics in the neutrino sector. The design is a straightforward modification of existing antineutrino detectors; a prototype could be built with existing technology.
Speaker: |
---|