DEPARTMENT COLLOQUIUM | After Moore's Law: Progress Toward Optically Driven Fast Quantum Devices (Quantum Physics at the Interface)
- All News & Features
- All Events
-
- Archived Events
-
-
2013
-
2012
-
2011
-
2010
-
2009
-
2008
-
2007
-
2006
-
2005
-
-
2003
-
2002
-
2001
-
2000
-
1999
-
HEP Astro
-
Astronomy Colloquium
-
Biophysics Seminar
-
CM - AMO Seminars
-
CM Theory Seminars
-
Complex Systems
-
Department Colloquia
-
Quantitative Biology Seminars
-
HET Brown Bag Series
-
HET Seminars
-
Life After Grad School Seminars
-
Farrand Memorial Lecture
-
Workshops & Conferences
-
Miscellaneous
-
Saturday Morning Physics
-
Special Lectures
- Search Events
-
- Special Lectures
- K-12 Programs
- Saturday Morning Physics
- Seminars & Colloquia
Speaker: Duncan Steel (UM Physics)
The quantum confinement provided by a semiconductor quantum dot suppresses much of the many body physics associated with the coherent nonlinear optical response observed in higher dimensional systems. This makes them attractive for potential device applications where atomic like properties, such as high Q resonances, strong optical interactions, or long quantum coherence times, could be important. In this talk, Professor Steel will present recent results demonstrating high field effects beyond Rabi oscillations including the Mollow absorption spectrum showing gain without inversion, dark state formation in single electron doped dots, suppression of nuclear fluctuations by the hyperfine interaction leading to longer electron spin coherence times and coherent spin rotations including a geometrical phase gate.
