- All News & Features
- All Events
-
- Archived Events
-
-
2013
-
2012
-
2011
-
2010
-
2009
-
2008
-
2007
-
2006
-
2005
-
-
2003
-
2002
-
2001
-
2000
-
1999
-
HEP Astro
-
Astronomy Colloquium
-
Biophysics Seminar
-
CM - AMO Seminars
-
CM Theory Seminars
-
Complex Systems
-
Department Colloquia
-
Quantitative Biology Seminars
-
HET Brown Bag Series
-
HET Seminars
-
Life After Grad School Seminars
-
Farrand Memorial Lecture
-
Workshops & Conferences
-
Miscellaneous
-
Saturday Morning Physics
-
Special Lectures
- Search Events
-
- Special Lectures
- K-12 Programs
- Saturday Morning Physics
- Seminars & Colloquia
The ability to resist small shear stresses is what distinguishes a solid from a liquid. This shear-rigidity is associated with broken translational symmetry. Most solids flow when they are sheared beyond a certain limit: the yield stress. It is not usual to associate shearing with increasing the rigidity of a fluid or solid. In athermal materials that are made up of macroscopic particles such as granular materials or dense suspensions, shear can actually induce solidification or a discontinuous increase in the viscosity. In this talk, I will explore the origin of these rigidity transitions: I will show that friction plays a large role in stabilizing these rigid states, and argue that we need to a paradigm shift to understand systems in which forces become independent dynamical variables. I will show that shear-induced rigidity is associated with a broken symmetry but in a space that is not characterized by positions and momenta but by forces.
| Speaker: |
|---|
