- All News & Features
- All Events
-
- Archived Events
-
-
2013
-
2012
-
2011
-
2010
-
2009
-
2008
-
2007
-
2006
-
2005
-
-
2003
-
2002
-
2001
-
2000
-
1999
-
HEP Astro
-
Astronomy Colloquium
-
Biophysics Seminar
-
CM - AMO Seminars
-
CM Theory Seminars
-
Complex Systems
-
Department Colloquia
-
Quantitative Biology Seminars
-
HET Brown Bag Series
-
HET Seminars
-
Life After Grad School Seminars
-
Farrand Memorial Lecture
-
Workshops & Conferences
-
Miscellaneous
-
Saturday Morning Physics
-
Special Lectures
- Search Events
-
- Special Lectures
- K-12 Programs
- Saturday Morning Physics
- Seminars & Colloquia
Magnetic resonance imaging (MRI) has had a profound impact on biology and medicine. Key to its success has been the unique ability to combine imaging with nuclear magnetic resonance spectroscopy—a capability that has led to a host of powerful modalities for imaging. Although it remains a significant challenge, there is considerable interest to extend these powerful spectroscopic and imaging capabilities to the nanometer scale. In this talk, I will discuss a new paradigm for nanoscale MRI, which permits well-established pulsed magnetic resonance techniques to be applied to the nanometer scale. Our approach relies on the ability to generate intense time-dependent magnetic fields on the nanometer scale, and to encode phase information in the statistical fluctuations of an ensemble of spins. In our first proof-of-concept work, we demonstrated Fourier transform imaging of proton spins in polystyrene with 10-nm spatial resolution. I will discuss how this technique could be used image the smallest constituents in biology, such as single virus particles, or even single molecules.
| Speaker: |
|---|
