This is an article from the spring 2020 issue of LSA Magazine. Read more stories from the magazine.
If you’re like most adults in the U.S., there’s a fifty-fifty chance that you’re reading these words on a screen rather than on paper. Screens might not use trees, but they do use almost a third of the elements in the periodic table.
Adam Simon, Arthur F. Thurnau Professor of Earth and Environmental Sciences, has focused his research on how these elements form — and where to find them.
“Some rock contains anomalous concentrations of copper or silver or rare earth elements, and we try to figure out why,” Simon explains. “If you can understand how the deposits formed, it helps you develop exploration strategies to find new ones.” For Simon, the work is about more than just finding new deposits: He’s looking for the elements we need to transition to renewable energy.
“We’ve known about copper, gold, silver, lead, tin, iron, and mercury — what we call the seven metals of antiquity — for thousands of years, and used them at a relatively high rate,” Simon says. “Then when we rounded out the periodic table, we started to figure out what rare earth and platinum group elements can do for us. In the last ten years, my original passion for mineral deposits has perfectly aligned with our need to find new supplies of them,” he continues. “In order to build solar panels, wind turbines, and grid-scale batteries, as well as Teslas and Chevy Bolts, you need these energy-critical metals. If we are going to build the infrastructure that allows us to transition to renewable energy, we need to source them from new deposits.”
In a lot of ways, the minerals’ critical shift in future energy systems mirrors the shift in the way Simon teaches his students about them. A few years ago, he had been teaching a traditional undergraduate class that fulfilled an upper-level writing requirement, and he wondered if there was more he could do with it. “At the same time, I had a lot of students who wanted to learn about the sustainability goals U-M put in place in 2011,” he says.
Simon dug in and got to work.