CM - AMO SEMINAR | Higher-Order Constraints on Precision of Clocks of Neutral Atoms in Optical Lattices
- All News & Features
- All Events
-
- Archived Events
-
-
2013
-
2012
-
2011
-
2010
-
2009
-
2008
-
2007
-
2006
-
2005
-
-
2003
-
2002
-
2001
-
2000
-
1999
-
HEP Astro
-
Astronomy Colloquium
-
Biophysics Seminar
-
CM - AMO Seminars
-
CM Theory Seminars
-
Complex Systems
-
Department Colloquia
-
Quantitative Biology Seminars
-
HET Brown Bag Series
-
HET Seminars
-
Life After Grad School Seminars
-
Farrand Memorial Lecture
-
Workshops & Conferences
-
Miscellaneous
-
Saturday Morning Physics
-
Special Lectures
- Search Events
-
- Special Lectures
- K-12 Programs
- Saturday Morning Physics
- Seminars & Colloquia
The recent progress in designing optical frequency standards with an uncertainty at a level of 10-17 – 10-18 requires unprecedented accuracy in estimating the role of higher-order uncertainties of optical clocks. The magic wavelength (MWL) of the optical lattice, capable to trap deeply cooled alkaline-earth-like atoms to a Lamb-Dicke regime, enables observation of Doppler- free and Stark-free clock transition between the ground state 1S0 and excited metastable state 3P0. In this paper, the difference between spatial distributions of electric-dipole (E1) and multipole (M1 and E2) is presented explicitly in two lattices: the attractive red-detuned and repulsive blue-detuned lattices. For simplicity, a 1D lattice is considered. Calculations of the clock-frequency shifts in trapped atoms are presented. The magnitudes of uncertainties are determined, arising from the nonlinear and non-dipole corrections to the lattice-induced shifts, which cannot be compensated by the MWL and therefore should be determined and taken into account in high-precision measurements of the clock frequency. We systematically evaluate the multipole, nonlinear, and anharmonic contributions to uncertainty of the optical-lattice-based clocks of alkaline-earth-like-atoms Sr, Yb and Hg.
| Speaker: |
Vitaly Palchikov (Russia National Research Institute)
|
|---|
