C. Wilbur Peters Collegiate Professor of Physics
About
Professor Uher’s research group focuses on the development of novel, highly efficient thermoelectric materials; on the study of transport properties in high-Tc superconductors; and on the investigations of diluted magnetic semiconductors. His research group conducts measurements over a broad range of external parameters that include temperatures from 1200K down to 10 mK, magnetic fields to 90 kilogauss, and pressures reaching 100 kbar.
In many experiments, signal detection is based on state of the art superconducting quantum interference devices (SQUIDS), which yield sensitivity close to the quantum limit. The information gained from this research provides an important insight into such fundamental parameters as the scattering mechanism, the strength of electron-phonon and electron-electron coupling, the degree of disorder and the effect of dimensionality. A molecular beam epitaxy system designed specifically for deposition of metallic multilayers and metal-semiconductor structures offers many opportunities for his group to study unusual and exotic material combinations. These hold great promise to stabilize metastable phases that are otherwise difficult to realize in nature.
Among his many accomplishments, Professor Uher is a Fellow of the American Physical Society, Chair of the University of Michigan Physics Department (1994-2004), and holds an honorary degree from the University of Pardubice in the Czech Republic.
Selected Publications
Self-Propagating High-Temperature Synthesis for Compound Thermoelectrics and New Criterion for Combustion Processing, (X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, and C. Uher), Nat. Commun. 5, 4908-7 (2014).
Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals, (L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis), Nature 508, 373-377 (2014).
Low-Temperature Structural and Transport Anomalies in Cu2Se, (H. Chi, H. Kim, J. C. Thomas, G. Shi, K. Sun, M. Abeykoon, E. S. Bozin, X. Shi, Q. Li, X. Shi, E. Kioupakis, A. Van der Ven, M. Kaviany, and C. Uher), Phys. Rev. B 89, 195209-5 (2014).
Tuning the Temperature Domain of Phonon Drag in Thin Films by the Choice of Substrate, (G. Wang, L. Endicott, H. Chi, P. Lošt’ák, and C. Uher), Phys. Rev. Lett. 111, 046803-5 (2013).
Fourier-Transform Inelastic X-ray Scattering from Time- and Momentum-Dependent Phonon-phonon Correlations, (M. Trigo, M. Fuchs, J. Chen, M. P. Jiang, M. Cammarata, S. Fahy, D. M. Fritz, K. Gaffney, S. Ghimire, A. Higginbotham, S. L. Johnson, M. E. Kozina, J. Larsson, H. Lemke, A. M. Lindenberg, G. Ndabashimiye, F. Quirin, K. Sokolowski-Tinten, C. Uher, G. Wang, J. S. Wark, D. Zhu, and D. A. Reis), Nat. Phys. 9, 790-794 (2013).
Stretchable Nanoparticle Conductors with Self-Organized Conductive Pathways, (Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J.-G. Kim, S. J. Yoo, C. Uher, and N. A. Kotov), Nature 500, 59-63 (2013).
Field(s) of Study
- Condensed Matter Experiment