Skip to Content

Search: {{$root.lsaSearchQuery.q}}, Page {{$root.page}}

Population and Community Ecology

Population and community ecology seeks to understand the complex dynamics and spatial patterning of populations and of entire assemblages of multiple species across diverse environments and regions. Approaches include theoretical explorations along with experimental and observational studies at scales from laboratory flasks to entire regions of the globe.
Italics = secondary appointment in EEB, can serve as graduate co-chair only

Jake Allgeier

Jake Allgeier’s goal as an ecologist is to apply ecological theory to help solve real-world conservation issues. Specifically, he seeks to identify the mechanisms by which behavioral, population, and community dynamics mediate nutrient and energy pathways. The objective is to improve our ability to predict ecological outcomes and enhance conservation efficacy such as the sustainability of ecosystem services (e.g., fisheries). Much of this research takes place in tropical coastal ecosystems (mangroves, seagrass beds and coral reefs) where he studies gradients created by anthropogenic impacts to test theory directly within the context of environmental change and biodiversity loss.

Regina Baucom

Regina Baucom’s research broadly revolves around the central question “Why and how do some organisms persist and adapt to inhospitable environments?” She works on this topic utilizing species from the morning glory genus, many of which are agricultural weeds. There are three main projects underway in Baucom’s lab: the evolutionary genomics of plant defense and plant weediness, the influence of the mating system on the evolution of herbicide resistance, and the role of the plant metagenome on adaptation.

Aimée Classen 

Aimée Classen's lab is a diverse and international group who focus on how global changes impact terrestrial ecosystems at local and global scales. Recently, they’ve focused on three general areas: (1) Understanding and modeling connections among soil organisms, herbivores, plants and ecosystem function (2) Understanding how shifting above- and below-ground biodiversity and global change alters the composition and function of ecosystems and (3) Exploring how scale and location influence ecological patterns and processes. They work across scales from the micro (soil food webs) to the macro (regional carbon fluxes) as well as across diverse terrestrial ecosystems (forests, meadows, bogs, tropics, boreal, temperate). We use a combination of observations, experiments and models to answer ecological questions.

Vincent Denef

Vincent Denef uses metagenomic and metaproteomic approaches to gather an improved understanding of microbial population dynamics and community functioning within ecosystem context. He is particularly interested in the connection between genomic variation and altered ecological behavior, and how short- and long-term environmental change can drive both. While he has been studying these concepts in systems ranging from abandoned mines to the human gastrointestinal tract, he is currently focusing on freshwater systems such as the Laurentian Great Lakes.

Thomas Duda

Thomas Duda investigates the processes associated with ecological diversification. This work includes field and laboratory studies that involve analyses of feeding ecology, phylogenetics and phylogeography, and molecular investigations of the evolution of venoms of members of the predatory, marine gastropod genus Conus.

Meghan Duffy

Meghan Duffy's research focuses on the ecology and evolution of host-parasite interactions. She is especially interested in the intersection of ecology and evolutionary biology, including how rapid evolution affects ecological host-parasite dynamics, and how ecological context influences host-parasite evolution. Her research uses a combination of observational studies of natural populations and communities, manipulative experiments in the lab and field, and mathematical models.

Melissa Duhaime  

Melissa Duhaime focuses on marine microbiology, spanning two themes: (i) ocean plastic-microbe associations and (ii) marine virus (meta)genomics. For the first, she investigates the role of microbes in the fate of marine plastics, and the role of plastics in marine microbial community structure and function in natural (N. Pacific Gyre, North Sea) and engineered (Biosphere2 Ocean) systems. For the second, she uses genomic tools to investigate evolution and ecology of ocean viruses (phages) and their microbial hosts, with particular interest in the role of nutrient limitation on infection dynamics and virus-host evolution.

Inés Ibáñez (can serve as graduate co-chair only)

Inés Ibáñez's research interests are in plant community ecology, climate change and invasive species.

Mia Howard

Mia Howard’s lab studies the ecology and evolution of plant biotic interactions, especially plants’ interactions with arthropods and microorganisms. The lab is particularly interested in how soil nutrients and microorganisms (including important resource mutualists) affect the expression and evolution of plants’ defense traits and tolerance of stressors such as herbivores and drought, as well as how plants’ interactions with herbivores can affect their microbiomes. The lab uses a combination of long-term field experiments, greenhouse experiments, and laboratory analyses to study a variety of wild and agricultural plants.

Aaron King

Aaron King's research focuses primarily on the ecology and evolution of infectious disease. His research also includes modeling specific systems, analyzing models and data using sophisticated mathematical, computational and statistical tools, and developing general methods to advance theoretical ecology and evolutionary biology.

Hernán López-Fernández

Hernán López-Fernández studies the evolution of freshwater fishes with emphasis on South and Central America, which house the most diverse freshwater fish fauna on earth. The lab often uses the family Cichlidae as a model because it is an iconic subject of study in vertebrate adaptive evolution and the third most diverse family of Neotropical fishes. Research in the lab combines fieldwork, molecular phylogenetics/phylogenomics and comparative methods to integrate ecology, functional morphology, life histories and geography into macroevolutionary analyses of freshwater fish diversification.

L. Lacey Knowles

Lacey Knowles' research interests are in speciation, phylogeography and evolutionary radiations.

Andrew Marshall

Andy Marshall’s research primarily investigates the ecology, evolution, and conservation of vertebrates and their rainforest habitats. His study subjects are chiefly large vertebrates and tropical forests in Indonesia; the majority of his empirical work is based on data collected at his long-term research site, the Cabang Panti Research Station in Gunung Palung National Park, West Kalimantan. Current projects include: 1) identifying drivers of long-term population dynamics and distribution shifts in tropical vertebrates, 2) mechanisms promoting coexistence in mega-diverse communities, 3) population and community ecology of five sympatric cat species and their prey (using an extensive camera trapping network), and 4) Invasion of Indonesian forests by the invasive Neotropical plant Bellucia pentamera.

Daniel L. Rabosky

Daniel Rabosky studies macroevolution, speciation, and evolutionary community ecology. He is especially interested in how ecological factors influence the processes of speciation, extinction, and trait evolution through time and space. His research includes field-based studies of ecological diversification in Australian reptiles, molecular phylogenetics, and mathematical and computer modeling of evolutionary dynamics in a broad range of taxonomic groups.

Nate Sanders

Nate Sanders' research is at the interface of community ecology, ecosystem ecology and macroecology, with a focus on how global change drivers and interspecific interactions influence the causes and consequences of biodiversity loss. My research program takes advantage of environmental gradients and experimental manipulations arranged at multiple sites with the aim of forecasting the effects of environmental change on biodiversity. They do experiments on ants, plant-insect interactions, montane plant communities, and a whole variety of other taxa.

Anshuman Swain

Anshuman Swain's lab aims to understand how abiotic and biotic interactions structure species, communities, and ecosystems across different spatiotemporal scales, and to explore these questions through a combination of ecological and paleontological fieldwork, the use of natural history collections, theoretical models, and data-driven methods. His lab is especially interested in the ecology and evolution of plant-insect interactions, and marine microplaeoecology.

María Natalia Umaña

Natalia Umaña's research is motivated by the central question of "how species coexist by using a limited handful of common resources?" She uses empirical data combined with the trait-based approach to uncover the underlying mechanisms maintaining diversity and structuring natural tree communities. Most of her research takes place in tropical regions, in forests of Puerto Rico, Colombia and China, but she is also starting new projects in Michigan.

John Vandermeer

John Vandermeer's lab engages in two related classes of research – the structure and function of tropical agroecosystems and the ecological theory of complex systems as applied to agroecosystems generally. Work in tropical agroecosystems is mainly concerned with organic coffee production, focusing on a model system of pest control in a large production facility in southern Mexico. Theoretical work focuses on spatial self-organization and its consequences for the structure of ecological networks.

Luis Zaman

Luis Zaman’s research takes a deeply interdisciplinary approach to understanding why evolution appears so relentless and creative. His lab uses experimental evolution of two very different model systems: 1) populations of self-replicating computer programs or digital organisms, and 2) microbial communities consisting of bacteria and bacteriophage (viruses that infect bacteria). The common thread running through his broad research interests is understanding the evolution of diversity, complexity, and evolvability, and how the interplay between ecology and (co)evolution drives these phenomena.