Skip to Content

Search: {{$root.lsaSearchQuery.q}}, Page {{$}}

Ecosystem Ecology and Biogeochemistry


Ecosystem ecology and biogeochemistry seeks to understand how the physiological activities of organisms interact with the physical environment to control the flow of energy and cycling of nutrients in aquatic and terrestrial ecosystems.
Italics = secondary appointment in EEB, can serve as graduate co-chair only

Jake Allgeier

Jake Allgeier’s goal as an ecologist is to apply ecological theory to help solve real-world conservation issues. Specifically, he seeks to identify the mechanisms by which behavioral, population, and community dynamics mediate nutrient and energy pathways, with the goal of improving our ability to predict ecological outcomes, and conservation efficacy such as the sustainability of ecosystem services (e.g., fisheries). Much of this research takes place in tropical coastal ecosystems (mangroves, seagrass beds, and coral reefs) where he studies gradients created by anthropogenic impacts to test theory directly within the context of environmental change and biodiversity loss.  

Joel D. Blum (can serve as graduate co-chair only)

Joel Blum's research interests are in geochemical controls on ecosystems, and trace element and isotope geochemistry.

Aimée Classen 

Aimée Classen's lab is a diverse and international group who focus on how global changes impact terrestrial ecosystems at local and global scales. Recently, they’ve focused on three general areas: (1) Understanding and modeling connections among soil organisms, herbivores, plants and ecosystem function (2) Understanding how shifting above- and below-ground biodiversity and global change alters the composition and function of ecosystems and (3) Exploring how scale and location influence ecological patterns and processes. They work across scales from the micro (soil food webs) to the macro (regional carbon fluxes) as well as across diverse terrestrial ecosystems (forests, meadows, bogs, tropics, boreal, temperate). We use a combination of observations, experiments and models to answer ecological questions.

Vincent Denef

Vincent Denef uses metagenomic and metaproteomic approaches to gather an improved understanding of microbial population dynamics and community functioning within ecosystem context. He is particularly interested in the connection between genomic variation and altered ecological behavior, and how short- and long-term environmental change can drive both. While he has been studying these concepts in systems ranging from abandoned mines to the human gastrointestinal tract, he is currently focusing on freshwater systems such as the Laurentian Great Lakes.

Melissa Duhaime  

Melissa Duhaime focuses on marine microbiology, spanning two themes: (i) ocean plastic-microbe associations and (ii) marine virus (meta)genomics. For the first, she investigates the role of microbes in the fate of marine plastics, and the role of plastics in marine microbial community structure and function in natural (N. Pacific Gyre, North Sea) and engineered (Biosphere2 Ocean) systems. For the second, she uses genomic tools to investigate evolution and ecology of ocean viruses (phages) and their microbial hosts, with particular interest in the role of nutrient limitation on infection dynamics and virus-host evolution.

George Kling

George Kling's research interests are in ecosystem ecology and aquatic biogeochemistry.

John Lehman

John Lehman's research interests are in limnology, aquatic science, and nutrient and trophic dynamics.

Nate Sanders

Nate Sanders' research is at the interface of community ecology, ecosystem ecology and macroecology, with a focus on how global change drivers and interspecific interactions influence the causes and consequences of biodiversity loss. My research program takes advantage of environmental gradients and experimental manipulations arranged at multiple sites with the aim of forecasting the effects of environmental change on biodiversity. They do experiments on ants, plant-insect interactions, montane plant communities, and a whole variety of other taxa.

Tom Schmidt

Thomas Schmidt's laboratory is focused on the physiology and ecology of microbes. We routinely develop and apply nucleic acid-based methods to explore and understand patterns of diversity and function of microbial communities, and to guide cultivation efforts. Our research is currently focused on two microbial communities: those found in terrestrial environments and are involved in the flux of greenhouse gases, and microbes that constitute mammalian microbiome. As we develop a better appreciation for the relationship between the structure and function of these microbial communities, we are conducting research to uncover fundamental principles that explain distribution patterns of microbial populations.

Donald Zak (can serve as graduate co-chair only)

Donald Zak's work draws on ecology, microbiology, and biochemistry and is focused at several scales of understanding, ranging from the molecular to the ecosystem scale. Current research centers on understanding the link between plant and microbial activity within terrestrial ecosystems, and the influence climate change may have on these dynamics. Teaching includes courses in soil ecology and ecosystem ecology.