Skip to Content

Search: {{$root.lsaSearchQuery.q}}, Page {{$}}

Dual Degree Program (MA in Statistics)

The Master of Arts in Statistics degree program is restricted to students who are already enrolled in a Ph.D. program at the University of Michigan in Ann Arbor. It is a dual degree earned while a student is working towards a Ph.D. in another field, aimed at students who do a significant amount of statistics as part of their thesis research. It is also awarded as an embedded degree to students working towards a Ph.D. in Statistics.

Students interested in a Master’s degree in Statistics who are not currently enrolled in a Ph.D. program at the University of Michigan, or whose Ph.D. thesis at Michigan does not involve a significant statistical component, should apply to the Master’s Program in Applied Statistics.

If you are a current UM Master’s student interested in adding another masters degree with a Statistics Department’s program, either Data Science (MDS) or Applied Statistics (MAS), information can be found on their application pages - MDS Application and MAS Application


Applicants must have completed one term of a Rackham Ph.D. program and should have a reasonable background in calculus, linear algebra, introductory probability, and introductory statistics. 

Prospective applicants are encouraged to consult with the Department of Statistics prior to submitting an application. Students are strongly discouraged from completing the course requirements and then applying to the program. Students must be enrolled in the Masters program for at least one year and complete a writing component before the degree can be awarded. This Masters degree may only be conferred in the same term in which students defend their thesis and complete all degree requirements for their Ph.D. program.

To apply, applicants should complete Rackham's online dual admission application, found here. The program code for the MA in Statistics is 00484. Please note that applicants must complete the Pre-Approval Form for Dual Admission and obtain a signature of approval from the authorized signer in their current graduate program before they apply. Without approval and an authorized signature on the form, applications will not be processed. Applicants will be required to upload the completed and signed Pre-Approval Form in the online application. For more information on the process and requirements to apply for dual admission, please visit

Required application components:

  • A curriculum vitae or resume, an Academic Statement of Purpose, and undergraduate and graduate transcripts. Applicants should upload these items to the online application.
  • The completed Pre-Approval Form for Dual Admission. Applicants will be required to upload this form to the online application. 
  • A letter of recommendation from the applicant's PhD advisor. Letters of recommendation should be submitted by the recommender using this form. Letters submitted by students will not be accepted. Note: The letter of recommendation needs to support the student's application and certify that the student is making good progress with the student's home PhD program. The applicant's PhD advisor also needs to indicate in the letter which faculty member from the Department of Statistics will be on the student's PhD committee to ensure there is a sufficient statistical component in the student's PhD thesis.  
  • Application Fee
  • If you are a current master's student seeking to add a Master's in Applied Statistics, please use this form to submit your letters of recommendation

The Winter application deadline is December 1 and the Fall application deadline is April 1. Please contact if you have any questions.


The program requires a minimum of 24 credit hours of course work, including two cognate courses (only applicable for students admitted prior to Fall 2018), and a writing component. Course selection must be pre-approved by the Program Advisor. Specifically, the requirements are:  

  • STATS 500 (Statistical Learning I: Regression) and STATS 503 (Statistical Learning II: Multivariate Analysis). More advanced students are encouraged to replace this sequence with STATS 600 (Linear Models) and STATS 601 (Analysis of Multivariate and Categorical Data) [6 credit hours]
  • BIOSTAT 601 (Probability) and BIOSTAT 602 (Statistical Inference). More advanced students are encouraged to replace this sequence with STATS 610 (Statistical Inference) and STATS 611 (Large Sample Theory). [at least 6 credit hours]
  • At least one elective course from the following list: STATS 501, 506, 507, 509, 531, 551, or a 600-level STATS course.
  • Additional elective courses from graduate-level courses offered by the Department of Statistics; see below for a list of approved elective courses.
  • For students admitted prior to Fall 2018: Two cognate courses from another department. Consult the Program Advisor about acceptable cognate courses. [at least 4 credit hours]
  • Students admitted for Fall 2018 (or later) are not required to take cognate courses. These students may still take up to 2 courses for up to 6 credits from departments other than Statistics or Biostatistics, with prior approval from the advisor.
  • A writing component that demonstrates mastery of statistical methods in the design of data collection and/or modeling and data analysis in the student's area of research. See more details below

Students who have already taken courses that are equivalent to the required courses should discuss possible substitutions with the Program Advisor. Note that all students have to complete at least 24 credit hours in the program.

List of Elective Courses

The following courses are acceptable as electives. 

  • STATS 406: Computational Methods in Statistics and Data Science
  • STATS 414: Topics Course (examples of previous offerings: Applied Survival Analysis, Bayesian Analysis)
  • STATS 430: Applied Probability
  • STATS 451: Introduction to Bayesian Data Analysis
  • STATS 501: Applied Statistical Modeling
  • STATS 506: Computational Methods and Tools in Statistics
  • STATS 507: Data Science and Analytics Using Python
  • STATS 509: Statistics for Financial Data
  • STATS 526: Discrete State Stochastic Processes
  • STATS 531: Analysis of Time Series
  • STATS 535: Reliability
  • STATS 547: Probabilistic Modeling in Bioinformatics
  • STAT 551: Bayesian Modeling and Computation
  • STATS 560: Introduction to Nonparametric Statistics
  • STATS 570: Design of Experiments
  • STATS 580: Methods and Theory of Sample Design
  • STATS 607: Statistical Computing
  • BIOSTAT 615: Statistical Computing
  • BIOSTAT 675: Survival Analysis
  • BIOSTAT 682: Applied Bayesian Inference
  • BIOSTAT 695: Analysis of Categorical Data
  • BIOSTAT 696: Spatial Statistics
  • Any approved STATS 600-level or above courses.

All STATS courses 600-level or above can be used as elective courses, with the exception that students cannot use 600, 601 as electives if they have taken STATS 500503, and that they cannot use 610611 as electives if they have taken BIOSTAT 601 and 602.

With the exception of the courses in the above list, students have to enroll in cross-listed courses under the STATS course number in order to obtain credits toward the degree requirement.

Writing Component

Since the dual degree is primarily designed for students who do a significant amount of statistics for their thesis research, the students in the program are required to have a Ph.D. thesis chapter, or a thesis-based research paper submitted for publication, which demonstrates mastery of statistical methods at the level of a Master's project. The writing component may focus on data collection (design of experiments, survey design), modeling and analysis of data, or both. It must be approved by a member of the student's Ph.D. committee with an appointment in the Statistics department. This committee member will need to sign a form approving the statistical writing component, typically at the time of the defense. The student must also provide a two-page summary of the writing component, to be submitted with the signed approval form, describing the scientific problem under investigation, its importance, and statistical methods used.

In the event that the student's thesis does not have a sufficient statistical component, this requirement may be replaced with two additional elective courses (at least 6 credit hours), making the total credit requirement equivalent to that of the Master's Program in Applied Statistics. Students are strongly advised to consult with the Statistics faculty member on their committee well in advance of the defense to determine the best course of action. Those who do not anticipate having a significant statistical component in their thesis should apply directly to the Master's Program in Applied Statistics.

For more information on the Dual Degree Program, contact