Written by Anna Cacciaglia
We may be used to thinking of evolution as the cause of big changes, such as the emergence of a brand new trait or species. But evolution really takes place on a much smaller scale, from the compounding of slight changes to individual genomes. While the evolution of novel traits like opposable thumbs or feathers doesn't usually take place on a timescale practical for observation, these huge developments result from many small changes; changes which can be possible to examine in the lab. Using DNA analysis as their guide, researchers have developed ways to study both short and long term changes in the genome, and more completely understand what might be the most important theory in biology.
For example, the field of "experimental evolution" makes short term changes visible in the lab. Using organisms like bacteria, viruses, and yeast, which evolve quickly by virtue of short generation times, researchers can track the changes in DNA sequence between generations and observe those changes' effects, giving them a window to watch a population of living things adapting to an environment in real time.
Researchers interested in changes that took place long ago must use a different approach: looking at biology forensically. The study of prehistoric changes draws on a wide range of scientific fields, from molecular biology and chemistry, to ecology, geology, and paleontology. Keen observations of present inheritance patterns, like the influence of mutation, natural selection, and chance, when combined with physical clues like fossils, can provide some insight into the evolutionary process. However, much of the investigation relies on DNA evidence. Because DNA is passed faithfully from parent to offspring, every change that has occurred in the sequence is preserved and can be accounted for today. Sequence comparison between different species can tell us about the genomic differences between them, and those disparities can be narrowed down to a single gene, hinting at the specific modifications that may have prompted staggering evolutionary shifts.
The Wittkopp lab uses techniques like these to study the evolutionary process. Their studies involve investigating mutations as the raw material for evolution, finding the genetic differences that make individuals of the same and different species unique, and determining the molecular and developmental consequences of these genetic changes. The lab studies the regulation and evolution of gene expression in both fruit flies and yeast, with a special interest in pigmentation differences within and among fruit fly species.