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Abstract

Partially Observed Markov Process (POMP) models have been extensively employed in epidemi-

ological modeling over the past several decades to understand disease patterns and inform policy-

making. Although the observation density is typically assumed to be known or at least can be eval-

uated point-wisely, the latent Markovian models lack closed-form expressions for initial density and

transition kernels, making it challenging to compute the likelihood for POMP models with complex

latent models. Recently, a novel approach (Poisson Approximate Likelihood, PAL) was introduced by

Whitehouse et al. (2023), which employs a Poisson approximation to posterior densities, offering a

fast and consistent approximation for the likelihood function. Whitehouse et al. (2023) claimed that

their method, along with its associated model, improved the maximum likelihood estimation com-

pared to traditional sequential Monte Carlo (SMC) methods used in Stocks et al. (2018) when applied

to the German rotavirus, by approximately 3200 log-likelihood units. However, our analysis of com-

paring two methods applied to the model for the same rotavirus dataset reveals that the improvement

of 3200 log-likelihood units results from the use of two different datasets differed by a scaling factor.

Moreover, although PAL and SMC are two ways of approximating the likelihood, within the framework

of models compatible with PAL, when computation time is preferred, PAL is recommended but it may

suffer from a likelihood shortfall, which can’t be overcome in general. When the model is misspeci-

fied for certain time points, SMC may fail, and PAL is possible to approximate the likelihood. When

computational time is not a critical factor and the model is correctly specified, sequential Monte Carlo

methods are recommended.

Keywords: epidemiology; compartmental model; state-space model; sequential Monte Carlo; likelihood-

based inference
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1 Introduction

Understanding dynamic diseases is critical for public health and policy-making. Traditional time se-

ries models, such as the TSIR model (Bjørnstad et al., 2002; Becker and Grenfell, 2017), are valuable for

predicting and forecasting the transmission scale of specific infectious diseases, as well as for estimat-

ing critical parameters such as the basic reproduction number R0 and the force of infection. However,

these models still fail to provide a sufficiently clear and straightforward understanding of the disease’s

transmission dynamics. Therefore, modeling the epidemiology data differently is necessary. Here, we

seek an alternative approach — Partially Observed Markov Process (POMP) models with compartmen-

tal modeling in the latent process, which is one of the most widespread models for understanding the

dynamics of infectious diseases and epidemiology data in the recent several decades (Michael A. New-

ton and Abkowitz, 1995; Hulin and Wai-Yuan, 2000; He et al., 2010; Doan et al., 2015; Stocks et al., 2018;

Jiang et al., 2021; He et al., 2023; Whitehouse et al., 2023). However, when there is a desire for models to

more closely resemble reality—namely, moving beyond linear Gaussian assumptions—traditional filter-

ing methods such as the Kalman Filter (Kalman, 1960) and the Ensemble Kalman Filter (Evensen, 1994;

Houtekamer and Mitchell, 1998) become unsuitable. This complexity arises because many diseases are

inherently more complicated; they are often modeled as nonlinear, non-Gaussian, high-dimensional,

and highly stochastic POMP models with several compartments in the latent process.

POMP models are defined by their initial conditions, transition kernels, and observation densities.

Though the observation density is always assumed to be mathematically evaluatable, the latent Marko-

vian models have neither a closed-form initial density nor transition kernels. Therefore, the likelihood

often is hard to retrieve when such a model is fairly complicated. However, as proposed by Kitagawa

(1987); Gordon et al. (1993); Kitagawa (1996), Monte Carlo methods can be applied sequentially to ap-

proximate the posterior distribution, as well as the likelihood function. This is the so-called and widely-

used sequential Monte Carlo method for filtering general models as long as one can simulate from the

latent Markovian model, which is based on the idea of Sampling-Importance-Resampling (Rubin, 1987).

Owing to the unique characteristics of POMP models, which we will introduce subsequently, these

models have gained significant importance and have been extensively applied in engineering and re-

lated disciplines, such as speech word identification (Rabiner, 1989), target positioning and velocity

estimation in radar systems (Gordon et al., 1993; Avitzour, 1995), volatility estimation in economic time

series (Pitt and Shephard, 1999), and structural type prediction in protein secondary structures (Schmi-

dler et al., 2000). In these models, the unobserved signal process {xn : n ∈N}, xn ∈X , represents the true

underlying signal, where X denotes the space where the state vectors live. A key example is the widely

utilized SIR model for infectious disease modeling, which categorizes individuals into three compart-

ments: S (susceptible), I (infectious), and R (recovered) (He et al., 2010; Battineni et al., 2020; Biswas

et al., 2014). In this case, X =N3, where N is the set of natural numbers. xn = (Sn , In ,Rn) where Sn ,

In , and Rn indicate the number of individuals in each compartment at time n. However, what is ob-
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servable is {yn |n ∈N}, yn ∈ Y , which depends only on {xn : n ∈N}, xn ∈ X and always includes noise

components. In the above SIR example, Y =N since yn , our data, is the observed number of cases at

time n. Therefore, accurately retrieving the values of {xn : n ∈N}, xn ∈X based on the observations y1:N

is crucial, a challenge commonly referred to as a filtering problem. This entails filtering out the noise

to recover the posterior distribution of x1:n given y1:n ,n ∈N, a problem widely considered in Bayesian

statistics. (Gordon et al., 1993; Geweke, 1989; Doucet et al., 2000; Andrieu et al., 2010)

When inference and estimation of parameters are of interest, likelihood maximization methods are

particularly challenging when the likelihood function is mathematically intractable, as detailed in Bretó

et al. (2019); Ionides et al. (2011); He et al. (2010). These methods often rely solely on the "plug-and-

play" property, which depends only on simulations from the latent process model. Conversely, when

the likelihood function is accessible, either through integration or approximation, methods such as the

gradient ascent algorithm (Lemaréchal, 2012; Hadamard, 1908; Courant, 1943) and the Stochastic EM

algorithm (Nielsen, 2000) can be effectively utilized.

Next, we introduce the POMP model in general and then review two different filtering methods that

were proposed and compared in Whitehouse et al. (2023). Subsequently, we will discuss the model

specifically used for the German rotavirus from 2001 to 2008 as a case study, which will enhance under-

standing of the two methods and, more importantly, provide guidance on whether and when one should

use them.

2 Methodology

Notation Description

θ,φ Parameters, usually θ,φ ∈Rp , p ≥ 1

f (·;θ), p(·;θ)
Probability density functions parametrized by parameter θ of

continuous and discrete random variables respectively

X1:n State variable from time 1 to n.

Y1:n Observation variable from time 1 to n.

x1:n The realization of the state variable from time 1 to n.

y1:n The realization of the observation variable from time 1 to n.

L (θ|·) = f (·|θ) The likelihood function at parameter θ given data.

ℓ(θ|·) = log f (·|θ) The log-likelihood function at parameter θ given data.

2.1 The Partially Observed Markov Process (POMP) Model

The Partially Observed Markov Process (POMP) model (He et al., 2010), also known as the state-space

model (SSM), or the Hidden Markov Model (HMM), is a time series model consisting of processes (Chopin

and Papaspiliopoulos, 2020; Liu, 2008; Doucet et al., 2001): A latent process/ state model, written as

xn ∼ fXn |Xn−1 (·|xn−1,θ) and an observation/ measurement model, written as yn ∼ fYn |Xn (·|xn ,θ). Here,
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we only consider the discrete-time representation. Where {xn : n ∈N}, xn ∈ X denotes the hidden or

latent states representing the unobserved signal. These states are treated as missing data within our

model and are of interest, a point that will be elaborated upon subsequently. And {yn |n ∈N}, yn ∈ Y

are called observations and are our actual observed data. The latent process is modeled as a Markov

process, i.e. {xn : n ∈N} has the Markovian property: fXn |X1:n−1 (xn |x1:n−1,θ) = fXn |Xn−1 (xn |xn−1,θ) with

initial distribution fX0 (x0;θ) and the transition kernel fXn |Xn−1 (xn |xn−1,θ). {yn |n ∈N} are conditionally

independent given the state variables {xn : n ∈N}, and if {xn : n ∈N} were given, yn only depends on

xn in the way that yn ∼ fYn |Xn (yn |xn ,θ). And fYn |Xn (yn |xn ,θ) is called the observation/ measurement

density. Such conditions are visualized by Figure 1.

Consequently, the likelihood function can be written as:

L (θ|y1:N ) = fY1:N (y1:N ;θ) (1)

=
∫

fY1:N ,X0:N (y1:N , x0:N ;θ)d x0:N (2)

=
∫

fX0 (x0;θ)
N∏

n=1
fYn |Xn (yn |xn ,θ) fXn |Xn−1 (xn |xn−1,θ)d x0:N (3)

Figure 1: Partially Observed Markov Process (POMP) Model (King, 2024)

However, fX0 (x0;θ), and fXn |Xn−1 (xn |xn−1;θ) doesn’t always have a closed-form expression, espe-

cially for compartmental modeling for complex epidemiology data. Therefore, evaluating the likelihood

by simply calculating the integral directly is nearly impossible. Here, for estimation and inference, we

review two methods for calculating the likelihood.

2.2 Sequential Monte Carlo/ Particle Filtering (SMC)

The sequential Monte Carlo (SMC), also known as Particle Filtering, has been widely used with various

variants developed over recent decades for posterior density approximation, including fXn |Y1:n−1 (xn |y1:n−1,θ)

and fXn |Y1:n (xn |y1:n ,θ), as well as for likelihood approximation. Theoretical foundations are discussed

in Chopin and Papaspiliopoulos (2020); Doucet et al. (2001); Liu (2008), and R packages implementing

SMC are detailed in King et al. (2016). Here, we introduce the basic concept of how SMC functions for
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likelihood approximation to serve our specific objectives.

Suppose we are interested in computing the likelihood for such POMP models. Recall that:

L (θ|y1:N ) = fY1:N (y1:N ;θ)

=
N∏

n=1
fYn |Y1:n−1 (yn |y1:n−1,θ)

=
N∏

n=1
Ln(θ)

where we let fYn |Y1:n−1 (yn |y1:n−1,θ) = fY1 (y1|θ), when n = 1, and Ln(θ) := fYn |Y1:n−1 (yn |y1:n−1,θ). Thus,

we merely need to compute Ln(θ). By the following formula:

Ln(θ) = fYn |Y1:n−1 (yn |y1:n−1,θ)

=
∫

fYn ,Xn |Y1:n−1 (yn , xn |y1:n−1,θ)d xn

=
∫

fYn |Xn ,Y1:n−1 (yn |xn , y1:n−1,θ) fXn |Y1:n−1 (xn |y1:n−1,θ)d xn

=
∫

fYn |Xn (yn |xn ,θ) fXn |Y1:n−1 (xn |y1:n−1,θ)d xn

=EXn |Y1:n−1 [ fYn |Xn (yn |Xn ,θ)|y1:n−1,θ]

by the conditional independency of yn given xn . Then if we can sample x(i )
n ∼ p(xn |y1:n−1,θ), by Law

of Large Numbers, we have

1

J

J∑
i=1

fYn |Xn (yn |x(i )
n ,θ)

J→∞−−−−→
∫

fYn |Xn (yn |xn ,θ) fXn |Y1:n−1 (xn |y1:n−1,θ)d xn

= fYn |Y1:n−1 (yn |y1:n−1,θ)

Therefore, our objective shifts to sequentially sampling x(i )
n from fXn |Y1:n−1 (xn |y1:n−1,θ) for each n ≥

1. Sampling sequentially means that we don’t want to sample a whole different set of {x(i )
n+1}i whenever

a new observation yn+1 is available. This can be achieved by the sequential Monte Carlo technique as

shown in Algorithm 1.

Algorithm 1 Sequential Monte Carlo (SMC, or particle filter)

Input: Simulator for fXn |Xn−1 (xn |xn−1;θ); evaluator for fYn |Xn (yn |xn ;θ); simulator for fX0 (x0;θ); pa-
rameter, θ; data, y1:N ; number of particles, J .

1: for n in 1 : N do
2: Simulate for prediction: X P

n, j ∼ fXn |Xn−1 (·|X F
n−1, j ;θ) for j in 1 : J .

3: Evaluate weights: w(n, j ) = fYn |Xn (y∗
n |X P

n, j ;θ) for j in 1 : J .

4: Normalize weights: w̃(n, j ) = w(n, j )∑J
m=1 w(n,m)

.

5: Apply select indices k1:J with P [k j = m] = w̃(n,m).
6: Resample with replacement: set X F

n, j = X P
n,k j

for j in 1 : J .

7: Compute conditional log likelihood: l̂n|1:n−1 = log
(

J−1 ∑J
m=1 w(n,m)

)
.

8: end for

output: Log likelihood estimate, l̂ (θ) =∑N
n=1 l̂n|1:n−1; filter sample, X F

n,1:J , for n in 1 : N .
complexity: O(J )
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Moreover, one can show that X P
n, j , j = 1,2..., J is an approximation of the prediction distribution

fXn |Y1:n−1 (xn |y1:n−1). After reweighting, X F
n, j , j = 1,2..., J is an approximation of the filtering distribution

fXn |Y1:n (xn |y1:n), see Gordon et al. (1993); Smith and Gelfand (1992).

Another way of computing the likelihood is by noticing:

Prediction Formula: fXn |Y1:n−1 (xn |y1:n−1) =
∫

fXn |Xn−1 (xn |xn−1) fXn−1|Y1:n−1 (xn−1|y1:n−1)d xn−1 (4)

Filtering Formula: fXn |Y1:n (xn |y1:n) = fYn |Xn (yn |xn) fXn |Y1:n−1 (xn |y1:n−1)

fYn |Y1:n−1 (yn |y1:n−1)
(5)

Conditional Likelihood: fYn |Y1:n−1 (yn |y1:n−1) =
∫

fYn |Xn (yn |xn) fXn |Y1:n−1 (xn |y1:n−1)d xn (6)

When fXn |Y1:n (xn | y1:n) and fXn |Y1:n−1 (xn | y1:n−1) are known functions of n, the likelihood can also be

computed for all n, as these probabilities are inherently related to each other.

Since

fXn−1|Y1:n−1 (xn−1|y1:n−1)
prediction−−−−−−−→ fXn |Y1:n−1 (xn |y1:n−1)

update−−−−→ fXn |Y1:n (xn |y1:n)

However, the evaluation of those integrals is almost impossible due to their complex and high-

dimensional nature. Thus obtaining approximations for this distribution is more welcome (Doucet

et al., 2001).

2.3 Poisson Approximate Likelihood (PAL)

Denote pXn |Y1:n−1 (xn |y1:n−1) as the prediction density; pXn |Y1:n (xn |y1:n) as the filtering density. Suppose

{Xn : n ∈ N} and {Yn : n ∈ N} are discrete random variables, with X = Nm ,Y = N, and m ∈ N is the

number of compartments, by very minimum algebra, we have:

Prediction Formula: pXn |Y1:n−1 (xn |y1:n−1) = ∑
xn−1∈Nm

0

pXn |Xn−1 (xn |xn−1)pXn−1|Y1:n−1 (xn−1|y1:n−1)

Filtering Formula: pXn |Y1:n (xn |y1:n) = pYn |Xn (yn |xn)pXn |Y1:n−1 (xn |y1:n−1)

pYn |Y1:n−1 (yn |y1:n−1)

Conditional Likelihood: pYn |Y1:n−1 (yn |y1:n−1) = ∑
xn∈Nm

0

fYn |Xn (yn |xn)pXn |Y1:n−1 (xn |y1:n−1)

which is a discrete representation of Eq. (4)-(6).

Given pX0 (x0), pXn |Xn−1 (xn |xn−1), and pYn |Xn (yn |xn) for n ≥ 1, we can approximate pXn |Y1:n−1 (xn |y1:n−1),

pXn |Y1:n (xn |y1:n), and pYn |Y1:n−1 (yn |y1:n−1) at any time n ≥ 1 and then use the above quantities to update

pXn |Xn−1 (xn |xn−1), pXn |Y1:n (xn |y1:n), and pXn |Y1:n (xn |y1:n) at the next given time n + 1. The Poisson Ap-

proximate Likelihood (PAL) method assumes and approximates them by a vector Poisson approxima-

tion.
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1. In the latent process model:

(a) δt be the death rate vector;

(b) αt be the birth rate vector of m compartments;

(c) Kt ,η be the row stochastic matrices;

Then the one-step transition of the latent process can be described as:

xt = x̃t + x̂t , where x̃ is obtained by x̄t−1 ∼ Bi nom(xt−1,1−−−δt ) and x̃t is equal to the one-step

transition of x̄t−1 according to the transition kernel Kt−1,η. And x̂t ∼ Poi s(αt ) is the importing

birth, which is considered as stochastic noise.

2. In the observation model:

(a) qt ∈ [0,1]m be the observing probability, where m is the number of compartments;

(b) Gt be the misreporting kernel, where non-zero off-diagonal entries indicate misreporting.

(c) κt be the observation error rate.

Then yt = ỹt + ŷt , where ŷt ∼ Bi nom(xt , qt ). And ŷt ∼ Poi s(κt ) is the observation error.

A novel method suggested by Whitehouse et al. (2023) is that the conditional likelihood of the above

compartmental model can be approximated by Poisson densities by the following:

If we assume pX0 (x0) ≈ Pois(λ0), where λ0 is a parameter that characterizes the initial distribution

of the numbers of individuals in each compartment.

Then for t ≥ 1:

1. p(xt |y1:t−1) ≈ Pois(λt ), where λt :=(λ̄t−1 ⊙δt )⊺Kt ,η(λ̄t−1⊙δt ) +αt

2. p
(
xt | y1:t

)≈ Pois
(
λ̄t

)
, λ̄t :=

[
1m −qt +

({
y⊤t ⊘

[(
qt ⊙λt

)⊤ Gt +κ⊤
t

]}[(
1m ⊗qt

)⊙G⊤
t

])⊤]
⊙λt

3. p(yt |y1:t−1) ≈ Pois
(
µt

)
, where µt =

[
(λt ⊙qt )⊤Gt

]⊤+κt .

Therefore, the algorithm of the approximated likelihood is:

Algorithm 2 Poisson Approximate Likelihood (PAL)

Initialize: λ̄0 ←λ0.
1: for t in 1 : N do

2: λt ←
[(
λ̄t−1 ⊙δt

)⊤
Kt ,η

(
λ̄t−1⊙δt

)]⊤+αt

3: λ̄t ←
[

1m −qt +
({

y⊤t ⊘
[(

qt ⊙λt
)⊤ Gt +κ⊤

t

]}[(
1m ⊗qt

)⊙G⊤
t

])⊤]
⊙λt

4: µt ←
[(
λt ⊙qt

)⊤ Gt

]⊤+κt

5: ℓ
(
yt | y1:t−1

)←−µ⊤
t 1m +y⊤t log

(
µt

)−1⊤
m log

(
yt !

)
6: end for
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To account for overdispersion within the model, Whitehouse et al. (2023)’s approach entails the in-

troduction of a prior distribution over the parameters. If we separate parameters into two parts i.e.

θ = [ϑ, θ̄1:t ] where ϑ are either fixed or to be estimated and θ̄1:t are to be integrated out and θ̄1:t ∼ f (·|φ),

the prior distribution for θ̄1:t , where φ are hyperparameters. These parameters θ̄1:t are then integrated

out by importance sampling techniques with proposal distribution π(·|·), yielding a marginal distribu-

tion of the data that reflects the overdispersion. The procedure is delineated in the following algorithm:

Algorithm 3 PALSMC

Input: Proposal distribution π(·|·), number of particles J, parameter [ϑ,φ]
Initialize: λ̄(i )

0 ←λ0, for i = 1,2, ..., J .
1: for t in 1 : N do
2: for i = 1,2, ..., J do

3: θ̄(i )
1:t ∼π(·|θ̄(i )

1:t−1, ¯
λ(i )

t−1, y1:t ).

4: αt ←αt (ϑ, θ̄(i )
t ), Kt ,η← Kt ,η(ϑ, θ̄(i )

t ), δt ←δt (ϑ, θ̄(i )
t ), qt ← qt (ϑ, θ̄(i )

t ),

κt ←κt (ϑ, θ̄(i )
t ), Gt ←Gt (ϑ, θ̄(i )

t )

5: λt ←
[(
λ̄t−1 ⊙δt

)⊤
Kt ,η

(
λ̄t−1⊙δt

)]⊤+αt

6: λ̄t ←
[

1m −qt +
({

y⊤t ⊘
[(

qt ⊙λt
)⊤ Gt +κ⊤

t

]}[(
1m ⊗qt

)⊙G⊤
t

])⊤]
⊙λt

7: µt ←
[(
λt ⊙qt

)⊤ Gt

]⊤+κt

8: ℓ
(
yt | y1:t−1,ϑ, θ̄(i )

1:t

)
←−µ⊤

t 1m +y⊤t log
(
µt

)−1⊤
m log

(
yt !

)
9: log w (i )

t ← ℓ
(
yt | y1:t−1,ϑ, θ̄(i )

1:t

)
+ log f (θ̄(i )

t |θ̄(i )
1:t−1,φ)− logπ(θ̄(i )

t |θ̄(i )
1:t−1, λ̄(i )

t )

10: end for
11: ℓ̂

(
yt | y1:t−1,ϑ,φ

)← log
(

1
J

∑J
i=1 w (i )

t

)
12: w̄ (i )

t ← w (i )
t∑J

j=1 w
( j )
t

13: Resample {θ̄(i )
1:t , λ̄(i )

t } according to weights {w̄ (i )
t }J

i=1
14: end for

3 Model: A Case Study with Rotavirus in Germany: 2001-2008

Table 1: Comparison of Model & Method Performance (Whitehouse et al., 2023)

Model AIC Ave. comp. time

EqEq 98866.65 30 s

EqOv 15154.75 2 hr

OvOv 13778.08 3 hr

Stocks et al. (2018) 20134.38 11 hr

Model selection is crucial in epidemiology modeling, as it determines the appropriateness of a model

in capturing the complexities of disease transmission dynamics. The Akaike Information Criterion (AIC)

represents a mathematical approach used in the selection of models and the evaluation of their struc-

tural parsimony. The formula for this criterion is given by.

AIC = 2p −ℓ(θ̂)
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where p is the number of parameters in the model and ℓ(θ̂) is the maximized log-likelihood at the esti-

mates.

When faced with multiple potential models for a dataset, the optimal choice is the model that yields

the lowest AIC value. The AIC not only acknowledges the model’s fit, evaluated by the likelihood function

but also imposes a penalty that escalates with the number of parameters estimated within the model.

This penalization is intended to deter overfitting, which is advantageous because augmenting the pa-

rameter count typically enhances the model’s fit regardless of its true explanatory power.

Next, we introduce the POMP models used in the analysis, beginning with the latent process model,

which follows a Markovian structure and includes nine compartments within X .

3.1 Latent Process Compartmental Model: The SIRSIRSIR model

Figure 2: SIRSIRSIR model (Whitehouse et al., 2023)

Rotavirus disease primarily affects infants and young children, causing gastroenteritis in this age

group, and is relatively rare in adults (Lambert et al., 2009). Nearly every child contracts rotavirus at

least once by the age of five (CDC, 2020). Reinfection can occur since neither natural infection nor

vaccination against rotavirus provides complete immunity against future infections (Stocks et al., 2018).

Consequently, it is practical to categorize the population into three age groups, leading to a model with

nine compartments in total: Sk , susceptible; Ik , infected; Rk , recovered, where k = 1,2,3 corresponds to

the age classes 0-4, 5-59, and 60-99, respectively. The diagram of the latent model is shown in Figure 2,

which is employed by both Whitehouse et al. (2023) and Stocks et al. (2018). The model is explained in

detail subsequently.
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The evolution of the full age-stratified rotavirus latent process model at time t is given by:

S1,t+1 = S1,t−1 + A1,t +E1,t −B1,t −F (S)
1,t ,

I1,t+1 = I1,t +B1,t −C1,t −F (I )
1,t ,

R1,t+1 = R1,t +C1,t −E1,t −F (R)
1,t ,

S2,t+1 = S2,t +F (S)
1,t +E2,t −B2,t −F (S)

2,t ,

I2,t+1 = I2,t +F (I )
1,t +B2,t −C2,t −F (I )

2,t ,

R2,t+1 = R2,t +F (R)
1,t +C2,t −E2,t −F (R)

2,t ,

S3,t+1 = S3,t +F (S)
2,t +E3,t −B3,t −D (S)

t ,

I3,t+1 = I3,t +F (I )
2,t +B3,t −C3,t −D (I )

t ,

R3,t+1 = R3,t +F (R)
2,t +C3,t −E3,t −D (R)

t ,

where at time t : A1,t ∼ Pois(αt ), for some αt ∈R represents new births, which is chosen according to

historical birth record data; B·,t represents new infectives; C·,t represents recovering individuals; D ·,t ∼
Binom(t − 1,1−δ) represents emigrating (dying) individuals; E·,t represents individuals experiencing

waning immunity; and F·,t represents aging individuals.


B1,t

F (S)
1,t

S1,t −B1,t −F (S)
1,t

∼ Mult

 S1,t ,


p1,t

1−e−hd1

e−hd1 −p1,t





C1,t

F (I )
1,t

I1,t −C1,t −F (I )
1,t

∼ Mult

 I1,t ,


1−e−hγ

1−e−hd1

e−hγ+e−hd1 −1





E1,t

F (R)
1,t

R1,t −E1,t −F (R)
1,t

∼ Mult

 R1,t ,


1−e−hω

1−e−hd1

e−hω+e−hd1 −1





B2,t

F (S)
2,t

S2,t −B2,t −F (S)
2,t

∼ Mult

 S2,t ,


p2,t

1−e−hd2

e−hd2 −p2,t





C2,t

F (I )
2,t

I2,t −C2,t −F (I )
2,t

∼ Mult

 I2,t ,


1−e−hγ

1−e−hd2

e−hγ+e−hd2 −1



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
E2,t

F (R)
2,t

R2,t −E2,t −F (R)
2,t

∼ Mult

 R2,t ,


1−e−hω

1−e−hd2

e−hω+e−hd2 −1




 B3,t

S3,t −D (S)
t −B3,t

∼ Mult

 S3,t −D (S)
t

,

 p3,t

1−p3,t




 C3,t

I2,t −D (I )
t −C2,t

∼ Mult

 I3,t −D (I )
t

,

 1−e−hγ

e−hγ




 E3,t

R2,t −D (R)
t −E2,t

∼ Mult

 R3,t −D (R)
t

,

 1−e−hω

e−hω




Kt ,η =



−e−hd1 p1,t 0 1−e−hd1 0 0 0 0 0

0 −e−hγ+e−hd1 −1 1−e−hγ 1−e−hd1 0 0 0 0 0

0 0 1−e−hω 0 e−hω+e−hd1 −1 1−e−hd1 0 0 0

0 0 0 −e−hd2 p2,t 0 1−e−hd2 0 0

0 0 0 0 −e−hγ+e−hd2 −1 1−e−hγ 1−e−hd2 0 0

0 0 0 0 0 1−e−hω 0 e−hω+e−hd2 −1 1−e−hd2

0 0 0 0 0 0 −e−hd3 p3,t 0

0 0 0 0 0 0 0 −e−hγ+e−hd3 −1 1−e−hγ

0 0 0 0 0 0 0 0 1−e−hω



where Mult denotes multinomial distribution. For models EqEq and EqOv we have pk,t = 1−exp
{
−βk

It
n χt

}
for k = 1,2,3, and for model OvOv we have pk,t = 1−exp

{
−βk

Ĩt
n χtξt

}
for k = 1,2,3,χt = 1+ρ cos(2πt/p +φ),

where p = 52 is the fixed period corresponding to the annual outbreak of rotavirus.

3.2 Observation Model

The observation model is defined as follows:

[Ykt | Xkt = (Skt , Ikt ,Rkt )] = [Ykt | Ikt ], k = 1,2,3 t = 1,2, ...,416

∼ p(ykt | xkt )

This model covers three age groups, k = 1,2,3, and specifies that the observable variable Ykt is de-

termined solely by Ikt , which represents the number of infected individuals at time t . The time variable

t spans from week 0 to week 416, corresponding to an eight-year period from 2001 to 2008. This as-

sumption is practical because most reported cases are confirmed either by laboratory tests or by clinical

diagnosis in hospitals of infected individuals. The observed counts are modeled using either a binomial

distribution, as assumed by Whitehouse et al. (2023), or a Poisson or Negative Binomial distribution,

as assumed by Stocks et al. (2018). Both approaches use the conditional mean equal to the product of
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the number of infectious individuals and the reporting rate qt . This model reflects the reality that re-

searchers can only collect data on reported cases, which represent only a subset of actual infections due

to underreporting.

For the observation models of Stocks et al. (2018) and Whitehouse et al. (2023) are defined as follows:

1. (Stocks et al., 2018):

Ykt ∼ Pois(qt ·Hkt ) or Ykt ∼ NegBinom(qt ·Hkt ,
1

θ
)

In the model proposed by Stocks et al. (2018), the number of observed cases Ykt is modeled to

follow either a Poisson distribution or a Negative Binomial distribution, to account for potential

overdispersion in the observation model. The expected value of these distributions is the product

of the reporting rate qt and the number of infected individuals Hkt .Hkt is modeled as an accu-

mulated variable, in the sense that it’s the total number of transition from Ik to Rk within a week,

corresponding to the weekly data we use. The Negative Binomial distribution includes a disper-

sion parameter θ to manage overdispersion relative to the Poisson model.

However, Stocks et al. (2018) assumed a non-underreporting observation model, implying qt = 1,

which means the data they analyzed were effectively scaled up. This assumption led to an increase

of 3200 log-units in the log-likelihood, as reported by Whitehouse et al. (2023) and illustrated in

Table 1.

2. (Whitehouse et al., 2023):

Ykt ∼ Binom(Hkt , qt )

In Whitehouse et al. (2023)’s model, Ykt follows a Binomial distribution, where Hkt represents the

trials and qt the success probability in each trial, reflecting the proportion of infections that are

actually detected and reported.

Focusing on Whitehouse et al. (2023)’s modeling, we consider three models:

1. EqEq: a fully equi-dispersed model, in which qk,r = 0.07 = µq ∈ [0,1], and µq is assumed to be

known;

2. EqOv: an equi-dispersed latent compartmental model and an over-dispersed observation model,

the same as EqEq except that qk,r
iid∼ N (µq ,σ2

q )≥0,≤1, where σ2
q > 0 is to be estimated;

3. OvOv: over-dispersion in both the latent and observation models, the same as EqOv except that

we augment χt to χtξt ,r , where for r ≥ 1, ξt ,r
iid∼ Gamma(σ2

ξ
,σ2

ξ
) are multiplicative disturbances

with mean 1 and σ2
ξ
> 0 is to be estimated.
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The table of parameters can be found below. Note that some of them are assumed fixed while the

rest are to be estimated.

Table 2: Full-list of parameters

Parameter Explanation Value Unit

N Population size 82372825 individuals
α Individual birth rate 1/(52 ·78.9) week−1

d1 Aging from age group 1 (age 0-4) to 2 (age 5-59) 1/(52 ·5) week−1

d2 Aging from age group 2 (age 5-59) to 3 (age 60+) 1/(52 ·55) week−1

δ Death rate (from age group 3 (age 60+)) 1/(52 ·18.9) week−1

βk Susceptibility of age group k ∈ {1,2,3} To be estimated individuals/week
ω Immunity waning rate 1/(1 ·52) week−1

γ Recovery rate 1 week−1

φ Phase shift of the seasonal forcing To be estimated 1
ρ Amplitude of the seasonal forcing To be estimated 1
pk,t Force of infection of age group k ∈ {1,2,3} Defined above week−1

χ(t ) Seasonal forcing function Defined above 1
σ2

q Overdispersion parameter of reporting rates To be estimated 1
σξ Scale parameter of the Γ-noise To be estimated 1

4 Results

Whitehouse et al. (2023) claimed that PAL is the first likelihood-based filtering method that can be ap-

plied to a broad range of POMP models with the finite-population assumption and consistent results,

and requires much less computational time than SMC. To evaluate whether SMC performs as well as PAL

in terms of both computational time and likelihood identifiability, we replicated the model using the R

package pomp (King et al., 2016). First, we verified that the two models are essentially identical. Here,

we simulated data from the model 1000 times at the MLE shown in Table 3 and compared the summary

statistics of 1000 simulated time series from two models using the t-test. Summary statistics including

the mean, median, and variance for all three age groups were tested. The results showed no significant

differences between the two models from which the data were simulated, confirming that both the la-

tent process model and the observation model are essentially consistent with each other, given that the

observations were directly simulated. These results are presented in Appendix A.

4.1 Key Factors Contributing to the Change of AIC in Table 1

From Table 1, it is evident that the OvOv model yields the lowest AIC, making it particularly notewor-

thy. Since one of Stocks et al. (2018)’s main purposes was to do model selection, therefore it’s exciting to

see Whitehouse et al. (2023) obtaining a much better model. The overdispersion model (OvOv) is often

the best model in terms of likelihood, primarily because it allows for greater variation in the model. By

incorporating more parameters, the OvOv model can capture subtleties and complexities in the dataset

that simpler models may overlook, leading to a more accurate fit and higher likelihood values. White-

house et al. (2023) claimed that it is the innovative observation model that contributed to an increase
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Table 3: Maximum likelihood estimation of parameters by PAL for three models (White-
house et al., 2023), and by mif2 algorithm (King et al., 2016) for the OvOv model.

Parameter EqEq EqOv OvOv OvOv (pomp)∗

β1 12.15 12.74 11.48 10.30
β2 0.22 0.21 0.25 0.21
β3 0.34 0.31 0.35 0.86
φ 0.017 0.14 0.14 0.03
ρ 0.022 0.19 0.16 0.14
σ2

q n/a 0.042 0.021 0.018
σξ n/a n/a 66.89 14.85

S10 3876549∗ 5885201
I10 30351 5041
R10 1315221 721006
S20 57139612 44546887
I20 871 22
R20 302852 26360811
S30 19573727 4788420
I30 2550 131
R30 131092 65306

AIC 98866.65 15154.75 13778.08 13674.55

* The initial distribution parameter λ0 = (S10, I10,R10,S20, I20,R20,S30, I30,R30) are
assumed to be fixed in Whitehouse et al. (2023). The results of the estimates of the
OvOv (pomp) model are obtained by using the Iterated Filtering algorithm with 3
rounds and 100 iterations, 50,000 particles, and 36 replicates in each round with
the top 12 best fits in terms of likelihood chosen to be the starting value for the
next round.

in log-likelihood by 3200 log-likelihood units. However, after comparing the results, we found that the

increase in likelihood when implementing the OvOv model is attributable to the datasets used by White-

house et al. (2023) and Stocks et al. (2018), where Stocks et al. (2018)’s dataset has no underreporting.

Therefore Whitehouse et al. (2023)’s dataset can be viewed as a scaled-down version of Stocks et al.

(2018)’s dataset by the reporting rate, which is roughly 0.07. Within the framework of the same model,

scaling the data downwards by a factor results in a corresponding rise in likelihood. This scaling effect

accounts for the discrepancy observed in the increase of 3200 log-likelihood units.

4.2 PAL versus SMC: When the Model is Misspecified

Our results demonstrate how SMC is sensitive to model misspecification, which consequently leads to a

low likelihood estimate at the MLE, as shown in Table 4 by fitting the real German rotavirus dataset into

the model.

Table 4: log-likelihood at the MLE of OvOv model for the real rotavirus data, computed using two filtering methods,
employed 36 replicates and 50,000 particles

PAL SMC
OvOv -6892.168 -7200.866

Table 4 indicates that the results from the two methods are quite similar but SMC obtained a bit

lower log-likelihood estimate than PAL. One potential explanation is the model misspecification, lead-

ing to a sensitive detection of likelihood shortfalls for SMC. Since consistent datasets, when faced with
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model misspecification due to outliers in the data, challenge the SMC approach, leading to low weights

being assigned to almost all particles (recall Algorithm 1), as the latent process model struggles to ac-

commodate outliers and is misspecified for such data points, which results in low conditional likelihood

at that specific data point. Moreover, for SMC, a situation where a few particles acquire a high weight

while the majority are assigned negligible weights can lead to an imbalance in the resampling process.

This scenario might result in these few heavily weighted particles being resampled repeatedly, thereby

dominating the sample set. If, following this, the subsequent simulations are unable to track the model

accurately, it is regarded as an SMC failure. However, such an occurrence was not observed in our anal-

ysis, indicating that the SMC method functioned without encountering this specific type of failure.

To examine the model misspecification at potential time points, as depicted in Figure 3, the major-

ity of significant drops of the SMC occurred at time (t = 1, 2, 3, 11, 81, 194, 325−333). The significant

drops observed initially, specifically at times t = 1,2,3, may suggest an improper initial distribution from

which the first set of particles was simulated. At times t = 11, 81, 194 and t = 325−333, the shortfall ap-

proximated 50−100 log-units. These failures can be attributed to outliers that the model cannot explain,

as shown in Appendix B. This suggests model misspecification, particularly in the latent process, which

fails to generate suitable particles capable of producing a high likelihood of observing the true reported

cases from the data. Subsequent issues observed at later times could indicate problems caused by fixed

seasonality, which cannot be compensated for by adding more stochastic elements.

Figure 3: Conditional log-likelihoods computed using two methods for the real rotavirus dataset, with the SMC
method replicated 36 times due to its high variances. The blue line represents overlapping results from 36 SMC com-
putations, while the red line is derived from PAL. The main sources of likelihood shortfall of SMC are at time points
t = 1,2,3,11,81,194, and 325−333.

4.3 PAL versus SMC: When the Model is Correctly Specified

Here, we utilize 100 simulated datasets from the OvOv model with parameters set at the MLE, thereby

eliminating model misspecification. We then examine the likelihood values computed by PAL and SMC.
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Table 5: Average log-likelihood at the MLE at the 100 simulated datasets from OvOv computed by two filtering meth-
ods, employed 36 replicates and 50,000 particles

PAL SMC
OvOv -6231.97 -6224.245

Figure 4: Log-likelihoods computed using two filtering methods for 100 randomly simulated datasets at the MLE of
the OvOv model. The red line is the line Li k(p f i l ter ) = Li k(pal f i l ter ). We can see on the simulated data, SMC
gives consistently higher likelihood estimates than PAL.

When the model is correctly specified, however, the log-likelihood values computed by PAL, as shown

in Table 5 and Figure 4, consistently exhibit a shortfall. This shortfall highlights the approximative na-

ture of the PAL method compared to the more accurate SMC filter. It is posited that the model yielding

the highest likelihood is, in theory, the true model, a concept we will explore in further detail in the

discussion section 5.

4.4 Iterated Filtering Maximization of the Likelihood

Besides proposing a novel filtering algorithm, by applying PAL to the model for rotavirus, Whitehouse

et al. (2023) claimed they have also identified a superior model, as a much lower AIC represented in Ta-

ble 1 indicates and the failure from getting a lower likelihood in Section 4.2. However, as demonstrated

in 4.3, we recognize that SMC, functioning as an ideal filter, ought to yield a higher likelihood estimation

when the model is correct. Notably, Section 4.2 reveals that when the model confronts actual rotavirus

data, it encounters misspecification issues, particularly at times t = 1, 2, 3, 11, 81, 194, 325−333, lead-

ing to shortfalls in likelihood. Appendix B discusses this phenomenon, attributing it to certain data

points that the model fails to adequately represent. This issue is especially pronounced at the initial

time points. Particularly, in the initial time points t = 1,2,3, the likelihood deviates from PAL esti-

mates for about more than 100 log-likelihood units, suggesting an improper choice of initial distribu-

tion that might favor the PAL estimate. Consequently, we have opted to estimate the initial distribution

λ0 = (S10, I10,R10,S20, I20,R20,S30, I30,R30), where S10, I10,R10,S20, I20,R20,S30, I30, and R30 represent the
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number of individuals in each compartment at time t = 0. The results of this new estimation can be

found in Table 3. Importantly, the maximization of the likelihood conducted via the Iterated Filtering

(mif2) algorithm (King et al., 2016) procures a higher likelihood at the estimated MLE than that estimated

by PAL, and a different yet comparable set of estimates is obtained. In terms of parameters pertinent to

epidemiological interests, i.e. the first 7 rows in Table 3, we observe a lower force of infection parameter

for the first age group, β1, alongside a higher force of infection for the third age group, β3. Addition-

ally, we detect variations in the phase parameter φ, which directly affects the seasonal time points, as

well as in the stochastic parameter σξ and the initial compartmental distributions. The modifications

to the initial distributions aim to rectify inadequate initialization, while the other adjustments address

model misspecifications identified in Section 4.2. Changes in the remaining parameter set are negligi-

ble. These findings indicate that when model misspecification is reduced to a minimal level, both PAL

and SMC approaches tend to provide similar likelihood estimates, and the Iterated Filtering algorithm is

capable of generating a superior maximum likelihood estimation than PAL equipped with the gradient

ascent algorithm. Moreover, the results produced by SMC are more reliable due to the exact nature of

the filter, despite PAL’s computational efficiency.

5 Discussion and Conclusion

This paper examines two filtering approaches, with PAL specifically designed for certain types of com-

partmental POMP models. However, both methods have their limitations. Although this was not ob-

served in our study, SMC is sensitive to model misspecification, which can lead to filtering failures. Con-

versely, PAL may experience a shortfall in likelihood estimation when the model is correctly specified.

PAL is an approximate filtering method used in scenarios where SMC is computationally prohibitive.

It approximates the posterior distribution by a Poisson approximation. Due to its approximative na-

ture, it does not perfectly capture the true posterior distribution. SMC, however, often referred to as

the "perfect filter," uses a large set of particles and sophisticated resampling techniques to theoretically

accurately approximate the posterior distribution. It is computationally more intensive than PAL but

tends to provide a satisfying approximation, especially in complex models that are not compatible with

PAL in general. When PAL and SMC are applied to a well-specified model meaning the model with the

latent process model being correctly represented, SMC outperforms PAL because it better captures the

nuances of the posterior distribution. This is why SMC might show a "likelihood shortfall" compared

to PAL when the model is correctly specified. This is due to the approximation error of PAL can’t be

improved arbitrarily in general (Wills and Schön, 2023), and likelihood being a proper scoring rule.

The concept of likelihood as a proper scoring rule (Gneiting et al., 2007; Gneiting and Raftery, 2007)

in statistical models implies that using likelihood-based methods will naturally align with the true model

of the data, assuming the model structure correctly represents the underlying process. When the likeli-

hood function is used as a scoring rule, it is considered proper because maximizing the likelihood leads
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to parameter estimates that converge to their true values under large sample conditions, provided the

model is specified correctly. A scoring rule is "strictly proper" if a forecaster maximizes the expected

score by issuing a probabilistic forecast that exactly matches the true distribution of the outcomes. In

other words, for a scoring rule to be strictly proper, the best strategy for the forecaster is to report the

true probability distribution of the events they are forecasting. This promotes honest and accurate fore-

casting. This provides a theoretical explanation of why SMC outperforms PAL when the model is correct.

The "likelihood shortfall" in PAL when compared to SMC, particularly when the model is correct,

highlights the trade-off between computational efficiency and accuracy in statistical approximations.

While PAL may be faster and more computationally feasible in many scenarios, it sacrifices some ac-

curacy, which becomes apparent when compared to the more exact SMC method, especially under the

scrutiny of proper scoring rules as discussed in the context.
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A Consistency of Models Built in pomp and Whitehouse et al. (2023)

Figure 5: Density plot and t-test of mean, median, and variance of all three age-specific time series of 1000 Simulations
from EqEq model built in WWR code and pomp

Figure 6: Density plot and t-test of mean, median, and variance of all three age-specific time series of 1000 Simulations
from EqOv model built in WWR code and pomp
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Figure 7: Density plot and t-test of mean, median, and variance of all three age-specific time series of 1000 Simulations
from OvOv model built in WWR code and pomp
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B Model Misspecification

Figure 8: Zoomed-in time-Cases plot at time t = 0−20,75−85,190−200 and 320−340. In the visualization, solid lines
represent the true reported cases from the original rotavirus dataset, while the shaded strips with dashed boundaries-
colored according to different groups—indicate enlarged "confidence intervals" for these cases. Specifically, the upper
boundary of each strip corresponds to the upper 97.5% percentile of 36 replicates of the filtered accumulated number
of cases, Hkt , for k = 1,2,3, and t = 1,2, ...,416, as introduced in Section 3.2. This boundary is further adjusted by the
upper 97.5% percentile of the reporting rate qt , estimated by Whitehouse et al. (2023) in Table 3. The reporting rate
qt is assumed to follow a truncated normal distribution with a mean of 0.07 and a standard deviation of σq = 0.021,
resulting in a lower 2.5% percentile of 0.029 and an upper 97.5% percentile of 0.111. The methodology for establishing
the lower boundary of the strip mirrors that of the upper boundary. Although this approach is not entirely rigorous,
each strip is intended to encompass our extended confidence interval for the true reported cases. Consequently, data
points that fall outside these strips give us a intuition of where the model misspecifications may occur.

As illustrated in Figure 3, shortfalls are observed at times t = 1, 2, 3, 11, 81, 194, and 325−333. These dis-

crepancies are primarily attributable to outliers that the model fails to accommodate. In the displayed

results, it is immediately apparent that at the initial times t = 1, 2, 3 all the true reported cases deviated

from the expected range, falling outside the designated strip. Specifically, at time t = 11, the model is

misspecified for case 1, depicted by the solid red line. Similarly, at times t = 81, 82, the model is mis-

specified for case 3, as indicated by the solid blue line that extended beyond the strip’s boundaries. At

t = 194, the solid green line denotes case 2 as where the model is misspecified. During the period from

t = 325−333, all three observed cases are where the model misspecifications happen. These deviations

provide a clear illustration of the likelihood shortfall of the sequential Monte Carlo (SMC) method when

the model does not align with the data, suggesting a model misspecification.
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