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Abstract

Kernel dimension reduction (KDR), a form of sufficient dimension reduction

(SDR), is a framework for identifying potentially nonlinear multivariate relation-

ships between high-dimensional predictors X and outcomes Y , both of which may

be multivariate. Here we propose a way to accommodate missing data in either

the predictors or the outcomes, enabling KDR to be applied in a much broader

range of settings. We cast the problem as that of predicting the missing elements

of the kernel matrices using their conditional expected values given all observed

data, based on an auxiliary model. We present simulation studies showing that

our method is computationally tractable for moderate-sized data sets and has

good statistical performance. To aid in interpretation of the nonlinear sufficient

predictors, we use Multivariate Adaptive Regression Splines (EARTH/MARS) to

estimate the unknown link functions. We illustrate the approach by presenting

an analysis of longitudinal data of height for age z-score (HAZ) and systolic blood

pressure (SBP) in a sample of people from the Dogon population of Mali.

1 Introduction

Multivariate regression of potentially high dimensional data remains a methodological

challenge for data scientists, especially when aiming to accommodate substantial non-

linearity in the conditional mean relationship. As a motivating example, consider the

association between height and systolic blood pressure (SBP) in an under-nourished

population, where height is a proxy for nutrition, and SBP in early adulthood is an in-

dicator of cardiovascular health. When both HAZ and SBP are measured over time, we

can view the data as following continuous latent stochastic processes (random contin-

uous functions) which are infinite dimensional. Recently-developed methods for kernel

dimension reduction [12], exploiting methods and theories from Reproducing Kernel

Hilbert Spaces (RKHS), naturally accommodate multivariate and process-valued data.

This method provides a promising approach for data analysis in our setting, and is the

basis of this thesis.

Kernel Dimension Reduction utilizes kernels [8] to capture pairwise relationships

among observations, separately for the predictors and the responses. This in turn yields

a “kernelized” estimator of the Sliced Inverse Regression (SIR) operator CovE[X|Y ],

whose dominant eigenfunctions can be viewed as “sufficient nonlinear predictors” for

X, that capture all information in X relevant for P (Y |X). An important feature of this

approach is that both X and Y may be vectors, possibly of infinite dimension, and in

particular there is no need for Y to be scalar as is the case in many other approaches to

regression analysis. This foundational kernel-based SDR method is described in detail

in Section 3 below.
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Data from human longitudinal studies are usually sporadically observed, so that

the data are missing for all but a finite number of measurement occasions. Thus, the

methods of KDR, which require computing the kernel at each pair of X values, cannot

be directly applied. Devising and assessing a method for overcoming this methodological

challenge is the main goal of this thesis. At a high level, our approach involves specifying

a working model for the data (X and Y separately), and imputing the missing values

of the kernel matrix as their means conditioned on all observed data.

An outline of this thesis is as follows. In Section 2 we briefly review the human

biology of height and health and some classical methods for dimension reduction re-

gression with scalar responses and finite-dimensional predictors. Then in Section 3 we

review recent work on kernel dimension reduction (KDR) approaches to nonparametric

regression. Section 4 develops our proposed approach for employing kernel dimension

reduction regression in settings where there may be missing values in either the predic-

tors or the outcomes. In Section 5 we rigorously assess the enhanced KDR methodology

using simulated datasets. In Section 6 we apply the enhanced KDR method to data

from a longitudinal study of blood pressure in relation to height in the Dogon of Mali.

Our goal is to delineate the relationship between height in youth and adult systolic

blood pressure, both of which are assessed repeatedly over time. We will consider the

plausibility of our findings in this dataset, and assess the sensitivity of the results to

the modeling choices and tuning parameters.

2 Background

2.1 Human biology of height and health

Height being related to the risk of disease and mortality was first noted in the late 19th

century [5]. Data from the early 20th century, particularly from the insurance industry,

suggested that taller individuals generally had longer lifespans compared to shorter

individuals [2]. The correlation between height and various health conditions, such as

Alzheimer’s disease, cardiovascular diseases, and different forms of cancer, has been

extensively studied. A comprehensive investigation utilizing both epidemiological and

genetic methodologies assessed adult height in connection with 50 diseases, concluding

that height was correlated with 32 diseases, while genetically influenced height had

associations with 12 diseases [6].

A pioneering study by Gertler et al. in 1951 revealed that young men who were

at risk for coronary artery disease were, on average, about 5 centimeters shorter than

those not at risk [4]. This observation was corroborated by subsequent research from

Paffenbarger and Wing [9], who found that university students who suffered strokes
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were typically 2-3 centimeters shorter than those who did not. While there has been

considerable research exploring the connection between blood pressure and height in

more developed regions of the world [1, 10], there is a lack of data from underdeveloped

regions. The data analyzed below in Section 6 are from an under-resourced population

in Mali. In this context, the relationship between height and blood pressure may pre-

dominantly reflect the consequences of undernutrition, rather than overnutrition and

obesity. Active debate remains around the consequences of childhood undernutrition.

One point of view is that smaller children grow up to become smaller adults, with conse-

quently lower blood pressure. Another perspective is that undernutrition in childhood

is a risk factor for higher adult blood pressure, as undernourished children may suffer

from developmental abnormalities such as lower kidney nephron density and impaired

vasculature. The Dogon longitudinal study data provide a unique resource for study-

ing the relationship between childhood growth and adult blood pressure in a generally

undernourished population.

2.2 Dimension Reduction Regression

The increasing prevalence of high-dimensional data in numerous fields calls for effective

dimension reduction strategies for data analysis. Sufficient Dimension Reduction (SDR)

is a leading set of techniques in this realm, providing an array of methods that simplify

the data while preserving essential information. Conventionally this “simplification”

involves a linear dimension reduction, but recently methods using nonlinear dimension

reduction have been developed, and that is what we employ here.

A key method among the classical approaches to dimension reduction regression is

Sliced Inverse Regression (SIR) [7], which identifies the effective dimension reduction

subspace through examination of the nested moment matrixM ≡ CovE[X|Y ]. Another

interpretation of this approach is that it conducts an inverse regression of each predictor

on the response variable, thereby circumventing the curse of dimensionality. In doing

so it identifies a low dimensional affine space containing the inverse regression function

E[X|Y ].

For a scenario involving a p-dimensional predictor variable X and a univariate re-

sponse Y , SDR distills a more manageable representation of X. This is generally

achieved through linear combinations expressed as βTX, where β is a p × d matrix

whose columns are vectors β1 . . . βd, and where d < p. The identifying condition for

SDR is as below:

Y ⊥⊥ X | βT
1 X, . . . , βT

d X (1)

This condition ensures that βTX encompasses all the regression information necessary
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to explain Y given X, effectively reducing the dimensionality as long as d is small

compared to p. In the classical SIR algorithm, the vectors βj are estimated as the

dominant eigenvectors of an orthogonalized version of M .

3 Kernel Dimension Reduction

The Kernel Dimension Reduction method that forms the basis of this work was pre-

sented in 2022 [12], and derives from Sliced Inverse Regression [7]. It employs the

“kernel trick” along with ideas from reproducing kernel Hilbert spaces. This results in

a nonlinear reduction of X to functions fj(X), j = 1, . . . d, such that

Y ⊥⊥ X | f1(X), . . . , fd(X). (2)

Although the reduced variates fj are nonlinear functions of X, they are estimable

using linear methods applied to kernel matrices, analogous to the familiar kernel ridge

regression (KRR) method. The use of kernels has several advantages, one being that

the domains of X and Y need not be Euclidean spaces, as long as a suitable kernel

function can be constructed for their domains. This allows, for example, X and Y to

lie on Riemannian manifolds, or, as in our case, to be projections of stochastic processes

to finite sets of observation occasions.

To begin, kernel functions κX and κY are selected, with the squared exponential

radial basis kernel being a popular choice. Note that this kernel, like nearly all kernels,

involves selection of a bandwidth parameter, which will be explored in our simulation

studies and data analyses below. Subsequently, matrices KX = (κX(Xi, Xj))
n
i,j=1 ∈

Rn×n and KY = (κY (Yi, Yj))
n
i,j=1 ∈ Rn×n are calculated. The centering matrix, denoted

as Q = I − n−11n1
T
n , where 1n is vector of ones, is used to compute centered versions

of these matrices, resulting in GX = QKXQ and GY = QKYQ.

Next, the coordinate representation of the sample metric Sliced Inverse Regression

(SIR) operator, ΛSIR, is calculated along with a ridge-regularized version to enhance

numerical stability. This is represented as

ΛSIR = (GX + τ1In)
−1GY (GY + τ2In)

−1GX (3)

where τ1 is defined as c · ϕ1(GX), with ϕ1(GX) being the largest eigenvalue of the

designated matrix, and c = 0.2. Similarly, τ2 is defined as c · ϕ1(GY ).

To estimate the range of ΛSIR, eigen-decomposition is performed on its coordi-

nates as given in equation (3). By identifying the d leading eigenvectors, v1, . . . , vd

of (ΛSIR)(ΛSIR)
T , the sufficient predictors for an observation X within are estimated
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as vT1 QkX(X), . . . , vTd QkX(X), where kX(X) = (κX(X,X1), . . . , κX(X,Xn))
T .

4 A method for accommodating missing data in

Kernel Dimension Reduction

Missing values in datasets pose a considerable challenge and are especially prevalent in

studies involving field data for human populations. If we view our data in idealized form

as a continuous stochastic processes, nearly all data will be missing for each individual.

In Section 6 below, we will consider data from the Dogon population of Mali, treating

height and blood pressure as finite sequences of longitudinal measurements of infinite

dimensional processes. These data will be used to illustrate our approach to handling

missing data in KDR analysis.

A key step of the KDR framework is calculation of the distances between pairs of X

variables and between pairs of Y variables. Missing values complicate the computation

of these distances. To address this, we propose using an imputation method for the

squared distance matrix E[||Xi − Xj||2 | Xobs
i , Xobs

j ], based on a working model for

P (X) that is used to calculate conditional means. The same approach is used to impute

pairwise distances for Y . This approach can make use of all observed data, without the

need to discard any partial observations.

Let Z denote a random vector, and let I and J denote the index sets of missing

and observed values within Z, respectively. Thus Z[I] and Z[J ] are the subvectors of

missing and non-missing values, respectively. We are interested in understanding the

distribution of Z given the non-missing values Z[J ]. We achieve this using a working

model in which the conditional distribution P (Z | Z[J ]) follows a normal distribution,

N(θ,Φ), where θ and Φ represent the mean and the covariance of this distribution,

respectively. Under Gaussianity of Z, the parameters θ, Φ can be expressed in terms

of the marginal moments of Z:

θ ≡ E[Z | Z[J ]]

= E[Z] + Cov(Z,Z[J ]) · Cov(Z[J ])−1 · (Z[J ]− E[Z[J ]]) (4)

This formula tells us the expected value of Z, given the observed data, can be adjusting

the overall expected value of Z based on how the missing and observed values relate to

each other (their covariance) and how the observed values themselves vary from their

expected value.

The covariance Φ of the conditional distribution reflects how the values of Z vary
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with respect to each other:

Φ ≡ Cov(Z | Z[J ])

= Cov(Z)− Cov(Z,Z[J ]) · Cov(Z[J ])−1 · Cov(Z[J ], Z) (5)

This equation adjusts the overall covariance of Z by removing the part that can be

predicted from the observed values, again taking into account the relationship between

missing and observed data.

For imputation purposes, take the Xi to be exchangeable, and let Z = (X ′
i, X

′
j)

′ ∈
R2q. Take Z to follow a normal distribution with mean (E[X]′, E[X]′)′ and covariance

matrix

Cov(Z) =

(
Cov(X) 0

0 Cov(X)

)
.

Let B = [Ip×p − Ip×p], so that BZ = Xi − Xj. The distribution of BZ given the

observed data also follows a normal distribution, but with modified parameters,

P (BZ | Z[J ]) = N(Bθ,BΦB′). (6)

The expectation of the squared norm of BZ, which is the expected square distance

between Xi and Xj, given the observed data, can be computed as:

E[||Xi −Xj||2 | Xobs
i , Xobs

j ] = E[||BZ||2 | Z[J ]]

= ∥Bθ∥2 + tr(BΦB′). (7)

This formula calculates the expected squared distance by summing up the squared

expected values of the transformed variables (Bθ)2i and their variances (BΦB′)ii. This

sum provides a measure of how spread out the transformed points are, taking into

account both the location and spread of the underlying normal distribution shaped by

the observed data.

The calculations above require estimates of the marginal moments E[Z] and Cov(Z),

for which we use the methods implemented in the R package fastimputation. We

note that other methods for estimating marginal means and covariance matrices in

the presence of missing data exist, and moreover a non-Gaussian working model could

be employed, although this would considerably complicate the estimation of marginal

moments.

Based on (7), we impute all values within the n × n kernel matrices KX and KY ,
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then proceed with the KDR analyis as if these kernel matrices were calculated directly

from the data.

5 Simulation Studies

In this section we use simulation to aid in understanding the performance of the KDR

approach from three perspectives. We first consider the setting in which no data are

missing, and we evaluate the recovery of the mean structure in terms of the nonlinear

sufficient predictors. We focus especially on the effect of bandwidth specification, and on

the roles of sample size, predictor and outcome dimension, and signal-to-noise ratio. We

then consider a simulation study in which the data are missing completely at random,

so that the missingness rate becomes another important factor to consider. Finally, we

consider the cost of using kernel methods in a setting where the actual mean structure

is linear. This allows us to compare the loss of efficiency due to kernelization, in

comparison to an “oracle” linear model which is unbiased when the population mean

structure is in fact linear.

5.1 Simulation study of KDR under nonlinear situation with-

out missing values

The purpose of this simulation study is to evaluate the effectiveness of Kernel Dimension

Reduction (KDR) in enhancing regression analysis by distilling predictor variables into

two sufficient predictors, denoted as z1 and z2. These predictors are then employed to

predict the dependent variable, Y , with an emphasis on preserving essential regression

features that provide insight into the relationship betweenX and Y . For the simulation,

a Gaussian radial basis function kernel is selected, defined by k(Xi, Xj) = exp(−σ||Xi−
Xj||2), where various scale values σ are evaluated through the following simulation

process.

The study begins with the generation of a predictor matrix X of size n× p, where

n represents the number of observations and p indicates the dimension of predictors.

The elements of X are drawn independently from a standard normal distribution. A

response matrix Y with dimension n × 2 is subsequently constructed. The expected

responses E[Y1] and E[Y2] are modeled as E[Y1] = (1+X1)
2 and E[Y2] = (1+X1+X2)

2,

respectively. To maintain a controlled signal-to-noise ratio, a predetermined R2 value

is utilized to establish the residual variance for the response variables Y . Specifically,

for homoscedastic errors,
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R2 = Var(E[Y |X])/(E[Var(Y |X)] + Var(E[Y |X]))

= Var(E[Y |X])/(τ 2 +Var(E[Y |X])) (8)

and Var(E[Y |X]) can be estimated directly from the expected values in our simulation

studies. We can rearrange the expression (8) to obtain the additive error variance

τ 2 = Var(E[Y |X]) · (1−R2)/R2. (9)

Upon the completion of this setup, we employ the KDR method to extract the

sufficient predictors, denoted as z1, z2, from the training data. Using these predictors,

we then apply Multivariate Adaptive Regression Splines (MARS) [3] to model and

predict each component of Y in a sample of validation data having the same size as the

training data. MARS is capable of estimating nonlinear and non-additive conditional

mean structures, and the residual mean squared error from MARS should approximate

the residual error variance, which is a known quantity in the setting of a simulation

study.

To evaluate the efficacy of our methodology, we compute the correlation coefficient

R2 for the predicted versus the actual values of Y . This assessment aims to measure the

agreement with the predetermined R2 value set for Y , thereby offering a quantitative

measure of the accuracy achieved by the KDR and MARS models in comparison to

established benchmarks.

The simulation was executed a total of 100 times (k = 100), with each iteration

involving 500 observations (n = 500) and adhering to a preset R2 value of 0.75 across

different values for the kernel scale parameter σ (the larger the value of σ, the smaller

the bandwidth). This simulation protocol is designed to approximate the characteristics

of the human biology dataset analyzed below in Section 6.
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Figure 1: KDR performance with Gaussian radial basis function (RBF) kernel in a non-
linear situation without missing data across different kernel scale values σ and different
dimension of predictors, measured by the predicted R2, compared to the true R2 = 0.75
in orange dashed line.

Figure 1 presents the predictive accuracy across various σ values and various pre-

dictor dimensions p. The depiction includes an orange dashed line that serves as a

benchmark, symbolizing the ideal predetermined R2 value of 0.75. The results over-

all show that the residual variance closely matches the population error variance, as

long as the bandwidth σ is well-chosen. Specifically, at a near-oracle bandwidth of

σ = 0.05, the R2 values for both Y1 and Y2 remain near the target value of 0.75. With

a smaller than oracle bandwidth σ = 0.1, the results are effectively equivalent to when

σ = 0.05, showing a degree of robustness in the bandwidth selection. However when

the bandwidth is too small, such as setting σ = 0.5, the R2 values for both response

variables Y1 and Y2 diminish as the dimension increases, although the method continues

to work well in lower dimensions. Taken together, these findings highlight the method’s

robustness in maintaining a stable level of predictive accuracy, even as the challenge

of higher dimensionality introduces a greater volume of non-essential information. All

these results depend on the bandwidth being well-chosen.

5.2 Simulation study of KDR under nonlinear situation with

missing values

Using a Gaussian radial basis kernel, denoted k(Xi, Xj) = exp(−σ||Xi − Xj||2), the
computation of the distance between the predictor vectorX for each pair of observations

is a key step. However, the presence of missing values in the X vectors complicates the

direct application of KDR. To circumvent this issue, the approach described in Section
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4 is incorporated to impute the distance matrix, thereby rendering the data amenable

for subsequent use in KDR. In this simulation study, the dataset is generated using

the method described in Section 5.1. Missing values are randomly distributed across

the entire dataset, with each matrix, X and Y , having 80 percent of its values present

and 20 percent missing. After assigning these missing values, any row in both the X

and Y matrices that contains only missing values is removed, while rows containing

at least one non-missing value are retained. Subsequently, our imputation approach is

applied to compute the kernel matrices for X and Y separately. Once these matrices are

established, they are introduced into the KDR framework, allowing for the construction

of sufficient operators for the predictor variables X. Prediction of each component of

Y is then performed using MARS. The effectiveness of this approach is evaluated by

comparing the recovered R2 of the data set after missing value imputation with the

true predetermined R2 of the original complete data set. This comparison aims to

demonstrate the efficacy of the missing value algorithm within the KDR framework in

preserving the integrity of the data and the accuracy of subsequent predictions.

The simulation was executed a total of 100 times (k = 100), with each iteration

involving 500 observations (n = 500) and adhering to a preset R2 value of 0.75 across

different σ values.
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Figure 2: KDR performance with Gaussian RBF kernel in nonlinear situation without
missing data across different σ values under different dimension of predictors, measured
by the predicted R2, compared to the true R2 = 0.75 in orange dashed line.

Figure 2 displays the predictive accuracy across various kernel scale parameters (σ)

and predictor dimensions (p). An orange dashed line serves as a benchmark, represent-

ing an ideal R2 value of 0.75. The results strongly resemble those shown in Figure 1,

suggesting that we were able to overcome the presence of missing data without sacri-

ficing predictive accuracy.
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5.3 Simulation study of KDR under linear situation without

missing values

In the preceding simulation studies, we posited a nonlinear association between the

predictor variables X and the response variable Y , for which we employed KDR and

MARS to forecast Y . However, when the relationship between X and Y is linear,

we have the opportunity to evaluate the efficiency of KDR in relation to conventional

multivariate ordinary linear regression models (multivariate OLS).

We begin by generating the predictor variables X (n × p) and the error terms e

(n × 2). These are created using the multivariate normal distribution. Specifically, X

is generated with mean of 0 and exchangeable covariance of 0.6, while e is produced

with a mean of 0.5 and exchangeable covariance of 0.2. We then define a matrix B

(p× 2) which follows the uniform distribution on (−0.3, 0.3) to synthesize the response

variable Y (n × 2) via the relationship Y = BX + e. Subsequently, we estimate the

matrix B̂ using the standard least squares prediction formula B̂ = (XTX)−1XTY . The

predicted values of Y , denoted as Ŷ , are obtained by calculating Ŷ = B̂X.

Next, we generated a testing dataset using a shifted version of the covariate model

used to produce the training data. The use of such a covariate shift introduces a

greater challenge in that a certain degree of extrapolation is taking place. Specifically,

we shifted the mean of all columns of X by 0.5 and scaled the variances of the predictors

by a factor 1.5. The true responses for the test set were then derived using the formula

Ytest = XtestB + e. Predictions for Ytest were generated by applying the coefficient

matrix B̂, obtained from the linear regression model trained on the original dataset,

to Xtest through ˆYtest = B̂Xtest. Subsequently, we calculated the Mean Squared Error

(MSE) for both response variables Y1 and Y2 within the multivariate linear regression

framework.

For a comparative analysis, we employed KDR and MARS techniques on the same

training data and made predictions on Xtest. We then examined the ratio of MSEs

between these methods and the multivariate linear regression, specifically calculating

MSE(KDR + MARS)

MSE(Multivariate Linear Regression)

By comparing this ratio against the benchmark of 1, we sought insights into the

efficiency of KDR under conditions akin to linear scenarios. This comparative metric

sheds light on the relative benefits or costs of employing KDR in situations where a

linear model might be adequate, thus facilitating a more informed selection of predictive

methodologies based on the intrinsic characteristics of the data.

We conducted the simulation, running it a total of k = 300 times, each time with
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n = 500 observations. The KDR reduce the dimension of the X to two, with sufficient

predictors z1 and z2.
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Figure 3: KDR performance with Gaussian RBF kernel in linear situation without
missing data cross different σ values under different dimension of predictors, compared
to the benchmark MSE ratio = 1 in orange dashed line.

According to the results shown in Figure 3, the impact of varying the bandwidth σ on

the mean squared error (MSE) ratio for responses Y1 and Y2 is clearly depicted. When

σ = 0.5, the MSE ratio for both responses starts at 1.3 and gradually increases with

the number of predictors, reaching 1.6 as the dimensionality expands. For σ = 1, the

MSE ratio remains relatively stable at approximately 1.45 as the predictor dimension

increases from 2 to 9, but rises to 1.55 when the number of predictors reaches 10. At a

bandwidth of σ = 1.5, the MSE ratio maintains stability at 1.4 for predictor dimensions

between 2 and 7; however, it escalates to 1.7 as the dimension extends from 7 to 10.

These observations indicate that with an appropriately selected bandwidth, the MSE

of KDR is no more than 2 times greater than that of the “oracle” multivariate OLS,

with a narrower gap in lower dimensions.

6 Blood pressure and anthropometry in the Dogon

Population of Mali

We illustrate the trajectory regression approaches discussed above using data from a

study of human growth and health outcomes. The central question is whether child-

hood undernutrition, reflected in growth curves based on childhood measures of height,

associate with trajectories of blood pressure in adulthood. Since these function-on-

function regression relationships are likely to be non-linear, and are based on data that
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were measured repeatedly for each individual, but at irregularly spaced time points,

this dataset provides a suitable illustration of the methods developed above.

6.1 Data Description

The Dogon Longitudinal Study (DLS) began in the late 1980’s in the Bandiagara escarp-

ment region of Mali, west Africa, led by Professor Beverly Strassmann of the University

of Michigan [11]. Between 1998 and 2002, approximately 1700 “F1” individuals were

recruited, consisting of children born in nine villages between 1993 and 2000. These

individuals have been followed longitudinally and the vast majority of surviving indi-

viduals continue to be followed as of 2024. Anthropometry, including the height-for-age

Z-score (HAZ) was collected on all measurement occasions, and systolic blood pressure

(SBP) was collected for most individuals older than age 12.

These data are clustered by individual, with repeated measures for both HAZ and

SBP taken over multiple years of follow-up. These repeated measures are used to define

the kernel-based similarity matrices KX and KY that in turn are used to identify the

sufficient dimension reduction subspace.

In this study, the dependent variable is systolic blood pressure (SBP) and the in-

dependent variable is the height-for-age Z-score HAZ. Both quantities are measured

repeatedly for most subjects, with typically a year or more between consecutive mea-

surement occasions. For this analysis, we use HAZ measures taken from birth up to

18 years of age, and blood pressure measures taken between the ages of 19 and 26.

Note that this implies that the HAZ measures always precede the SBP measures in our

analysis.

Figure 4 shows the distribution of the number of HAZ measurement occasions per

individual, and Figure 5 shows the distribution of the number of SBP measures per

individual.
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Figure 4: Distribution of HAZ measurement occasions per individual from age 0 to 18.

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1 2 3 4 5 6 7 8
Number of SBP Measurements

N
um

be
r 

of
 In

di
vi

du
al

s

(a) Females

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

0 1 2 3 4 5 6 7 8
Number of SBP Measurements

N
um

be
r 

of
 In

di
vi

du
al

s

(b) Males

Figure 5: Distribution of SBP measurement occasions per individual from age 19 to 26.

The initial participant pool comprised 627 females and 681 males. For the pur-

poses of analysis, an evaluation of the dataset was conducted to locate any records

where an individual’s entire HAZ or SBP data were missing, as such instances lack the

necessary information for any form of association-based analysis. Among the females,

all individuals had at least one HAZ observation between birth to 18 years. However,

67 individuals had no available SBP data from ages 19 to 26 and were subsequently

excluded from our study, leaving a final sample of 560 females for analysis. The same
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process was carried out for the male participants, revealing that 45 individuals had no

SBP data for the 19 to 26 age range. Following their exclusion, the final male sample

size was 636 for subsequent analyses.

The height-for-age Z-scores are defined with respect to a reference population by

the World Health Organization (WHO). They are not Z-scores for this population

specifically, and in fact the Z-scores in our data tend to be negative since this population

is relatively undernourished. The age-specific HAZ distributions are depicted separately

for females and males in Figure 6. Dogon children are born at approximately median

length, but rapidly fall behind the WHO reference distribution, reaching a nadir at

around age 3. Notably, females exhibit a higher incidence of potential outliers in both

the positive and negative directions between the ages of 1 to 4. Beyond the age of

13, there is an upward trend in the median HAZ values among females, surpassing the

median values observed in their male counterparts within the same age range.
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(b) Distribution of HAZ in males

Figure 6: Distribution of HAZ from birth to 18 years old in females and males.

The range of systolic blood pressure (SBP) is delineated for females and males in

Figure 7. For females, the median SBP remains relatively constant from ages 19 to 26.

In contrast, males exhibit an ascending trend in median SBP from ages 19 to 25, with

values exceeding those of females in the corresponding age bracket. Across most ages,

the 25th percentiles of SBP values in females tend to be lower compared to those in

males.
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(b) Distribution of SBP in males

Figure 7: Distribution of SBP from ages 19 to 26 in females and males.

6.2 Kernel Dimension Reduction for partially observed func-

tions

Since the Dogon longitudinal study is longitudinal, both the exposure (HAZ) and the

outcome (SBP) are measured repeatedly over time. Our goal here is to conduct a

function on function trajectory analysis, using the kernel dimension reduction methods

discussed above. Doing so focuses the analysis on the shapes of the trajectories rather

than on the individual observations, and accommodates the dependencies among the

observations. Each subject has trajectories for HAZ and for SBP. We wish to proceed

as above by constructing kernel matrices KX and KY that capture the similarities

between all pairs of subjects, for their HAZ and SBP data respectively. Since these

measurements are made at distinct sets of ages for each subject, we cannot apply the

kernel dimension reduction technique of Virta, Lee and Li directly [12]. Instead, we

consider integer grids of ages 0 through 18 for HAZ and 19 through 26 for SBP, with

unavailable observations treated as missing. We then proceed to apply kernel dimension

reduction using the missing data imputation approaches discussed above.

In the subsequent analysis, we chose to utilize a Gaussian (squared exponential)

radial basis function (RBF) kernel, which is expressed as

k(Xi, Xj) = exp(−σ||Xi −Xj||2). (10)

Since the squared exponential RBF (10) is a function of the Euclidean distances between
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pairs of observations, the imputation approach discussed in Section 4 can be used to

provide complete kernel matrices KX and KY .

The squared exponential RBF depends on a scale parameter σ. Note that in the

parameterization (10), σ is inversely related to the bandwidth – that is, greater values

of σ correspond to weights that decay more rapidly with distance. We begin with a

single scale parameter since the HAZ variables are approximately standardized at each

age by construction, and we standardized the SBP variables to have equal variance

at each age. We also consider and ultimately adopt estimates based on differing scale

parameters for HAZ and SBP.

6.3 Dimension Diagnostics

We use the approach developed in Section 4 to estimate kernel matrices KX and KY for

the partially observed HAZ and SBP data, respectively. These estimates are constructed

separately for females and for males. Here we consider the extent to which the SIR

operator ΛSIR (3) is approximately a low rank matrix, for various settings of the kernel

scale parameter σ. When ΛSIR is approximately low rank, the non-linear dimension

reduction approach is likely to yield informative results.

The singular values of ΛSIR capture the extent to which regression information is

concentrated in the dominant predictors. Let λj denote the jth eigenvalue of ΛSIR. We

consider two canonical patterns of decay for the eigenvalues: power-law and exponential.

We do not expect either of these to hold exactly throughout the range of eigenvalues,

but these models can be informative benchmarks for interpreting the eigenvalues.

If the eigenvalues follow a power law distribution, they follow the pattern

λj = cj−α, (11)

so that

log(λj) = log(c)− α log(j). (12)

Thus, under a power law relationship, λj and j will exhibit a linear pattern when plotted

in log space.

An alternative possibility is that the eigenvalues exhibit exponential decay

λj = ce−αj (13)

so that

log(λj) = log(c)− αj (14)
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Under an exponential relationship, λj and j will exhibit a linear pattern when plotted

in semi-log space.

Figures 8 and 9 show plots of the eigenvalues of ΛSIR for females and for males under

different σ values, respectively. The exponential pattern, reflected in the two panel b

plots, evidently does not fit well for either sex, for any bandwidths. The power-law

behavior (panel a plots) is arguably a better fit. For large bandwidths (small σ) the

relationship is quite linear, but becomes biphasic for the smaller bandwidths (larger σ).

A biphasic pattern exhibits a shallower slope for the first few terms followed by a steeper

slope thereafter. We notice that the eigenvalue patterns for females and males are quite

similar. In the subsequent analyses involving the boy subpopulation, we use σ = 0.1 for

constructing the Gaussian RBF kernel. For girls, we use σ = 0.1 for the HAZ kernel,

but we modified the SBP bandwidth to σ = 1/2 to obtain smoother results.
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Figure 8: Diagnostic plots for eigenvalues of females, in log space (a) and semi-log space
(b). The bandwidth parameter σ is shown at the top of each plot.
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Figure 9: Diagnostic plots for eigenvalues of males, in log space (a) and semi-log space
(b). The bandwidth parameter σ is shown at the top of each plot.

6.4 Investigation of KDR scores

We focus on the leading two estimated nonlinear sufficient predictors, z1 and z2. These

predictors are designed to encapsulate complementary information about the underlying

trajectories, and to capture the associations between the HAZ and SBP trajectories.

Figure 10 shows scatterplots of z2 versus z1 for females and for males. The lack of

evident structure in these scatterplots suggests that the two extracted components of

HAZ and of SBP are complementary as desired.
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Figure 10: Relationship between two sufficient predictors.

To understand how the nonlinear sufficient predictors z1 and z2 relate to the ob-

servable data, we stratified the observations into four quadrants based on the scores

shown in Figure 10. For each quadrant and for both genders, we calculated the mean

HAZ and SBP for all points whose sufficient predictors fall into a given quadrant, using

available data at each age to obtain the means. In Figures 11 and 12 we plot these con-

ditional mean HAZ and conditional mean standardized SBP trajectories against age.

This approach allows us to examine more closely any trends or patterns that may be

captured by the sufficient predictors.
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Figure 11: Comparative trends in mean HAZ and mean standardized SBP by quadrants
among females.

Female subcohort: In the female subcohort (Figure 11), all four quadrant-mean HAZ
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trajectories show a rapidly declining pattern from birth to age four. This largely reflects

that fact that Dogon children are only slightly smaller than WHO norms at birth, but

tend to rapidly fall behind WHO norms in the first few years of life. This is largely due

to undernutrition and the prevalence of diarrheal diseases. Those children who survive

to age 12 frequently return to near normal height by age 18, a phenomenon known as

catch-up growth. Preceding this period of catch-up growth is a period from ages 9-12

when each subgroup remains flat or falls further behind the WHO standards.

Unlike the quadrant-mean HAZ trajectories, the quadrant-mean SBP values for

females are nearly constant with respect to age, reflecting the fact that in females,

blood pressure does not present systematic trends during early adulthood. The spread

of these four quadrant-mean SBP trajectories is almost 2 SBP standard deviations,

indicating that these four trajectories span most of the range of the data.

Our focus is on the relationship between HAZ and SBP trajectories. Since the

left and right panels of Figure 11 are linked by color, we see that the quadrant-means

exhibiting greatest (orange), second greatest (blue), third greatest (purple) and least

(red) childhood height Z-scores also had the greatest, second greatest, third greatest

and least adult blood pressures, across all ages. This suggests that greater childhood

height in girls tracks into greater adult SBP. Of note is that the two quadrants with the

lowest HAZ at ages 0-2 (quadrants 2 and 3) are essentially indistinguishable during this

age period, but separate into distinct groups after age 2, with one of them (quadrant

2) exhibiting especially low HAZ values from ages 3-6.

Male subcohort: For the male subcohort (Figure 12), the quadrant-mean HAZ tra-

jectories are quite similar to those of the females, with two notable differences. First,

the shortest quadrant (2) has an even deeper nadir at around age 4 in boys compared

to girls. Second, the boys have a prominent deficit with respect to WHO norms during

the teenage years (which is much less discernable in the females), and begin catch-up

growth later. Moreover, the boys are somewhat further behind WHO norms than the

girls at age 18.

The quadrant-mean SBP trajectories for males are more diverse than those for

females. One of the quadrants is stable with age, two are slightly declining, and one

is substantially increasing. This reflects less stationarity in male blood pressure during

this decade of life.

In terms of the relationship between HAZ and SBP, the quadrants with largest (or-

ange), second largest (blue) and third largest (purple) childhood height Z-scores (Fig-

ure 12) also had the greatest, second greatest, and third greatest adult blood pressures.

This suggests that for these subjects, greater childhood height tracks into greater adult

SBP. However, the children with least height (red) have a markedly ascending pattern

21



of adult blood pressure. It appears that males experiencing severe childhood under-

nutrition have rapidly increasing SBP in adulthood, although the levels at any given

age are not necessarily higher than those of males who did not experience childhood

undernutrition. Nevertheless, the rapidly increasing trajectory could be a concern if

it continues into subsequent decades of life. A possible mechanism for this association

is that individuals experiencing severe childhood undernutrition may suffer develop-

mental consequences to the kidneys and vascular tissues from their adverse childhood

experiences.
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Figure 12: Comparative trends in mean HAZ and mean standardized SBP by quadrants
among males.

7 Discussion

In this study, we introduced and assessed an approach for nonparametric multivariate

regression with data that may be missing at random in predictors and/or outcomes. The

approach builds on recent innovations in kernel dimension reduction (KDR), and utilizes

an auxiliary prediction model to impute the unobserved kernel elements. Following

estimation of the sufficient predictors, a low-dimensional nonparametric regression can

be carried out to obtain an estimate of the regression function.

We carried out simulation studies to assess the robustness of our approach with both

complete and with partially missing data. As with most kernel methods, our approach

requires selection of bandwidth parameters (σ), so we explored the role of bandwidths

as well as different dimensions for the predictors and outcomes. The findings underscore

the resilience of the KDR method, which maintains a stable level of predictive accuracy,

even as dimensionality increases.

Furthermore, we conducted a comparison of kernel methods against an “oracle”

linear model in scenarios where the underlying mean structure is inherently linear.

This comparison helps quantify the costs associated with using kernel methods in a
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setting where they are not needed. The results demonstrate that the cost of employing

KDR is modest, with at most 1.6 times greater MSE when using the kernel method.

We illustrated the approach using data from a longitudinal study of anthropometry

in children and subsequent blood pressure in adulthood, in the Dogon population of

Mali. Stratifying on sex, we found that smaller children grow up to have lower blood

pressure, with the notable exception being that the smallest boys have an increasing

blood pressure trajectory as adults. This shows that smaller children tend to track into

being smaller adults, and smaller adults have lower SBP. However the smallest boys

exhibit a concerning pattern where potentially severe childhood undernutrition confers

risk for cardiovascular health in adulthood, possible due to deficiencies in development.

This pattern raises alarms about potential long-term health implications of inadequate

childhood nutrition, suggesting that early nutritional interventions could be crucial in

preventing future cardiovascular issues, especially in men.

Our analysis also revealed the nonlinear “factors” of childhood growth that are

most associated with adult SBP trajectories. While height shortly after birth was

approximately normal by WHO standards, both females and males exhibited very small

stature in early childhood, followed by a phase of catch-up growth after the age of 12.

This catch-up growth underscores the resilience of human growth trajectories and the

potential for recovery from early growth deficits, however it could be that rapid catch-

up growth is adverse for adult health outcomes, as suggested by our findings involving

SBP.

By linking the trajectories of HAZ and SBP, our study not only provides insights

into the specific health dynamics of the Dogon population but also contributes to the

broader understanding of how early life growth patterns can influence long-term health

outcomes. These findings are crucial for public health strategies aimed at mitigating the

long-term consequences of childhood undernutrition and for designing interventions that

target the critical windows of growth and development. Furthermore, taken as a case

study, our analysis of the Dogon population indicates that dimension reduction, both

kernel-based and more conventional approaches, can be an effective tool for analysis of

complex datasets that arise in longitudinal observational studies.
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