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Abstract

The Heston stochastic volatility model is one of the most widely studied stochastic volatility
models, in which the variance follows a Cox–Ingersoll–Ross process. Estimating this model
under the physical measure is challenging, as the likelihood function involves high-dimensional
integral. While an approximate analytical solution for the likelihood function exists, the task of
maximizing the function remains difficult in practice. Furthermore, these approximate solutions
are invalid if any modifications or extensions of the Heston model are considered, such as ex-
tending the model to higher dimensions. Being full-information, plug-and-play, and frequentist,
iterated filtering algorithms are adopted to estimate the volatility process of the Heston model.
We use the S&P500 index as an example, estimating model parameters and their confidence
intervals. The results indicate that the estimated volatility of the S&P500 index matches the
pattern of the VIX index. An application in options pricing is also given. We then demonstrate
the benefit of iterated-filtering methods by extending to a multi-dimensional panel of Heston
models, estimating the volatility processes of four emerging market indices. The results illustrate
that the volatility processes of these emerging market indices may share the same rate of rever-
sion and the same sensitivity to their corresponding price processes with a 95% confidence level.
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1. Introduction

Volatility measures the variation of the trading price of an underlying asset. It plays a crucial role
across various financial domains, including risk management, portfolio optimization, and options
pricing. Black and Scholes firstly proposed their famous Black-Scholes model (1973), in which they
assumed the asset price follows a diffusion process with constant volatility. They embedded the
option price in a corresponding parabolic partial differential equation (PDE). This model is widely
adopted in the financial industry due to the simplicity of the analytical solution of the PDE and the
relative ease of calibrating the model to data. One common critique of the Black-Scholes model,
however, is that the assumption of constant volatility in stock price is inconsistent with real-world
phenomena. This deficiency leads to the consideration of stochastic volatility models. Modeling
stochastic volatility was largely based on the Ornstein-Uhlenbeck (OU) process proposed by Uhlen-
beck and Ornstein (1930), which is a Gaussian-Markov model that allows mean reversion. Vasicek
(1977); Cox, Ingersoll, and Ross (1985); and Hull and White (1987) modeled the interest rate as
mean reverting OU processes, and later these models were widely generalized to model stochastic
volatility. Scott (1987) modeled the volatility of stock price as a generalization of the Vasicek model,
and Heston (1993) modeled the volatility as a generalization of Cox-Ingersoll-Ross model (CIR pro-
cess). In the Heston model, the asymmetric effect is incorporated by allowing a correlation between
the Wiener processes of the stock price and volatility. Due to the important role stochastic volatility
plays in financial models, other stochastic volatility models have also been developed. Examples
include the model proposed by Barndorff-Nielsen and Shephard (2001), in which the volatility dy-
namic as an OU process driven by a positive Levy process without the Gaussian component, and the
model proposed by Asai and McAleer (2011), in which alternative asymmetric effects are introduced
based on leverage and size effects. More recent examples include the models proposed by Jiao et al.
(2021) and He and Chen (2020). The Alpha-Heston model proposed by Jiao et al. addresses a key
limitation of the Heston model, which struggles to accurately capture extreme volatilities during
crises, while the model introduced by He and Chen extends the Heston model by incorporating a
stochastic long-term mean reversion level of volatility.

Many techniques have been applied to calibrate the parameters of stochastic volatility models under
the risk-neutral measure. The most straightforward method is to minimize the loss function with
respect to the options prices in the market. There are typically two types of loss functions, which
are squared error (SE) and implied volatility squared error (IVSE). For example, Bakshi, Cao, and
Chen (1997) employed the sum of squared error (SSE) as the loss function, and Bams, Lehnert,
and Wolff (2009) compared the uncertainty of pricing errors by using relative mean squared error
(RMSE) loss function and implied volatility relative mean squared error (IVRMSE). Kilin (2007)
and Christoffersen et al. (2009) proposed methods to speed up the loss function minimization. Storn
and Price (1997) proposed a more robust and reliable global optimization algorithm, known as the
differential evolution algorithm, and this is applied in the Heston model by Vollrath and Wendland
(2009). Even though these improvements can make optimization more reliable and efficient, loss
function methods require the existence of a liquid and efficient derivative market, otherwise, the
market prices of derivatives may not reflect a fair price. Also, the loss-minimizing methods may
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not be statistically efficient, meaning some information may be lost at the expense of focusing on a
single loss criterion. Since derivatives are priced under the risk-neutral probability measure, these
calibrated parameters cannot be used to characterize the market under the physical measure, and
they can only be used to price contingent claims.

In contrast, estimating the parameters and volatility process using historical asset prices is a more
challenging problem, as we cannot observe volatility and model parameters directly from the data.
However, estimating volatility is an important task and has wide applications not only in equity
derivatives pricing but also in risk control and portfolio optimization. Early research focused on
various methods, such as moment matching (Taylor, 2007; Andersen and Sørensen, 1996; Ander-
sen et al., 1999) and quasi-likelihood methods by linear filtering (Ruiz, 1994; Harvey and Shephard,
1996). Later, research efforts focused on estimating the volatility with numerical Bayesian methods,
including Markov chain Monte Carlo (MCMC) (examples include Jacquier et al., 1994; Chib et al.,
2002 and 2006; Cappuccio et al., 2004; Nugroho and Morimoto, 2014). Recently, the Heston model
was estimated using MCMC (Gruszka and Szwabiński, 2023). Another numerical Bayesian method
extensively adopted in recent years is Particle Markov chain Monte Carlo (PMCMC) (Andrieu et
al., 2010), which incorporated particle filtering into MCMC algorithms. PMCMC was also used in
estimating Value-at-Risk (VaR) based on the stochastic volatility model (Yang et al., 2017). Based
on PMCMC, Chopin et al. (2013) proposed the SMC 2 algorithm and tested it in Lévy-driven
stochastic volatility models. However, Bayesian methods may be problematic due to the need to
specify prior distributions, which can be difficult for stochastic volatility models because of the
correlations between model parameters. Another perspective is to analytically solve the problem
instead of using numerical simulations. Atiya and Wall (2009) derived the analytical approximation
of the likelihood function for the Heston model conditioned on the observed time series of stock
prices. While optimizing over this analytical likelihood approximation may be efficient, it does not
permit any modifications or extensions of the model, for instance, considering a higher-dimensional
version of the Heston model that considers various stock prices simultaneously. Also, the derivation
of the analytical likelihood function involves approximating techniques like Taylor expansion, which
might be problematic in practice. Aside from the methods we mentioned above, recently some
new methods for volatility estimation based on the Heston model (or extended Heston model) were
proposed, including polynomial filtering (Cacace et al., 2019) and trinomial tree method (Clayton,
2020), each suffering from similar flexibility issues.

In this thesis, we estimate the one-dimensional Heston model by iterated filtering, which is a rel-
atively new method. First proposed by Ionides et al. (Ionides et al., 2006, 2011), it is an efficient
method to search for a maximum likelihood estimator of state space models. It was improved by
Ionides et al. (2015), and the new algorithm is known as IF2. This algorithm is based on iterations
of particle filters (Arulampalam et al., 2002) which includes a random walk for model parameters
that in theory converges to the maximum likelihood estimate. The iterated filter has been applied
in estimating stochastic dynamics in finance: Bretó (2014) employed IF1 in the stochastic leverage
model and Szczepocki (2020) employed IF2 in the Barndoff-Nielsen and Shephard (BN-S) stochastic
volatility model proposed in 2001. To our knowledge, the work in this thesis contains the first com-
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plete analysis of a stock index using the Heston model and iterated filtering. We then demonstrate
the usefulness of using iterated filtering for the Heston model by performing a similar analysis on a
collection of stock indices with a high-dimensional extension of the Heston model via panel Iterated
Filter (PIF) proposed by Bretó et al. (2020). This is a very new method, which is still in active
development. Moreover, While Bretó (2014) and Szczepocki (2020) considered the sliced likelihood
in their research, they did not provide confidence intervals for parameter estimates. In this thesis,
we perform the profile likelihood search, based on which we construct confidence intervals for each
parameter in the model.

2. Heston Model Background

Heston (1993) proposed the following stochastic volatility model to describe the dynamics of asset
prices:

dSt = µSt dt+
√
νtSt dW

s,P
t (1)

dνt = κ(θ − νt) dt+ ξ
√
νt dW

ν,P
t , (2)

where St is the asset price at time t, µ is the asset return on average,
√
νt is the volatility (standard

deviation) of the underlying asset, κ is the mean rate of reversion in variance, θ is the mean reversion
level for the variance, ξ is the volatility coefficient of volatility (standard deviation), W s

t is a Wiener
process in the asset price, W ν

t is a Wiener process in the volatility, and the correlation between W s
t

and W ν
t is defined as ρ, i.e., ρ dt = EP[dW s,P

t dW ν,P
t ].

The dynamics (1) and (2) are defined under the physical probability measure P in continuous
time. The volatility should be non-negative. If 2κθ ≥ ξ2, the volatility process starting from a pos-
itive starting point stays strictly positive, which is known as Feller’s condition (Cox et al., 1985).
In particular, we only have financial data at discretized time points, which requires a discretized
version of the Heston model. We can integrate (1) and (2) from t to t+ dt to obtain (3) and (4):

St+dt = St +

∫ t+dt

t
µSt dt+

∫ t+dt

t

√
νtSt dW

s,P
t (3)

νt+dt = νt +

∫ t+dt

t
κ(θ − νt) dt+

∫ t+dt

t
ξ
√
νt dW

ν,P
t . (4)

There are several ways to approximate the integrals. The simplest method is to Euler scheme, (i.e.,
evaluate the integrals using the left-point rule), described in Definition 1.

Definition 1. The discretized Heston model based on Euler scheme is

S̃t+dt = S̃t + µS̃t dt+
√

ν̃tS̃tW
1
dt; (5)

ν̃t+dt = ν̃t + κ(θ − ν̃t) dt+ ξ
√
ν̃tW

2
dt, (6)
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where W 1
dt ∽ N (0, dt),W 2

dt ∽ N (0, dt) are normal random walk with correlation ρ.

Here, S̃ represents the discretized process S. Let ∆t be the time step between two discretized
time points. As ∆t goes to 0, S̃ → S. Under the discretized Heston model with Euler scheme, the
asset price satisfies

S̃t+∆t = S̃t exp

((
µ− 1

2
νt

)
dt+

√
νtW

1
∆t

)
,

where W 1
∆t ∽ N (0,∆t). The derivation is shown below:

Derivation. Define Zt := lnSt. Apply Ito’s lemma to equation (1),

d ln(St) = dZt =

[
µ · St

St
+

1

2
νtS

2
t · (−S−2

t )

]
dt+

√
νSt

St
dW 1

t

=

(
µ− 1

2
νt

)
dt+

√
νt dW

1
t . (7)

Write (7) in integral form:

ln(St+∆t) = ln(St) +

∫ t+∆t

t

(
µ− 1

2
νt

)
dt+

∫ t+∆t

t

√
νt dW

1
t . (8)

Discretize (8) using Euler’s scheme:

ln(S̃t+∆t) = ln(S̃t) +

(
µ− 1

2
νt

)
∆t+

√
νt(W

1
t+∆t −W 1

t ). (9)

Define W 1
∆t := W 1

t+∆t − W 1
t . Since W 1

t is a standard Wiener process, W 1
∆t ∽ N (0,∆t). Then (9)

becomes

ln

(
S̃t+∆t

S̃t

)
=

(
µ− 1

2
νt

)
∆t+

√
νtW

1
∆t (10)

and taking exponential on both sides will finish the derivation.

Now we define the discretized log return R̃t := ln
(
S̃t+∆t

S̃t

)
. By (10), we can write the original

(S̃t, ν̃t) system (5 and 6) as (R̃t, ν̃t) system:

R̃t+1 =

(
µ− 1

2
ν̃t

)
∆t+

√
ν̃t∆tϵ1, (11)

ν̃t+1 = [κθ + (1− κ)ν̃t]∆t+ ξ
√
ν̃t∆tϵ2, (12)

where ϵ1 and ϵ2 are two standard normal variables with correlation ρ. For sampling purposes, if we
want to generate ϵ1, ϵ2 ∽ N (0,∆t) with correlation ρ, we only need to generate two independent
standard normal variables u1, u2 and let ϵ1 = u1 and ϵ2 = ρu1 +

√
1− ρ2u2. In other words, (11)
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and (12) can be written as

R̃t+1 =

(
µ− 1

2
ν̃t

)
∆t+

√
ν̃t∆tu1 (13)

ν̃t+1 = [κθ + (1− κ)ν̃t]∆t+ ξ
√
ν̃t∆t(ρu1 +

√
1− ρ2u2) (14)

where u1 and u2 are two independent standard random variables.

Directly from equation (10), we can derive the following lemma:

Lemma 2. The discretized log return defined by R̃t := ln
(
S̃t+∆t

S̃t

)
conditionally follows the normal

distribution below:
R̃t|νt = ν̃t ∽ N

((
µ− 1

2
ν̃t

)
∆t, ν̃t∆t

)
.

The proof is directly from (11), in which the only undetermined part is
√
νtW

1
∆t

which is a normal
random variable itself conditioning on νt.

Notice that everything above is based on the physical measure P. The parameters under the physical
measure can be used to characterize the market, but for pricing purposes we need processes under
the risk-neutral probability Q, assuming the market is arbitrage-free. Here is a brief explanation
of the risk-neutral probability measure: Consider the stochastic discount factor (SDF, or pricing
kernel) model of asset pricing Pt = Et[Mt+1Pt+1], where M is the SDF and P is the price of the
asset. The SDF takes both time value of money and risks of future cash flows into consideration,
and is always stochastic. The intuition of the risk-neutral probability measure Q is to incorporate
the SDF into the expectation by changing the probability measure from the physical measure P to
Q, i.e.,

Pt = EP
t [Mt+1Pt+1] = e−r∆tEQ[Pt+1].

The benefit is, under Q we can directly price the claim without specifying the SDF. The risk-neutral
probability measure Q is corresponding to a world in which all investors are risk-neutral, i.e., they
will not require to be compensated for taking risks, and we can simply use the risk-free rate r to
discount the future risky cash flows. In other words, if we define Bt as the price of the risk-free asset
at time t, then Pt

Bt
is a martingale under Q. Mathematically, SDF is the discounted Radon-Nykodim

derivative: Mt = e−r∆t dQ
dP .

3. One-Dimensional Example with IF2

3.1 Partially Observed Markov (POMP) Models

A POMP model consists of a noisy and incomplete observed process conditionally independent of
a latent Markov process (which is unobserved) (King et al., 2016). Suppose we observe the noisy
and incomplete process Y (t) as y∗1, . . . , y

∗
n at time points t1 < · · · < tN . Let {X(t) : t > t0} be

the hidden Markov process defined on all continuous time points greater than t0, conditioning on
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which the process Y (t) is independent. We denote the value of the latent process at measurement
time tn as Xn = X(tn) and write X0:N = (X0, . . . , XN ). Since the process X(t) is defined to be
Markov, it evolves by the one-step transition density (or process model) fXn+1|Xn

(xn+1|xn; θ) where
θ is a vector of parameters specifying the model in the parameter space Θ ∈ Rp. We also need the
measurement density (or measure model) fYn|Xn

(yn|xn; θ), which describes how observations an the
system are made. Here Yi and Yj are conditionally independent given the hidden states for any
i ̸= j. Finally, the initial density (or initialization model) fX0(x0; θ) is required to initialize the
hidden process. The figure below demonstrates the structure of an arbitrary POMP model:

X0 X1 Xn−1 Xn Xn+1. . . . . .

Y1 Yn−1 Yn Yn+1

Initial Model

Measurement Model

Process Model

Observations

Hidden States

3.2 Particle Filter and Iterated Filter

Given the initial density, the transition density, the measurement density and the model parameter
θ ∈ Θ, we can specify the joint density of X0:N and Y0:N :

fX0:N ,Y0:N
(x0:N , y0:N ; θ) = fX0(x0; θ)︸ ︷︷ ︸

initial density

N∏
i=1

fXn|Xn−1
(xn|xn−1; θ)︸ ︷︷ ︸

transition density

fYn|Xn
(y∗n|xn; θ)︸ ︷︷ ︸

measurement density

. (15)

Based on (15), the marginal density of Y1:N evaluated at the observed time series y∗1:N is

L(θ) = fY1:N
(y∗1:N ; θ) =

∫
RN+1

fX0(x0; θ)

N∏
i=1

fXn|Xn−1
(xn|xn−1; θ)fYn|Xn−1

(y∗n|xn−1; θ) dx0:N . (16)

The integral in (16) is high-dimensional and is extremely hard to evaluate analytically in the general
case. A natural idea is to write (16) in the expectation form and then use Monte Carlo simulations
to approximate. The problem is that we need to simulate the whole time series to approximate
the expectation, and once the simulated trajectory deviates from the true pattern, it is hard to get
back. For long time series, almost all trajectories would deviate from the true pattern, making the
Monte Carlo approximation unreliable (Doucet et al., 2001).

Particle filters can be used to obtain a Monte Carlo estimation of the likelihood function using
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a different decomposition of the integral. It sequentially estimates the integral with a two-step
recursion of the prediction formula (18) and the filtering formula (19) to prevent the particles from
deviating from the true pattern, using normalized measurement density of the observed data given
the simulated prediction particles as weights to resample states. (17) to (19) are specified below:

L(θ) =
N∏
i=1

∫
R
fYn|Xn

(y∗n|xn; θ)fXn|Y1:n−1
(xn|y∗1:n−1; θ) dxn (17)

fXn|Y1:n−1
(xn|y∗1:n−1; θ) =

∫
R
fXn|Xn−1

(xn|xn−1; θ)fXn−1|Y1:n−1
(xn−1|y∗1:n−1; θ) dxn−1 (18)

fXn|Y1:n
(xn|y∗1:n; θ) =

fYn|Xn
(y∗n|xn; θ)fXn|Y1:n−1

(xn|y∗1:n−1; θ)∫
fYn|Xn

(y∗n|un; θ)fXn|Y1:n−1(un|y∗1:n−1;θ) dun

. (19)

Because the particle filter provides only a stochastic estimation of the model likelihood, black-box
numeric optimization algorithms often fail to properly maximize model likelihoods. The particle
filter can be extended, however, to efficiently maximize model likelihoods by using techniques known
as iterated filtering (Ionides et al., 2006, 2015). Specifically, the IF2 algorithm of Ionides et al.
(2015) considers an extended version of the model where model parameters are treated as latent
states that perform carefully constructed random walks between time points. Over time, the random
walk standard deviation goes to zero, and it can be shown that the parameter vector converges to
the maximum likelihood estimator (MLE). Each iteration of IF2 consists of one particle filter with
perturbed parameter vectors, and at the end of the time series, the updated parameter vector is
recycled to the next iteration. Theoretically, the sequence of estimated parameter vectors converges
to the maximum likelihood estimator.

3.3 Data and Model Setup under Market Physical Measure

We estimate the Heston models under the physical probability measure and the risk-neutral prob-
ability measure for the Standard & Poor’s 500 index (S&P500, SPX), which is an index that tracks
the performance of 500 of the largest companies listed in stock exchanges in the United States. We
used the daily data for the period from Feb 18, 2010, to Feb 16, 2024. The United States has the
largest and most financially advanced stock market in the world, making it reasonable to assume it
is arbitrage-free and complete. Figure 1 shows the time series plots of the SPX index (a) and log
return of SPX index (b) during the time period specified above.

Our estimate under the market physical measure is based on the Euler-discretized Heston model (5,
6). Instead of using the original index data, we fit the model using the log-return time series data
of SPX index as the observations to use measurement model based on the solution of geometric
Brownian motion (Lemma 3). Here, the discretization ∆t is set to 1 to represent 1 trading day.
The processes pair (Rt, νt) constructs a POMP model, where Rt is the process of SPX log-return
and νt is the squared-volatility process which is unobservable from the market.

One concern that arises is that the transition of the latent variable from νt to νt+1 depends on
the observable variable Rt if ρ ̸= 0, which violates the structure of the POMP model. To address
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(a) SPX daily Index

(b) SPX daily log return

Figure 1: Time series plots of the SPX index and its log return. Plot (a) and (b) consist of 3523
and 3522 observations respectively. Plot (a) uses values of the daily adjusted-closing prices of the
SPX index. Plot (b) uses the log return values calculated based on the time series of daily adjusted-
closing prices of the SPX index. Data Source: Yahoo Finance

this concern, we consider an extended model to get rid of the violation: Let Xn = (Rn, νn) be the
state variable of the extended POMP model, where Rn is perfectly observed with r∗n. In this case,
there are no more violations of the POMP model structure, but the process Rn has zero measurement
error. When the latent state is continuous and there is no measurement error, the basic particle filter
fails since all prediction particles have infinite weights. Thus we need a modification of sequential
Monte Carlo. For filtered particle j at time t− 1, the state variable is XF

j,n−1 = (r∗n−1, νj,n−1). The
prediction particle j is then

νPj,n ∽ fνn|νn−1,Rn−1
(vn|νFj,n−1, r

∗
n−1) (20)
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with corresponding resampling weights

wj,n = fRn|νn(r
∗
n|νPj,n).

Then we can resample the probabilities proportional to the corresponding weights. This gives the
Sequential Monte Carlo (SMC) representation of the filtering distribution at time t, as derived by
Ionides (2021).

Based on the extended POMP model and extended particle filter, there is no randomness in ∆W 1
∆t

of equation (5) in filtering given the hidden states, as (20) is conditioned on the observed data
(log-returns). From (10), we can obtain

W 1
∆t =

Rt − µ+ 1
2νt√

νt
.

The distribution specified in Lemma 2 is used as the measurement distribution. Since the squared-
volatility process is unobservable, we treat the initial squared-volatility ν0 as a parameter to be
estimated. Thus we have 6 parameters to be estimated in total under the physical measure: let
γ be the parameter vector, then γ = (µ, θ, κ, ξ, ρ, ν0). We perform monotonic transformations to
ensure that our parameter estimates are in valid regions of the parameter space. Specifically, θ, κ, ξ
and ν0 are transformed using a log-transformation to enforce θ̂, κ̂, ξ̂, ν̂0 ∈ R+. Since ρ ∈ [−1, 1], we
transform (and transform back) ρ with

f(ρ) =
ρ+ 1

1− ρ
, f−1(ρ̃) = −1 +

2

1 + exp(−ρ̃)
.

Also, we apply Feller’s condition when setting up the initial parameter space to reduce the chances
of negative squared volatility. Due to the discretization of the latent process, however, Feller’s
condition alone does not guarantee the process to be positive at all time points. Specifically, based
on equation (6) we have

νt+∆t ∽ N
(
κθ + (1− κ∆t)νt, ξ

2νt∆t
)

and thus
P(νt+∆t < 0) = Φ

(
0− κθ − (1− κ∆t)νt

ξ
√
νt∆t

)
= Φ

(
−κθ − (1− κ∆t)νt

ξ
√
νt∆t

)
where Φ(·) is the cumulative distribution function of standard normal random variable. We set the
squared volatility at that time point to be 1× 10−32 if it is negative.

3.4 Profile Likelihoods

We conduct a profile likelihood search for each of the parameters. We first profile over µ and obtain
its smoothed profile MLE µ∗ = 3.71 × 10−4. Then, when profiling over other parameters, we fix
µ = µ∗. The resulting profile traces are shown in Figure 2, and values of MLEs and confidence
intervals based on Monte Carlo Adjusted Profiles (MCAP; Ionides et al., 2017) are demonstrated
in Table 1.
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Figure 2: Profile traces for each of the parameters (fixing µ at its smoothed profile MLE), with
200 IF2 iterations and 2500 particles. In each of the plots, the red point is the profile MLE, the
blue curve is the fitted loess-smoothed curve based on profile searches, the blue vertical line is the
smoothed profile MLE for each parameter, and the interval between two vertical dashed lines is the
confidence interval for the parameter. All confidence intervals are calculated using MCAP.

In a standard profile search, parameters that are not being profiled are typically not fixed, as
was done here. However, our initial investigations revealed that fixing µ results in an easier optim-
ization problem, resulting in profile likelihood curves that are comparable with those from much
heavier computations. Theoretically, the profiles must pass through the same maximum level, so
the results obtained while not fixing µ demonstrate that we do not obtain a proper estimate of
the profile likelihood (see Appendix A1). In the first plot of Appendix A1, as the blue smoothed
curve fits the black points almost perfectly, it is reasonable to fix µ at its MLE to simplify the
optimization problem. After we fixed µ at its MLE, all estimates of the profile curves increased
(Figure 2). Whether or not these new curves represent the true profile is questionable, but what
is certain is that they are better estimates of the profile than the standard approach since they lie
above the estimate obtained when µ is not fixed.

To examine the effect of fixing µ, we performed a profile of ρ with 1000 IF2 iterations without
fixing µ at its MLE. The result is shown in Appendix A2 (b). Appendix A2 is a good demon-
stration that our profile is a good approximation of the true profile because our profile trajectory
over ρ (Appendix A2 (b)) is very comparable to that with µ unfixed (Appendix A2 (a)). We may
refer to the plot in Appendix A3, which shows that 200 iterations may not be sufficient, but the
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Table 1: Profile MLE and Confidence Interval for Each Parameter

MLE1 Confidence Interval1,3

Parameter Profile
MLE

Smoothed
Profile MLE

Annualized
MLE2 2.5% 97.5%

µ 3.68× 10−4 3.71× 10−4 9.27% 1.52× 10−4

(3.83%)
5.87× 10−4

(14.8%)

θ 1.12× 10−4 1.09× 10−4 16.6% 9.78× 10−5

(15.7%)
1.25× 10−4

(17.7%)

κ 3.14× 10−2 3.25× 10−2 8.19 2.39× 10−2

(6.02)
3.89× 10−2

(9.80)
√
ν0 7.66× 10−3 7.86× 10−3 – 3.82× 10−3 1.23× 10−2

ξ 2.27× 10−3 2.22× 10−3 3.52% 2.10× 10−3

(3.33%)
2.46× 10−3

(3.91%)

ρ −7.38× 10−1 −7.29× 10−1 – −8.01× 10−1 −6.73× 10−1

Note: when profiling over other parameters, we fix µ at its smoothed profile MLE.
1 Based on MCAP.
2 Annualized by 252 trading days of a year based on the smoothed profile MLE.
3 The numbers in the parentheses are corresponding to the annualized MLE based on the smoothed

profile MLE.

log-likelihood converges well after 1000 iterations. However, profiling with much more iterations is
extremely computationally exhaustive in this case. Based on the plots in Appendix A2 and A3,
we feel fairly confident that the large-computation version (with 1000 IF2 iterations) gives us a
good profile, and it seems to match very closely to the fixed-µ profile, so this suggests that fixing µ

does not result in much bias for the profile of rho, and it is not unreasonable to suspect that other
parameters should have a similar situation. One possible explanation is that the IF2 procedure
involves a random walk for µ, which may confuse the dynamic relationship with the random walk in
equation (5). Thus, the model converges only when the perturbation of µ becomes negligible. This
issue may be solved by an automatic differentiable particle filter (ADPF; Tan, 2023) as it does not
introduce random perturbations to the parameters, however, ADPF is still under active research.

The approximate quadratic behavior of the MCAP curve near the marginal MLEs, coupled with
the relatively small deviations from the MCAP curve and Monte Carlo evaluations of the pro-
files, suggest that the IF2 algorithm has converged to the MLE. In essence, we see that we obtain
consistent estimates of model parameters, even though each search started from diverse regions
of the parameter space and is subject to Monte Carlo variability in both the maximization and
evaluation procedures. While these results make us confident that we have maximized the model
likelihood, the log-likelihood of a model only provides a relative measure of goodness-of-fit com-
pared to other measures. Therefore to better understand how well the model fits the observed data,
we compare this relative measure to a statistical benchmark, as recommended by Wheeler et al.
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(2024). In this case, our choice of benchmark models is a generalized autoregressive conditional het-
eroscedastic (GARCH) model and an exponential general autoregressive conditional heteroskedastic
(EGARCH) model, which allows time-varying variance and has previously been used to model stock
return and volatility (Alberga et al., 2008; Olowe, 2009; Neokosmidis, 2009). The log-likelihood of
the maximized Heston model is 11847.12, which is 146.27 units higher than that of the GARCH(1,1)
benchmark model (11700.85) and 88.01 log units higher than that of the EGARCH(1,1) benchmark
model (11759.11), demonstrating that our model provides a better statistical fit to the observed
data than the GARCH and EGARCH benchmarks.

Table 1 provides some results to characterize the dynamics of the SPX index. We annualize the
smoothed profile MLE of µ by 252 (the number of trading days in a year) to give an annualized
return of 9.27%. The average annualized return of SPX between Feb 18, 2010, and Feb 16, 2024,
is 12.3%, which falls into the 95% confidence interval for µ. The mean rate of reversion, which can
be used to calculate the half-life to the mean level of reversion (θ) by half-life = 1

κ ln(2)(years), is
also annualized to give 8.19, indicating that the half-life of the variance (or squared-volatility) is
0.0846 years or equivalently 21.3 trading days. This means that under the smoothed profile MLE
of κ, people would expect the variance of the SPX index to travel half the distance toward the
mean reversion level of variance (θ) in roughly 1 month. In the past, estimating the rate of mean
reversion mostly depends on the GARCH and EGARCH models (Arsalan et al., 2022; Ahmed et
al., 2018). Arsalan et al. estimated a half-life of 13.24 days for the NASDAQ index, and Ahmed
et al. estimated a half-life of 49.41 days for the S&P500 index and 72.98 days for the NASDAQ
index. However, the validity of GARCH and EGARCH models is questionable, because they may
not be a perfect fit for the market data. The GARCH and EGARCH models both have far lower
log-likelihood than our model concerning the S&P500 historical data, which might be a signal that
the GARCH and EGARCH models do not fit the data well. On the other hand, Ahmed et al.
found that their GARCH(1,1) model only explained 0.45% of the price variations, indicating that
this model may not be good enough.

The smoothed MLE of θ suggests that the long-term mean reversion level of volatility (i.e., square
root of variance) is about 16.6%, and the annualized volatility of variance is 3.52% indicated by
the smoothed profile MLE of ξ. Moreover, the estimator of ρ (which is the source of asymmetry)
is significantly negative, indicating that a negative shock in stock would lead to a positive shock in
volatility (and vice versa). There are many existing explanations to the negative correlation, includ-
ing the leverage ratio effect (Black, 1976; Christie, 1982) and volatility feedback theory (Campbell
and Hentschel, 1992; Bekaert and Wu, 2000; Bollerslev et al., 2006; Bae et al., 2007). Figure 3
shows the estimated volatility process. We can see that the filtered mean has a similar pattern to
the VIX index, which measures the expected (annualized) implied volatility of SPX options over
the next 30 days.

Figure 4 demonstrates the estimated volatility risk premium and variance risk premium, as well
as the 95% confidence interval. The volatility risk premium refers to the (typically positive) gap
between the implied volatility and realized volatility, reflecting the costs of insuring against equity
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volatility fluctuations. The volatility risk premium (as well as variance risk premium) reached an
extremely high level in the early period of 2020 when the world market crashed due to the COVID-19
pandemic. Other peaks also represent severe market crashes, including those in May 2010 (2010 flash
crash), August 2011 (European debt crisis and US credit rating downgrade), 2018 (cryptocurrency
crash), and Jan 2022 (global financial instability due to the unpredictability of COVID-19).

Figure 3: The estimated volatility process (filtering mean with 1000 particles). The blue horizontal
dashed line represents the estimated mean reversion level of volatility and the pink process represents
the corresponding VIX index as a reference.

3.5 Application: Options Pricing

An option is a financial claim whose payoffs depend on their underlying securities. It is a contract
between the seller and buyer, and the buyer has the right to choose if they would exercise the
contract. The price of options has to compensate the issuer for the risks they take, and the buyer
of the contract has to pay an extra premium for risk reduction. The two primary classes of options
are call options and put options. A call option provides the buyer a right to buy the underlying
security at a pre-determined strike price at maturity, in contrast, a put option provides the buyer a
right to sell the underlying security at a pre-determined strike price. Options are typically classified
into two main categories: European options and American options. European options only have
one single maturity, and American options have a period available for exercising. An American
call (put) option gives the holder the right to buy (sell) the underlying asset at the strike price in
a period, while a European call (put) option only provides the holder the right to buy (sell) the
underlying asset at a certain time spot.

15



(a) Volatility Risk Premium

(b) Variance Risk Premium

Figure 4: Estimated Volatility Risk Premium (a) and Variance Risk Premium (b) based on the
filtered volatility (νt). We estimate Volatility Risk Premiumt by VIXt− 1

30

∑t+30
i=t+1 ν̂t, and estimate

Variance Risk Premiumt by VIX2
t − 1

30

∑t+30
i=t+1 ν̂t

2.

The parameters under the physical measure can be used to evaluate the characteristics of the
market. For pricing, however, we need to estimate the model under risk-neutral measure based on
the following proposition:

16



Proposition 3. (Rouah, 2013). The discretized risk-neutral processes of Heston model with Euler
scheme is

dŜt = rŜt dt+
√
νtŜt dŴ

1
t (21)

dν̂t = κ∗(θ∗ − ν̂t) dt+ ξ
√
ν̂t dŴ

2
t (22)

where Ŵ 1
t and Ŵ 2

t are Wiener processes under the risk-neutral probability measure and EQ[Ŵ 1
t Ŵ

2
t ] =

ρ dt.

Here, we use κ∗ and θ∗ to distinguish these two parameters from the Heston parameters under
the physical measure, while ξ and ρ are the same in the discretized model under both the physical
measure (5 and 6) and the risk-neutral measure (21 and 22). Similar to what we did before, we
can write this (Ŝ, ν̂) system as a (R̂, ν̂) system where R̂ represents the discretized log return. The
general pricing formula of contingent claim X with maturity T is

Π(t;X ) = e−r(T−t)EQ[Φ(XT )|Ft] (23)

where Π(t;X ) is the price of the claim X at time t, Φ(·) is the payoff function of the contingent
claim, and Ft is the filtration representing information up to time t. The expectation could be es-
timated by Monte Carlo simulation given the risk-neutral parameters. In particular, there are only
two parameters that need to be adjusted from the physical measure to the risk-neutral measure: κ

and θ. These parameters can be adjusted based on the following proposition, using the variance
risk premium derived in the previous subsection:

Proposition 4. (Heston, 1993). Suppose both the physical measure and the risk-neutral meas-
ure exist. Let (S̄t, ν̄t) represents the continuous processes under the risk-neutral measure. Define
function λ(S̄, ν̄t, t) that solves

dν̄t = [κ(θ − ν̄t)− λ(S̄t, ν̄t, t)] dt+ σ
√
ν̄t dW̄

2
t ,

where

W̄ 2
t =

(
W ν,P

t +
λ(S̄t, ν̄t, t)

ξ
√
ν̄t

t

)
.

Here, W̄ 2
t is the Brownian motion under the risk-neutral measure, and W ν,P

t is the Brownian motion
under the physical measure (defined in (1)). Let λ(S̄t, ν̄t, t) = λν̄t, where λ is a constant. Then,

κ∗ = κ+ λ, θ∗ =
κθ

κ+ λ
.

Proposition 4 allows us to convert the Heston parameters under physical measure to Heston para-
meters under risk-neutral measure. Here, λ corresponds to the variance risk premium (VRP; as
a convention, −λ stands for the premium). The uncertainty of investing in a stock includes two
parts: one is the uncertainty about the return (which depends on the return variance), and another
is the return variance itself (which depends on the variance of variance). The second uncertainty

17



is compensated by VRP as representative investors in the real world are risk-averse. Typically,
VRPt = E[Implied Volatilityt+1] − E[Realized Volatilityt+1], where implied volatility indicates the
extent to which the market expects the corresponding asset price to change in the future, and the
realized volatility is the actual volatility under the physical measure.

Then, Monte Carlo methods can be adopted to simulate stochastic differential equations to get
the approximated expectation in the pricing formula (23). We choose options with relatively fre-
quent tradings as examples, and we may assume the markets of selected options are efficient so that
the market prices reflect all the information we have. The results in Table 2 show that the prices
simulated by the Heston model with the Euler scheme recover the market price very well. This
suggests that our model works well in this example. One interesting point is that the VRP does not
affect the price significantly. This might be good because not every index has a corresponding index
for its volatility like VIX, making VRP hard to estimate in practice. While calibrating stochastic
volatility models using market options prices has been well studied, our approach may still be valu-
able in options pricing, as it is not restricted by the liquidity and efficiency of a specific option
market. However, if the expiration is much longer than 30 days, the compensation for VRP may
increase dramatically, making the adjustment much more important, and leading to a deficiency of
the method.

4. Multi-Dimensional Example with Panel Iterated Filter

4.1 Panel Iterated Filter Background

The particle filter suffers from the "curse of dimensionality", where the quality of the likelihood es-
timation deteriorates exponentially as the size of the dynamic system increases (Daum and Huang,
2003). As such, the IF2 algorithm cannot readily be used in a higher-dimensional setting, pre-
venting us from considering panel data which consists of time series of several assets. Research
efforts for high-dimensional stochastic volatility models have focused on numerically solving high-
dimensional model-corresponding PDEs to get the price for embedded contingent claims. These
methods typically need to transform the high-dimensional PDEs to stochastic differential equations
(SDEs) using the Feynman-Kac formula, then apply deep learning techniques to solve the corres-
ponding SDE system (Ee et al., 2017). While these methods are efficient, it is not possible to
estimate stochastic volatility models under the physical measure based on high-dimensional PDEs
or Stochastic PDEs (SPDEs). While this is still an active current research topic, some numerical
methods under Bayesian structures may be of use (Hoffman et al., 2013; Chen et al., 2016), but
they are still subject to the limitations of Bayesian models. An extension of iterated filtering in a
high-dimensional setting known as the Panel Iterated Filter (PIF) (Bretó et al., 2020) provides us
with a new method to extend iterated filter for panel POMP models, inheriting all advantages of
iterated filter.

A panel POMP model is a high-dimensional extension of the POMP model. We label the panel
units as u ∈ {1, . . . , U}, written as u ∈ 1 : U. For each unit u ∈ 1 : U, there is an independent
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Table 2: Empirical 30-Day (22-Trading-Day) SPX Call Options Pricing

Strike Market
Price1

Heston Price
(History VRP)2,4

Heston Price
(Zero VRP)2,3

BS-Price
(History Vol.)5

4900 155.25 155.55
(0.30)

155.43
(0.18)

175.78
(20.53)

4960 111.23 112.08
(0.85)

111.14
(-0.09)

137.94
(26.71)

5010 80.92 80.39
(-0.53)

80.09
(-0.83)

110.54
(29.62)

5060 54.73 53.85
(-0.88)

53.84
(-0.89)

86.95
(32.22)

5100 38.90 36.74
(-2.16)

36.66
(-2.24)

68.16
(29.26)

5200 10.97 10.68
(-0.29)

10.57
(-0.40)

40.03
(29.06)

Note: The numbers in parentheses represent the difference between the estimated price and the
market price (i.e., P̂ − P ). We only test the 30-day call options because the VIX index (used
in estimating the variance risk premium) is the expected implied volatility over the next 30
days, and the call options are more frequently traded than put options. Pricing options that
will expire in less than 30 days should be more accurate than the result above as the simulated
trajectories are less likely to deviate from the true process. The closing price of the SPX index
on Feb 16, 2024, is 5055.57 (USD).

1 We use ‘last price’ as market price. Here, we only pick frequently-traded options whose last
trade happened just around 4 p.m. on Feb 16, 2024. In this case, the ‘last price’ can better
represent the market price at that time spot.

2 We use the Euler scheme (which is consistent with our discretization scheme) to simulate the
Heston model with smoothed profile MLE (and adjustment for VRP) to approximate the expect-
ation in the pricing formula (23). Each estimated price is based on 100,000 simulated trajectories.
Specifically, we use the filtered mean of the ending variance 5.16× 10−5 as ν0 instead of directly
employing the estimated ν0.

3 We use zero variance risk premium (−λ = 0). In this case, the parameters under risk-neutral
pricing is exactly the same as the parameters under the physical measure.

4 We use the average variance risk premium −λ = 5.13 × 10−5. This number is derived by the
same data for Figure 4.

5 We take the historical volatility into the Black-Schole pricing formula. The historical volatility

is estimated by σ̂ =

√
S2
ξ

∆t , where S2
ξ = 1

N−1

∑N
i=1(ξi − ξ̄)2, ξi = ln( S(ti)

S(ti−1
) for i = 1, . . . , N , ξ̄ is

the mean of log-return, and N is the number of log-return data points. Here ∆t = 1 as in the
model.

corresponding POMP model, with latent process {Xu(t) : t > t0} and noisy and incomplete pro-
cess Yu(t) observed at t1 < . . . , tN as y∗u,1, . . . y

∗
u,N . One necessary assumption for panel POMP

models is the interaction between dynamics of different composite units should be negligible, i.e.,
the elements in set {(Xu,1:Nu , Yu,1:Nu) : u ∈ 1 : U} are pairwise independent, where Nu is the
number of observations of unit u, and 1 : Nu stands for the sequence 1. . . . , Nu. We can split all
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the parameters into two categories, which are the unit-specific parameters (i.e., are different among
all units) and the shared parameters (i.e., are shared among all units). In mathematical form,
θ = θshared∪{θu,specific : u ∈ 1 : U}. If we have A shared parameters and B unit specific parameters,
the parameter space is of dimension A+ UB, i.e., θ ∈ Θ ∈ RA+UB. The ability to split parameters
as shared or unit-specific provides an opportunity to formally test if dynamic systems have similar
characteristics.

Like the iterated filter algorithm mentioned in section 3, PIF explores the parameter space by
introducing perturbations between time points. Over time, the perturbation diminishes to zero as
in the iterated filter, achieving the convergence of MLE. To achieve faster maximization of model
likelihood, we use an extension of the PIF algorithm known as block panel iterated filtering (BPIF)
(Bretó et al., 2023). There exist empirical and heuristic arguments that favor the use of the BPIF
algorithm for likelihood maximization over the PIF algorithm, though the theoretical justification
of BPIF is still currently an open research problem.

4.2 Panel POMP Model for Multiple Emerging Market Indices

We apply the PIF to a 4-dimensional panel POMP model of emerging market indices, which are
BVSP (São Paulo Bovespa Index, Brazil), BSESN (S&P Bombay Stock Exchange Sensitive Index,
India), JKSE (Jakarta Stock Exchange Composite Index, Indonesia), and MXX (Mexican Indice de
Precios y Cotizaciones Index, Mexico). These indices reflect the performance of their corresponding
stock markets. As emerging markets, these stock markets only have regional influences and are less
likely to influence the performance of other stock markets directly. This is concordant with the
required independence between the dynamics of the units involved. To fit the panel POMP model,
we use daily time series data of the 4 indices from Apr 10, 2014, to Apr 5, 2024. Figure 5 shows
the normalized prices (a) and log returns (b) of these 4 indices.

We use the same model in section 3.4 for each unit. We consider 6 versions of the panel POMP
model. The first version has no shared parameters, and the remaining five have only one single
shared parameter from the list (µ, κ, θ, ρ, ξ). The results are shown in Table 3, and the estima-
tions of parameters are shown in Table 5 (Appendix B). For each of the models with one shared
parameter, we profile over the shared parameter (see Figure 6). One modification is that instead of
considering the overall log-likelihood, we select the best parameters for each specific unit while fixing
the shared parameter to improve the log-likelihood, as all units are independent. The modification
is justified by the figures in Appendix A4. In each figure of Appendix A4, the trajectory based on
our modification (red curve) is higher than the regular trajectory (blue curve), indicating that the
model based on our modification fits the data better. The confidence interval for each of the shared
parameters is demonstrated in Table 4.

One interesting finding is that the LRT statistic of the model with shared ρ is not statistically
significant with a 95% confidence level, indicating that we fail to reject the null hypothesis that the
more general model is significantly better than the simpler model, and we may prefer the model with
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Figure 5: Time series plots of normalized prices from Apr 10, 2014, to Apr 5, 2024. In plot (a),
the index prices are normalized using St−S̄1:T

σ(S̄1:T )
, where S̄1:T and σ(S̄1:T ) are the mean and standard

deviation of the full corresponding time series. Data Source: Yahoo Finance and Bombay Stock
Exchange

Table 3: Log-Likelihood and Likelihood Ratio Test (LRT) Statistic for 1-Shared-Parameter Models

Shared Parameter Log-Likelihood Difference1 LRT Statistic2 p-value

µ 27841.61 4.49 8.98 0.03
κ 27845.09 1.01 2.02 0.57
θ 27820.58 25.52 51.04 4.80× 10−11

ρ 27844.15 1.95 3.90 0.27
ξ 27835.82 10.28 20.56 1.30× 10−4

Note: The log-likelihood of the model without any shared parameter is 27846.10. This model
has the largest number of parameters and is considered as the most flexible model. We use 250
iterations and 2500 particles for all these models.

1 Difference = Log-Likelihood of the model without any shared parameter − Log-Likelihood of
the model a specific shared parameter.

2 The LRT statistic follows a χ2
3 distribution.

shared ρ compared with the model with no shared parameter. This implies a potential similarity in
the volatility responses among the four emerging markets to price shocks. The estimated shared ρ

value is −0.530, with a 95% confidence interval of [−0.583,−0.461] (refer to Table 4). This suggests
that a shock in the price processes of these emerging indices would result in a comparatively less
negative impact on volatility compared to a shock in the S&P500 index, where the estimated ρ is
−0.729. In other words, our results suggest that our selected emerging indices have less negative
correlations between the price and volatility, compared to the S&P500 index.
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Figure 6: Profile trajectories over each shared parameter, with 250 IF2 iterations and 2500 particles.
The horizontal solid line represents the log-likelihood for the model with no shared parameters, and
the horizontal dashed line represents the upper boundary of the rejection region for a likelihood
ratio test with a 95% confidence level. Any point that does not fall within the rejection region is
colored red. The region between two vertical dashed lines is the 95% confidence interval for the
shared parameter.

Another interesting finding in Table 4 is that the model featuring a shared κ outperforms the
model with no shared parameters in terms of statistical significance. Within the shared-κ model,
the annualized estimation of κ is 11.08, suggesting a half-life of 15.8 trading days. This half-life is
shorter than that estimated for the S&P500 index, which is 21.3 trading days. This suggests that
volatility reverts at a quicker speed in these emerging markets compared to the S&P500 index, which
reflects the performance of the world’s most developed and efficient market. This is consistent with
the findings of Ahmed et al. (2018) based on their GARCH model. Since a greater half-life indicates
greater volatility, our results suggest that the US market is even more volatile than some emerging
markets. While this may seem contradictory to our intuition, there are several explanations of
this result. Bartram et al. (2012) pointed out that higher country risk, better investor protection,
greater financial development and openness, more apparent disclosures and noise trading, and more
innovation and growth opportunity may all lead to higher volatility of US stocks. Moreover, the
extremely active algorithm tradings in the United States may also contribute to the high volatility.

Figure 7 demonstrates the estimated volatility process for each country. Unfortunately, it’s challen-
ging to validate the accuracy of these processes directly since volatility is not directly observed, and
there are no other readily available metrics like the VIX index we used previously. However, Atiya
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Table 4: Profile MLE and Confidence Interval for Each Shared Parameter

MLE1 Confidence Interval1,3

Shared Parameter Smoothed
Profile MLE

Annualized
MLE2 2.5% 97.5%

µ 3.46× 10−4 8.72% 1.61× 10−4

(4.06%)
5.29× 10−4

(13.33%)

θ 1.17× 10−4 17.20% 1.03× 10−4

(16.08%)
1.46× 10−4

(19.21%)

κ 4.40× 10−2 11.08 3.54× 10−2

(8.59)
5.41× 10−2

(13.63)

ξ 2.18× 10−3 3.46% 1.99× 10−3

(3.16%)
2.36× 10−3

(3.75%)

ρ −5.30× 10−1 – −5.83× 10−1 −4.61× 10−1

Note: only the model with shared κ and the model with shared ρ are better than the model
with no shared parameters, up to a 95% confidence level.

1 Based on MCAP.
2 Annualized by 252 trading days of a year based on the smoothed profile MLE.
3 The numbers in the parentheses are corresponding to the annualized MLE based on the smoothed

profile MLE.

and Wall (2009) suggests that we may use |yt+1−yt−µ∆t| as a benchmark to assess the plausibility
of the estimated volatility processes, where y is the log-price of the corresponding index. (Atiya
and Wall used the squared-increment (yt+1 − yt −µ∆t)2 as a reference, commonly used in GARCH
modeling of variance, we adopted the absolute increment |yt+1 − yt − µ∆t| to directly compare es-
timated volatilities.) Within each plot depicted in Figure 6, there is a consistent pattern: when the
benchmark process reaches high values, the estimated volatility tends to be correspondingly high;
conversely, when the benchmark process reaches low values, the estimated volatility tends to be
lower as well. Also, for each index, the estimated volatility processes from the shared-ρ model and
the shared-κ model almost overlap. In summary, we may conclude that these estimated volatility
processes appear to be aligned with expectations.

5. Discussion

In this thesis, we estimated the Heston model under the physical measure, exploring both one-
dimensional and multi-dimensional scenarios. For the one-dimensional Heston stochastic volatility
model, we treated it as an extended partially observed Markov Processes (POMP) model and adop-
ted the iterated filtering algorithm (IF2; Ionides et al., 2015) to estimate both the volatility process
and the model parameters, along with their respective 95% confidence intervals. The results con-
firmed the validity of the method and indicated good convergence of parameter estimation. We then
used a risk-neutral version of the fitted model to obtain option pricing, which did well in recovering
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(a) Estimated volatility of BVSP (Brazil) (b) Estimated volatility of BSESN (India)

(c) Estimated volatility of JKSE (Indonesia) (d) Estimated volatility of MXX (Mexico)

Figure 7: Estimated volatility processes of BVSP, BSESN, JKSE and MXX. The estimated volatility
processes are the filtered mean with their corresponding smoothed MLE using 1000 particles.

the market prices of frequently-traded S&P500 European call options with 30-day maturities. Ex-
tending our analysis, we transitioned from the one-dimensional model to multi-dimensional cases,
based on block panel iterated filtering (BPIF; Bretó et al., 2023). We applied this method in a
panel data set consisting of 4 emerging market indices, which are BVSP (Brazil), BSESN (India),
JKSE (Indonesia), and MXX (Mexico). The findings from this analysis suggested a potential shar-
ing of mean reversion rate and sensitivity between the volatility processes and their corresponding
price processes across these market indices. This research is meaningful because it provides a full-
information, plug-and-play, and frequentist perspective to stochastic volatility models, while most
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previous research in estimating these models focused on a Bayesian structure. Also, due to the
plug-and-play nature of our approach, this analysis can easily be extended to other data sets or
stochastic volatility models.

However, our research does have some limitations and areas for potential future improvements.
First, we only considered the case with time discretization step ∆t = 1 trading day, thus the dis-
cretized model may not well approximate the true model. One potential future improvement is
to use ∆t < 1. However, implementing this could pose challenges as the corresponding sampling
techniques are more complex than those employed in this thesis, as indicated by equation (23).
second, While we believe that our profile searching (with fixed µ) in section 3.4 is reliable, the
perturbation of µ does hurt the efficiency of the IF2 likelihood optimizer. Efficiency may be im-
proved through the use of automatic differentiable particle filters (ADPF; Tan, 2023) , which do
not involve random perturbations of parameters. Another possible extension of this work involves
modeling stochastic volatility as an interacting network; in real-world scenarios, markets may be in-
terdependent, violating the core independence assumption of panel POMP models. In this case, we
may need spatiotemporal partially observed Markov processes (Spat POMP) models (Asfaw et al.,
2023; Asfaw et al., 2024). Finally, our work on the multi-dimensional model only considered models
with one shared parameter. An extension for future research could involve exploring models with
multiple shared parameters. For instance, in our multi-dimensional example, it may be beneficial
to share both ρ and κ across all units.
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Appendix A. Corresponding Figures

A1

A2

(a) Profile traces of ρ without fixing µ (1000 IF2
iterations)

(b) Profile traces of ρ with fixed µ (200 IF2 iter-
ations)

30



A3

A4
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Appendix B. Parameter Estimation for the Multi-Dimensional Example

Table 5: Parameter Estimation

Parameter Estimation

Market Index Model µ θ κ ξ ρ ν0

BVSP

no shared parameter 5.13× 10−4 2.39× 10−4 4.39× 10−2 2.81× 10−3 −0.48 1.99× 10−4

shared ρ 1.75× 10−4 2.53× 10−4 5.86× 10−2 3.44× 10−3 −0.51 1.40× 10−4

shared κ 7.21× 10−4 2.37× 10−4 4.16× 10−2 2.90× 10−3 −0.51 2.70× 10−4

BSESN

no shared parameter 7.94× 10−4 8.74× 10−5 4.98× 10−2 2.21× 10−3 −0.64 9.11× 10−5

shared ρ 7.79× 10−4 1.00× 10−4 5.84× 10−2 2.29× 10−3 −0.51 1.82× 10−4

shared κ 5.10× 10−4 1.08× 10−4 4.16× 10−2 2.18× 10−3 −0.61 1.50× 10−4

JKSE

no shared parameter 9.39× 10−7 8.22× 10−5 4.93× 10−2 1.87× 10−3 −0.51 5.46× 10−5

shared ρ 9.65× 10−7 7.80× 10−5 5.31× 10−2 1.98× 10−3 −0.51 7.66× 10−5

shared κ 1.26× 10−4 8.43× 10−5 4.16× 10−2 1.80× 10−3 −0.49 1.00× 10−4

MXX

no shared parameter 8.40× 10−8 1.04× 10−4 2.58× 10−2 1.52× 10−3 −0.47 1.22× 10−4

shared ρ 1.52× 10−7 1.11× 10−4 2.82× 10−2 1.72× 10−3 −0.51 6.46× 10−5

shared κ 7.39× 10−7 9.74× 10−5 4.16× 10−2 1.80× 10−3 −0.53 7.83× 10−5
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