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Abstract

The detection of differential item functioning (DIF), or bias, in standardized testing is

critical to ensure the validity and fairness of test results. Ensuring equity and fairness to

all demographic subgroups is critical for these exams. Cognitive Diagnosis Models (CDMs)

may be generated from test data to provide examinees with feedback on skill mastery. This

study examined the effectiveness of existing methods of DIF-identification in CDM models

generated from standardized test data. The Wald test, the Likelihood Ratio (LR) test, the

Benjamini-Hochberg (BH) Procedure, the Mantel-Haenszel (MH) test, and the McNemar

test were all implemented to identify DIF in DINA (deterministic inputs, noisy “and” gate)

models, a type of CDM. Performance changes based on sample size, test length, and number

of attributes were examined by simulating data; these methods were also examined using

real-world data from the TIMSS 2007 and PISA 2000 exams. The identification methods

were evaluated, compared, and suggestions were made to users on how to best utilize these

existing tools for DIF-identification.



1 Introduction

Differential item functioning (DIF) detection in a standardized test is an important task to

ensure the validity and fairness of the results. DIF analysis provides an assessment of mea-

surement invariance. Measurement invariance is an important property in “establishing the

fairness and construct validity” of assessments such as standardized tests and psychological

assessments; i.e., presence of invariance indicates the test is unbiased [Mehrazmay et al., 2021].

Ideally, an examinee’s ability to successfully answer a test item should rely solely on their

underlying skills, such as the ability to reduce fractions or identify the subject in a sentence;

that is, any differences in performance between examinees should be explained wholly by

their mastery of these skills [Mehrazmay et al., 2021]. Detecting DIF in a particular item

from a standardized test indicates that the response distribution for that item relies on

subgroup membership, such as gender, race, or age, in addition to the aforementioned un-

derlying latent traits. Presence of DIF indicates there is bias present in the item, whereas

an unbiased item response would rely solely on the latent attributes, or “attribute profile”

of the examinee [de la Torre, 2011]. An item displays DIF if at least two subgroups have

varying probabilities of success on a particular item even when the examinees’ underlying la-

tent attributes are the same. Standardized assessments aim to be measurement invariant, or

DIF-free, to be fair to all examinees regardless of subgroup membership. Proper DIF analysis

can help test-givers determine whether this goal has been achieved. This thesis will evaluate

the effectiveness of existing methods to properly identify differential item functioning (bias)

in standardized testing.

Cognitive Diagnosis Models (CDMs) are one example of an instrument in which DIF can

be detected. CDMs provide feedback to examinees about the attributes they have or have

not mastered [Mehrazmay et al., 2021]. Therefore, it is important to know if any items in

the CDM display DIF to ensure assessment results are not skewed by subgroup membership.

CDMs are explained in greater detail in Section 2.1.

There are multiple kinds of CDMs, including DINA (deterministic inputs, noisy “and”

gate), DINO (deterministic inputs, and noisy “or” gate, and ACDM (additive CDM). All of

these are special cases of the generalized DINA (GDINA) model [Ma and de la Torre, 2020].

DIF-detection methods exist for all of these models. In this study, the performances of some

commonly used DIF-detection methods are demonstrated and compared for DINA models.

These methods include the Wald test, Likelihood Ratio (LR) test, Benjamini-Hochberg (BH)

procedure, Mantel-Haenszel (MH) test, and McNemar test. These are implemented using

multiple R packages including the CDM package authored by Robitzsch et al. and the GDINA

1



package authored by Ma and de la Torre [Ma and de la Torre, 2020, Robitzsch et al., 2020],

and a variety of built-in functions [R Core Team, 2021].

These existing tests for assessment leave room for improvement due to lack of general-

ization, meaning they are only effective under certain settings, e.g. larger sample sizes or

fewer latent attributes. In order to understand which aspects of the existing DIF-detection

methods require improvement, it is critical to have a robust understanding of where they fail.

In this paper, existing methods of DIF-detection, specifically the Wald and LR tests exe-

cuted by the CDM and GDINA R packages mentioned previously, are evaluated under a number

of settings, such as varying sample size, length of the exam, and number of attributes. A

previous study conducted by Hou et al. conducted the Wald test while varying sample size

to compare how performance changes, however this study did not investigate varying test

lengths or number of attributes [Hou et al., 2014]. This study will conclude with a discussion

of when these methods fail under certain conditions. Additionally, this paper identifies where

improvements can be made and offers recommendations for users attempting to detect DIF.

This problem of DIF-detection warrants close attention and improvement to ensure increased

fairness in standardized testing.

This thesis evaluates and compares existing statistical tests often used for the purpose of

identifying DIF in standardized testing.

2 Models and Methods

2.1 Cognitive Diagnosis Models

Cognitive Diagnosis Models (CDMs) are powerful tools that can provide feedback about an

examinee’s mastery of different latent attributes based on their test results [Mehrazmay et al., 2021].

DIF identification can be performed on a variety of CDMs. There are different benefits to

creating and using each type of model, however this study limits its examination to the DINA

(deterministic inputs, noisy “and” gate) model which provides greater interpretability.

As detailed by de la Torre, the Q matrix is a binary matrix of dimensions J×K, where J is

the number of items on the test and K is the number of latent attributes this test examines

[de la Torre, 2011]. For each row (each item), the cell qjk is 1 if that latent attribute is

necessary to answer the test item correctly, and 0 otherwise. The data, or item response,

matrix X is a binary matrix of dimensions N × J , where N is the number of examinees.

Each row (examinee) represents the success vector of an individual test-taker, with a 1 in
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the cell if they answered the item correctly and a 0 otherwise. Finally, each examinee has

a latent attribute vector α of dimensions 1×K, which represents the underlying skills and

attributes that particular test taker possesses. Once again, a 1 represents possession of the

attribute while a 0 indicates otherwise.

Additionally, guessing and slipping parameters are defined. The guessing parameter repre-

sents the probability that an examinee who does not possess the necessary attributes for an

item could correctly guess on that item. The slipping parameter represents the probability

that an examinee who does possess the necessary attributes for an item could “slip” and get

the item wrong [de la Torre, 2011].

To represent DIF in CDMs, the following value is computed:

∆jαi
= P (Xj = 1|αi)F − P (Xj = 1|αi)R

where F represents the focal group, R represents the reference group, and ∆jαi
represents

DIF in item j when an examinee possesses the latent attribute vector αi [Hou et al., 2014].

This ∆jαi
represents the difference in success probability for an examinee in the focal group

versus an examinee in the reference group when they have the same attribute possession.

A negative value indicates the reference group has a higher probability of success, while a

positive value indicates the focal group has a higher probability of success.

2.1.1 DINA

There are many types of CDM which make differing assumptions about the data. The

CDM used in this study was the DINA model. The DINA (deterministic inputs, noisy “and”

gate) model is best applied when all required attributes for a test item must be mastered or

present in order for the examinee to answer the item correctly [Hou et al., 2014]. With this

model, lacking one or more attribute necessary for an item is equivalent to lacking them all.

The DINA model was selected for this project due to this simplifying assumption and ease

of interpretation. With the DINA model, the probability of an examinee correctly answering

a test item is as follows:

Pj(αi) = P (Xij|αi) = (1− sj)
ηijgj

1−ηij

where αi is the latent attribute vector associated with examinee i, sj and gj are the slipping

and guessing parameters associated with item j, and ηij is as follows:
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ηij =
∏K

k α
qjk
ik .

ηij = 1 when the examinee has all attributes necessary to succeed on item j, and ηij = 0

when they are missing at least one of these required attributes [Hou et al., 2014]. As detailed

further by Hou, DIF in an item is detected in a DINA model if the guessing and/or slipping

parameters of that item for one group differ from those of the other group.

To test the accuracy and effectiveness of existing models, this study focused on the Wald

and LR tests to identify items with DIF, performed by the CDM and GDINA packages in R.

The packages were first used to construct a DINA CDM model (object) when provided with

a Q matrix, attributes, and results data from a real-world or simulated test. Then, they took

these models and ran statistical tests, Wald or LR, returning the likelihood of a particular

item displaying DIF. In particular, a test statistic and a p-value were calculated for each test

item; a significant p-value (α = 0.05) indicated the item displays DIF.

2.2 Statistical Tests

A variety of statistical tests were performed on the simulated data and the real-world data

in this study.

2.2.1 Wald Test

The Wald test can be applied via multivariate hypothesis testing, examining if the slipping

and/or guessing parameters are different between different subgroups. The null hypothesis

of the Wald test is that there is no difference in the guessing or slipping parameters between

groups. To perform the Wald test, an unconstrained model is fit to the data. Item parameters

are estimated as follows:

β̂∗
j = (βRj, βFj) = (gRj, sRj, gFj, sFj)

′.

Next, a constrained model is fit, meaning item parameters are constrained to be equal

across subgroups. The fit of both models is compared to see if constraining the model reduces

the fit to the data [Hou et al., 2014]. The Wald test statistic follows a χ2 distribution with

K degrees of freedom. It is computed as follows:

Wj = [Rj × β̂∗
j ]

′[Rj × Var(β̂∗
j )×R′

j]
−1[Rj × β̂∗

j ]
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where Rj is a restriction matrix and Var(β̂∗
j ) is the variance-covariance matrix of item pa-

rameters [Mehrazmay et al., 2021, Hou et al., 2014]. These elements are implemented as

Rj =

[
1 0 −1 0

0 1 0 −1

]
2×4

and Var(β̂∗
j ) =

[
Var(β̂∗

Rj) 0

0 Var(β̂∗
Fj)

]
2×2

.

The function CDM::gdina.dif makes its decisions using the Wald test. The function

GDINA::dif also makes its decisions using the Wald test if this is specified as the ”method”

argument of the function. In the CDM package, the Wald test is applied to each item individu-

ally, while in the GDINA implementation, the Wald test is applied to all items simultaneously.

Both packages compare the Wald test statistics to a standard normal distribution in order to

determine p-values. The use and details of the Wald test in a CDM application are described

in greater detail in [Mehrazmay et al., 2021].

2.2.2 Likelihood Ratio Test

The Likelihood Ratio (LR) test similarly compares two models: a reduced model and an

augmented model [Mehrazmay et al., 2021]. The LR test statistic is computed as follows:

G2 = −2[LLreduced − LLaugmented]

where LL represents the log-likelihoods of the specific model. This test statistic follows a

χ2 distribution. The degrees of freedom for this statistic is the difference between the number

of parameters of the reduced and augmented models [Ma et al., 2021]. The null hypothesis

of this test is that no DIF is present. The function GDINA::dif can also make its decisions

using the LR test if this is specified as the “method” argument of the function. The CDM

package does not have this test option for DIF-identification. The use and details of the LR

test in a CDM application are described in greater detail in [Mehrazmay et al., 2021].

2.2.3 Benjamini-Hochberg Procedure

The Benjamini-Hochberg (BH) Procedure introduces the concept of controlling for false

positives. False positives in the context of this research indicate a test item that was incor-

rectly said to display DIF. This is due to the fact that sometimes significant p-values occur

by chance. In this study, the False Positive Rate (FPR) was shown for the Wald and LR

tests in the tables present in Sections 3.1.2 and 3.1.3. Applying the BH procedure allows for
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determining if a statistical test, the Wald test in this case, has over-identified DIF; i.e., has

a a false-discovery rate higher than 10%.

This procedure requires taking existing p-values produced by the model and creating a

new critical value to determine which significant items may have been false positives. The

selected false positive rate for this data was 10%, however another typical value taken is

5%. To extract p-values, a DINA model was created from the gender-categorized data, and

the CDM DIF-identification function was applied. The Wald test results from the CDM DIF

function were selected over the GDINA DIF function due to greater robustness of the Wald

test provided by CDM package to a wider variety of settings, as discussed later. After p-values

were extracted, then they were arranged in increasing order and a rank was assigned to each

item, 1 through J where J is the number of items in the data. Next, a BH critical value was

calculated for each test item using the following formula:

critical value = item rank
J

× q

where q is the specified false positive rate (10% in this study). Finally, the item with the

highest p-value that is still lower than its corresponding critical value was marked. That

item and any item above it were considered to be statistically significant, and were the items

identified as displaying DIF with a false discovery rate of 10%.

2.2.4 Mantel-Haenszel Test

The Mantel-Haenszel (MH) test is a useful baseline metric for identifying DIF in real-world

data, where the true labels of DIF are unknown. This test is based on contingency tables

constructed from the counts of the examinees’ success on each test item. The null hypothesis

of this test is that the success ratio of both groups are the same [Wainer and Sireci, 2005].

The data collected from the CDM package provided access to the number of examinees who

successfully answered each test items, and the number who did not. With this information,

it was possible to create 2 × 2 contingency tables where each row corresponded to a group

(male or female) and each column corresponded to the success of said group (correct or

incorrect). To take this one step further, strata were introduced to further group the data.

In this scenario, the strata were the test items. A 2× 2×K table was then be constructed,

where K is the number of items associated with one exam. Finally, this table was passed

into the R function mantelhaen.test from the stats package to generate the test statistic

[R Core Team, 2021].

A χ2 test statistic with one degree of freedom is calculated and a p-value is provided

6



based on this statistic. The null hypothesis of the MH test is that common odds ratio is 1,

meaning there is not significant association between success and group membership within

each stratum (test item). If the p-value is significant, i.e. below the threshold α = 0.05,

then according to this test, there is in fact association between success and group identity

within each stratum. In this scenario, this indicates that gender does in fact play a role in

an examinee’s success on a test item. This result is generalized for the whole test at one

time.

The MH test is based entirely on the gender subgroup each examinee belongs in, and

simple counts of how well that group performed on each test item. Unlike the BH procedure

(see Section 2.2.3), the p-values obtained from a DIF-identifying function such as Wald or

LR are not used. Only the counts extracted from the X (item success) matrix provided with

the data were required for this test.

This MH test is a straightforward baseline for the purpose of this research. It does not

account for whether the skills of the examinees are matched and relies solely on the counts

of how many examinees from each group answered particular items correctly. This test takes

into account all test items at one time, so it is necessary to introduce the McNemar test for

item-specific evaluation.

2.2.5 McNemar Test

McNemar’s test is almost identical to the MH test, save that it allows an input of a single

2×2 contingency table (a single test item’s results) at a time, rather than a stratified 2×2×K

table. These contingency tables are the same as those constructed for the MH test, and an

example can be seen in Table 8 or Table 15. This individual contingency table for each

single item is provided as input to the mcnemar.test function from the stats package to

generate the test statistic [R Core Team, 2021]. The resulting χ2 test statistic and p-value

are associated with this single item. A significant p-value indicates that membership in a

particular gender subgroup does affect the outcome of whether an examinee is successful on

that particular test item.
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3 Data Analysis and Results

3.1 Simulated Data

3.1.1 Creating Simulating Data

The first part of this study focused on examining the success that the Wald and LR tests

have on DIF-identification of simulated data, as provided by the CDM and GDINA packages.

The simulated data was created in part using functions available within these packages. Due

to the nature of these implementations, a DINA model must be created from simulated

data, meaning the components of a CDM must be simulated. These elements of a CDM are

described in Section 2.1.

First, the number of examinees (N), test items (J), latent attributes (K), and guessing

and slipping parameters were specified. In this study, N varied from [500, 1000], J varied

from [20, 40, 60] and K varied from [2, 5, 9]. The guessing and slipping parameters for each

item were small decimals, specified for each subgroup.

A Qmatrix of size J×K was a hand-constructed binary matrix indicating which attributes

were necessary for success on each item.

Q =


1 0 · · · 1 1
...

. . .
...

0 0 · · · 0 1


J×K

A vector of size 1×N was constructed which indicates in a binary fashion which subgroup

each examinee belongs to.

groupings =
[
1 0 · · · 1 1

]
1×N

In these simulated settings, these subgroups were of equal size. Guessing and slipping

parameters were defined for each test item for the first (control) group. For the second

(treatment) group, one fifth of the items’ guessing and slipping parameters were modified to

differ from those of the first group. This introduced bias into the simulated data, making

one subgroup more or less likely to perform well on these modified items.

guessinggroup 1 =
[
0.2 0.2 · · · 0.2 0.2

]
1×J

guessinggroup 2 =
[
0.3 0.2 · · · 0.3 0.2

]
1×J
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In the example above, the second and second to last items were intentionally modified

to be biased for the second group. The IDs of these biased items were stored in order to

determine if the Wald and LR tests ultimately identified them successfully. The accuracy of

these tests was determined by how often they could correctly identify these modified items.

Finally, after the Q matrix, group assignments, and guessing and slipping parameters were

defined, they were passed into the CDM::sim.din function from the CDM package in order

to produce a simulated data (X) matrix which contained the simulated responses of each

examinee for each test item.

X =


1 1 · · · 1 0
...

. . .
...

0 0 · · · 1 1


N×J

Then, the CDM::gdina function was used to construct a DINA model based on the sim-

ulated Q matrix, X matrix, and group identification vector. This DINA model was passed

to the CDM::gdina.dif, which produced an object (which is referred to as a DIF object)

containing the test statistic and p-values associated with each test item.

The GDINA package has equivalent functions as CDM for the task of simulating data. The

GDINA::simGDINA function takes a Q matrix, group assignments, and guessing and slipping

parameters in order to simulate the X matrix. This function also encodes the type of CDM,

DINA in this study, to be used. Because this model type is identified in the data creation

phase, there was no need for an intermediate step of creating a DINAmodel. The GDINA::dif

took the Q matrix, the X matrix, and the group assignments to produce the DIF object.

This GDINA::dif function additionally took in a parameter to specify the statistical test to

be used, either Wald or LR.

The DIF object created by either the CDM and GDINA packages was the source of determining

if the identification of bias was successful. From this DIF object, a p-value was extracted

from these test statistics for each item. Ultimately if the p-value was significant (less than

or equal to the threshold α = 0.05), then the associated item had been flagged as displaying

DIF. These identified items were then cross-checked with the stored list of items that were

intentionally modified in order to see if the R package was able to flag these specific items.

To test the Wald and LR test DIF-identification methods, this paper simulated standard-

ized testing data for two examinee subgroups, one with and one without introduced bias.

This subgroup is ambiguous, but could represent age, gender, race, or any other demographic

category. In order to examine the robustness of the Wald and LR tests, a variety of size

settings were used. This was accomplished by varying the number of examinees, number of
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test items, and number of latent attributes each examinee might possess as described earlier

in this section. From these simulated settings, the CDM and GDINA packages were used to

create the Q matrix, data matrix, and latent attribute matrix, which were then used to

create CDM objects (in this case, a DINA object) for each combination of these settings.

This means there were 18 different simulated models to examine for the Wald test from CDM,

18 for the Wald test from GDINA, and 18 for the LR test from GDINA. For each setting, 1000

simulations were run.

Using simulated data allowed for a more exact analysis of how well the methods perform,

as the intentionally biased items were tracked and compared to the test results to see if the

methods could pick up on these items. The Wald test was implemented in two manners as

described in Section 3.1.2, while the LR test was implemented as described in Section 3.1.3.

The tables associated with these implementations are presented below for ease of reference.

3.1.2 Wald Test

The Wald test, as described in Section 2.2.1, is a common method by which DIF is

identified in CDMs. There are two manners in which the Wald test can be performed

in R: the CDM package and the GDINA package.

First, the CDM package was used. A Q matrix, attributes, X matrix, and group divisions

were all generated using the CDM package. From these simulated factors, a DINA object was

constructed. Next, the DINA model was passed into the CDM::gdina.dif function. This

function, from the CDM R package, “assesses item-wise differential item functioning in the

GDINA model by using the Wald test” [Robitzsch et al., 2020]. The CDM package’s DIF-

identifying function uses the Wald test to produce its test statistics and p-values. This

process of simulating data is described in greater detail in Section 3.1.1.

Table 1 and Table 2 display the results of the Wald test as conducted by the CDM package.

As an example, take the setting N = 500, I = 20, K = 2. Since 1000 simulations were run

for this single setting, there were a total of 20,000 items, with 4,000 (one fifth of the items)

being “Underlying Positives” (with DIF) and 16,000 being “Underlying Negatives” (no DIF).

“True Positives” indicates the number of underlying positives that the Wald test accurately

identified with DIF. “False Negatives” indicates the number of underlying positives which

the Wald test failed to identify as displaying bias. This is a Type II error. “True Negatives”

indicates the number of underlying negatives that the Wald test accurately found to be

unbiased. “False Positives” indicates the number of underlying negatives that the Wald test

incorrectly identified as displaying bias. This is a Type I error. In the conditions of this
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study, a Type II error was considered more serious; false negatives, or failure to flag a biased

question, were the most harmful in this scenario, as this would allow biased items to continue

to be used, causing an unfair environment for test takers. The “True Positive Rate” (TPR)

was calculated by taking the proportion of true positives out of all items of the underlying

positive group ( TP
TP+FN

). Similarly, the “False Negative Rate” (FPR), “True Negative Rate”

(TNR), and “False Positive Rate” (FPR) were all calculated from the proportions of true

positives, true negatives, false positives, and false negatives. One instance of a simulation was

considered “correct” if the test accurately identified the specific items which were modified

to display bias, and only these items. The final row in the results table indicates how many

of the 1000 simulations for each setting were successful in this task.

The Wald Test could also be conducted via the GDINA package. A Q matrix, attributes,

X matrix, and group divisions were all generated using the GDINA package. These simulated

factors were then run through the GDINA::dif function, with the model type specified as

DINA and the method specified as Wald. This process of simulating data is described in

greater detail in Section 3.1.1.

The settings for this set of simulations followed the same pattern as above, and the results

tables (Table 3 and Table 4) additionally followed the same format.

3.1.3 Likelihood Ratio Test

The Likelihood Ratio (LR) test, as described in further detail in Section 2.2.2, is another

common method of DIF-identification. This may also be conducted via the GDINA package.

A Q matrix, attributes, X matrix, and group divisions were all generated using the GDINA

package. These simulated factors were then run through the GDINA::dif function, with the

model type specified as DINA and the method specified as LR. This process of simulating

data is described in greater detail in Section 3.1.1.

The settings for this set of simulations followed the same pattern as in Section 3.1.2, and

the results tables (Table 5 and Table 6) additionally followed the same format.
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3.1.4 Comparisons

To compare the capabilities of the Wald and LR tests, the false positive rates (FPR) and

false negative rates (FNR) were examined. The FNR was critical to examine as this was the

value which determines if these methods allowed biased items to go unidentified. The FPR

was a secondary, however still important, value as it indicated whether the methods marked

items as biased when they truly were not; this was also important, as a test that identifies

every item as biased is no more useful than a test that fails to identify any items as biased.

Between the two methods of performing the Wald test, the CDM package appeared to

perform much better than the GDINA package. Specifically, the average FNR when N = 500

was 28.24% versus 51.37%. When N = 1000, this value was 12.78% versus 28.91%. Due

to this statistic, the Wald test as performed by the CDM package was the chosen method of

executing the Wald test moving forward in this study.

Between the Wald test and the LR test, when N = 500, the FNR of the former was 28.34%

while the latter was 57.54%. When N = 1000, the FNR was 12.78% versus 38.66%. The

Wald test performed much better than the LR test in regards to the FNR.

As can be seen from these average FNRs, increasing the number of examinees affected

the success of the Wald test and LR test in a positive way; the FNR decreased when N

increased. The best average FNR achieved was 12.87% from the Wald test when N = 1000.

Similarly, the FPRs could be compared. Just like with the FNR, the Wald test provided

by the CDM package had better results that those of the GDINA package and was be used as

the comparison to the LR test. When N = 500, the Wald test produced an FPR of 8.18%

while the LR test produced a comparable 6.40%. When N = 1000, however, the Wald test

produced 5.06% while the LR test produces an average 89.55% FPR. This is very significant,

and shows that the LR test overidentified DIF when the sample size was large.

In addition to these rates, the overall accuracy of these tests could be compared by observ-

ing the percentage of correct simulations each test produced. When N = 500, the Wald test

(CDM package) had an average accuracy of 11.5% and the LR test had an average accuracy

of 6.01%. When N = 1000, the Wald test had an average accuracy of 48.6% while the LR

test had an average accuracy of 28.64%. Once again, this shows the Wald test outperformed

the LR test, and both became more accurate as the number of examinees rose.

Beyond taking these average rates and accuracies when grouped by N , the performance of

the Wald and LR tests could be compared as J or K rise. As J increased from 20 to 40 to

60, the accuracy of both the Wald and LR tests decreased. Similarly, as K increased from 2
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to 5 to 9, the accuracy of the Wald and LR tests generally decreased. This means that the

tests performed the best when K was small, J was small, and N was large.

These trends in accuracy were also reflected in the FNRs and FPRs of these tests. For

the Wald test, as J increased, the FNR tended to decrease slightly; as K increased the FNR

increased. For the LR test, as J increased there was not much change in the FNR; as K

increased, the FPR first rose between K = 2 and K = 5, and then fell when K = 9.

It was clear that the Wald test had more success detecting DIF than the LR test under

any given setting, particularly in the accuracy and FNR. It was also evident that a larger N

and smaller J and K produced the best results.

3.2 Real Data

3.2.1 Using Real World Data

The real world data used in this study was provided by the CDM package. This data

came from the Trends in International Mathematics and Science Study (TIMSS) and the

Programme for International Student Assessment (PISA). The TIMSS exam is an assessment

administered by the International Association for the Evaluation of Educational Achievement

every four years, starting in the year 1995. This exam is administered to roughly 500,000

4th grade and 8th grade students in more than 50 countries to test math and science skills.

In this study, a subset of the data from Austrian 4th graders from the 2007 version of the

exam was used. The PISA exam is an assessment administered by the Organisation for

Economic Co-operation and Development every three years, starting in the year 2000. This

exam is administered to at least a few hundred thousand 15-year old students in 80 countries

worldwide to test reading, math, and science skills. In this study, a subset of the data from

German students from the 2000 version of this exam was used.

From the CDM package, a Q matrix and X matrix were provided for both the PISA 2000

and the TIMSS 2007 datasets. The X matrix for each additionally contained a column

which indicated the subgroup membership for each examinee. In this case, the subgroup

was gender, meaning participants belonged either to the “female” or “male” subgroup. This

column was extracted and became the group assignment vector.

From here, CDM::gdina was used to construct a DINA model from this data. Then,

CDM::gdina.dif was used to produce the DIF object. In the GDINA package, only GDINA::dif

was used to produce the DIF object; the necessary matrices were provided, and the model

type (DINA) was specified as an argument to this function. The type of statistical test,
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Wald or LR, was specified as well. Both the Wald and LR tests were used to flag items

displaying DIF, in the same manner as for the simulated data. For this real-world data, if an

item was identified with DIF, this indicated that the program has identified that the gender

of the examinee played a part in their success on that test item, not just their possession of

underlying latent attributes. In the case of real-world data, there was no set of true labels

that could be used for comparison.

Since these real-world tests did not have a defined list of test items that display DIF, as is

the case with the simulated data, further analysis was conducted on the examinees and test

items to decide if the Wald and LR tests had performed well. The datasets included data

beyond the test results, such as the attribute prevalence for the gender subgroups (addressed

more in Sections 3.2.2 and 3.2.3). Finding trends in this additional data revealed if these

tests have properly identified DIF. For example, one subgroup could have been more likely

to possess certain attributes which are required to succeed on a handful of test items. The

results of these tests should then have shown that this subgroup had a higher success rate

on those items.

As described above, each real-world dataset provided the Q matrix, X matrix, attribute

prevalence for each gender subgroup, and formal designation of each examinee into one gender

subgroup. Due to the access to the X matrix and group membership, it was possible to break

down the differing success rates of different subgroups on different items and compare this

with the results of the Wald and LR methods, as seen in Sections 3.2.2 and 3.2.3. Due to

the access to the Q matrix, it was also possible to see which attributes were necessary for

success on each test item.

The CDM package implementation of the Wald test had more robust results than that of the

GDINA package (see Section 3.1.4 for more elaboration), so the DIF object created from the

CDM::gdina.dif function was used rather than that created from the GDINA::dif function

for all real-world data assessments besides the Wald Test Results described in Sections 3.2.2

and 3.2.3.

3.2.2 TIMSS Analysis

Understanding the TIMSS Dataset This subset of data came from the TIMSS (Trends

in Mathematics and Science Study) 2007 exam, a math exam administered to a large group

of fourth grade students in Austria. The TIMSS 2007 dataset contains 698 examinees, 25 test

items, and 15 underlying attributes. There are 333 female examinees and 365 male examinees

according to the binary assignments provided by this dataset. This dataset’s item response
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(X) matrix, which provides the binary representation of which examinees were successful on

which items, contains many “not available” (“NA”) values. These were left untouched while

running analyses. According to Lee et al., an “NA” entry in the X matrix corresponded to

an “omitted or unreached” item, implying that any items that did not have a binary result

were simply not answered by the student due to time or other factors [Lee et al., 2011].

Wald Test Results The dataset provided a pre-constructed Q matrix and item success

(X) matrix. In this response matrix, one column was included to indicate the binary sub-

group division of the examinees. This group membership vector was extracted. Just as with

the simulated data, there are two methods by which the Wald test can be performed. First,

the three aforementioned data structures were passed into the CDM::gdina function in order

to create a DINA model. Then, as with the simulated data, a DIF object was created using

CDM::gdina.dif.

An item-wise Wald test was performed and p-values were produced in order to indicate

which items might display bias. Again, an item was considered significant if its associated

p-value was equal to or less than the threshold α = 0.05. Of the 25 test items in the TIMSS

dataset, the Wald test provided by the CDM DIF-identifying function produced 1 significant

p-value. This was item 12. The name of this item is M041275.

Using the same Q matrix, X matrix, and group membership vector, a DINA model and

subsequent DIF object were created using the GDINA package. The GDINA::dif function was

run twice, once with the Wald test setting and once with the LR test setting. P-values were

examined in order to determine which items the statistical methods identified with bias.

Of the 25 test items in the TIMSS dataset, the Wald test implemented in GDINA produced

2 significant p-values. These were items 10 and 19. The names of these items are M041258B

and M031242B. There was no overlap with the results of the Wald test from the CDM function.

Since the CDM implementation of the Wald test is preferred to the GDINA, the final result

for the Wald test on the TIMSS data is that item M041275 was the only item flagged as

displaying DIF.

Likelihood Ratio Test Results Of the 25 test items in the TIMSS dataset, the LR test

executed by the GDINA DIF-identifying function produced 3 significant p-values. These were

items 19, 20, and 21. The names of these items are M031242B, M031242C, and M031247.

There was no overlap with the results of the Wald test via the CDM function, and one similar

with the results of the Wald test via the GDINA package.
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Benjamini-Hochberg Procedure The Benjamini-Hochberg (BH) Procedure was included

to introduce the concept of controlling for false positives. False positives in the context of

this research indicate test items that were incorrectly said to display DIF. The procedure

was discussed in greater detail in Section 2.2.3.

The methodology of the BH Procedure was applied to each of the 25 items in the TIMSS

data using the p-values obtained from the Wald test provided by the CDM::gdina.dif func-

tion. This test lowered, if necessary, the false positive rate of the original output to 10%.

Item Wald p-val Rank BH critical value
M041275 0.0193 1 0.004
M041281 0.0898 2 0.008
M031247 0.1965 3 0.012
M041069 0.2140 4 0.016
M031303 0.2191 5 0.020
M041131 0.2429 6 0.024
M031242B 0.2950 7 0.028
M041164 0.3339 8 0.032
M031242A 0.4133 9 0.036
M041052 0.6401 10 0.040
M031245 0.6923 11 0.044
M031173 0.7231 12 0.048
M041146 0.7479 13 0.052
M041258A 0.7602 14 0.056
M031172 0.7757 15 0.060
M041186 0.7923 16 0.064
M031309 0.8070 17 0.068
M031085 0.8071 18 0.072
M031219 0.8092 19 0.076
M041258B 0.8548 20 0.080
M031242C 0.8920 21 0.084
M041336 0.9426 22 0.088
M041152 0.9692 23 0.092
M041076 0.9891 24 0.096
M041056 1.0000 25 0.1

Table 7: Benjamini-Hochberg Procedure, TIMSS

The final step of the BH Procedure was to find the largest p-value that was still smaller

than the critical value. With this dataset, as seen in Table 7, there was no such item. This

means that the BH Procedure had determined that no items display DIF when the examinees

were grouped by gender and the false discovery rate was controlled at 10%. This additionally

implies that the Wald test produced a result with a false discovery rate greater than 10%.
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Mantel-Haenszel Test The Mantel-Haenszel (MH) Test, described further in Section

2.2.4, introduced a new type of test that can be run on this real-world data. Unlike the

Wald and LR tests, the MH test relied on counts obtained from the data. 25 contingency

matrices were constructed with simple counts of item success among the subgroups, one for

each item. An example is shown in Table 8 below. These counts came from the X matrix

obtained from the data. This matrix is an N × J matrix, as described in Section 2.1, where

each cell indicates whether that examinee answered that test item correctly. This X matrix

was divided into two new matrices, one for each gender subgroup, and the item success

counts were obtained from these two matrices in order to populate these contingency tables.

Item M041052 Correct Incorrect

Male 149 216
Female 118 215

Table 8: Subgroup success on Item M041052, TIMSS

The MH test takes K contingency tables, so in this case all 25 contingency tables were

passed in. The χ2 test statistic with 1 degree of freedom was calculated, and a p-value was

given. If the p-value was statistically significant, this indicated that the gender subgroup

did appear to have an effect on general item success.

Dataset χ2 statistic p-value

TIMSS 2.3713 0.1236

Table 9: Mantel-Haenszel Test, TIMSS

The result displayed in Table 9 indicated that gender subgroup did not effect the outcome,

as the p-value was not statistically significant. This MH test, however, did not give an

indication of the specific items which may have been affected by gender. The provided

statistic showed only that the test as a whole appeared to be unaffected by gender. This

was where the McNemar test was introduced.

McNemar Test The McNemar test, described further in Section 2.2.5, takes one contin-

gency table at a time. These tables were the same tables used in the MH test, as shown

in Table 8. The test provided a χ2 test statistic with 1 degree of freedom and p-value, just

as the MH test, for that individual test item. This showed item-wise which exam questions

might have been affected by the gender subgroup.
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Item Name χ2 statistic p-value Item Name χ2 statistic p-value
M041052 28.171 1.111e-07 M041336 177.97 2.2e-16
M041056 211.04 2.2e-16 M031303 123.75 2.2e-16
M041069 313.48 2.2e-16 M031309 28.986 7.292e-08
M041076 206.52 2.2e-16 M031245 294.39 2.2e-16
M041281 33.674 6.518e-09 M031242A 17.664 2.636e-05
M041164 52.503 4.297e-13 M031242B 0 1
M041146 61.669 4.062e-15 M031242C 2.1441 0.1431
M041152 91.785 2.2e-16 M031247 335.78 2.2e-16
M041258A 95.544 2.2e-16 M031219 1.1527 0.283
M041258B 157.83 2.2e-16 M031173 37.897 7.457e-10
M041131 171.74 2.2e-16 M031085 4 0.0455
M041275 111.02 2.2e-16 M031172 19.266 1.137e-05
M041186 53.603 2.454e-13

Table 10: McNemar Test for each item, TIMSS.

Interestingly, the item-wise McNemar test provided a significant p-value for almost all of

the items (22 out of 25). This varied from the results of the MH test, which indicated that

gender subgroup was not significant for the test as a whole.

Attribute prevalence in subgroups The DIF object constructed from the DINA model

in the CDM package allowed for further insight into the examinees. Specifically, the prevalence

of each latent attribute was available per subgroup. Using this information, it was possible

to examine how prevalent each underlying attribute was among the gender subgroups. If

one attribute was held significantly more by one subgroup over another, it was possible that

that group would succeed more on the items that require this attribute.
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Attribute Male Female
1: Representing, comparing, and ordering whole num-
bers as well as demonstrating knowledge of place value.

0.490 0.463

2: Recognize multiples, computing with whole numbers
using the four operations, and estimating computations.

0.936 0.844

3: Solve problems, including those set in real life con-
texts (for example, measurement and money problems).

0.835 0.845

4: Solve problems involving proportions. 0.575 0.412
5: Recognize, represent, and understand fractions and
decimals as parts of a whole and their equivalents.

0.311 0.309

6: Solve problems involving simple fractions and deci-
mals including their addition and subtraction.

0.347 0.322

7: Find the missing number or operation and model
simple situations involving unknowns in number sen-
tence or expressions.

0.314 0.471

8: Describe relationships in patterns and their exten-
sions; generate pairs of whole numbers by a given rule
and identify a rule for every relationship given pairs of
whole numbers.

0.756 0.686

9: Measure, estimate, and understand properties of
lines and angles and be able to draw them.

0.538 0.566

10: Classify, compare, and recognize geometric figures
and shapes and their relationships and elementary prop-
erties.

0.452 0.453

11: Calculate and estimate perimeters, area, and vol-
ume.

0.489 0.575

12: Locate points in an informal coordinate to recognize
and draw figures and their movement.

0.686 0.580

13: Read data from tables, pictographs, bar graphs, and
pie charts.

0.687 0.622

14: Comparing and understanding how to use informa-
tion from data.

0.745 0.726

15: Understanding different representations and orga-
nizing data using tables, pictographs, and bar graphs.

0.585 0.593

Table 11: Attribute prevalence for each gender, TIMSS
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These attributes, as shown in Table 11, appeared relatively consistent between gender

subgroups. Attributes 2, 4, 8, and 12 had a notably higher prevalence among the male

subgroup, while attributes 7 and 11 had a higher prevalence among the female subgroup.

Attributes in test items The Q matrix, a J × K matrix, provided the information of

which underlying latent attributes were necessary to succeed on each item. This information

was consolidated in the table below.

No. Item Name Attributes No. Item Name Attributes
1 M041052 1,2 14 M041336 1,2,5,6,13,14
2 M041056 5 15 M031303 2,3
3 M041069 2,4,5 16 M031309 2,3
4 M041076 3,6 17 M031245 2,7
5 M041281 2,3,8 18 M031242A 2,3,8
6 M041164 10,12 19 M031242B 2,3,14
7 M041146 9,10,12 20 M031242C 2,3,8,14
8 M041152 1,2,3,10,11 21 M031247 2,3,7
9 M041258A 10 22 M031219 10,11,12
10 M041258B 9,10 23 M031173 2,3
11 M041131 2,3,4,9 24 M031085 10
12 M041275 1,13,15 25 M031172 1,2,13,15
13 M041186 1,2,4,13

Table 12: Attributes necessary for each test item, TIMSS.

Taking into consideration the prevalence of the attributes, it might be expected that the

male subgroup had greater success on items requiring attributes 2, 4, 8, and 12 while the

female subgroup had greater success on items requiring attributes 7 and 11. Males may

have been better at items 3 (M041069), 5 (M041281), 11 (M041131), 18 (M031242A), 19

(M031242B), and 20 (M031242C); females may have been better at items 17 (M031245) and

22 (M031219).
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Group success on test items From looking at the data matrix from the real world

datasets, the difference in performance between the subgroups could be identified. Items

with significant differences in performance may display bias. These items could be cross

checked with the system-identified items in order to see if the model had picked up on the

same items that were selected manually. In the table below, the percentages of each subgroup

that found success on each item are indicated. Any items with a 5% difference or higher in

performance are highlighted in yellow.

Item Female Male Item Female Male
M041052 35.44% 40.82% M041336 15.32% 16.99%
M041056 11.41% 15.07% M031303 78.08% 83.56%
M041069 3.30% 4.93% M031309 66.97% 66.58%
M041076 12.31% 14.52% M031245 5.11% 5.75%
M041281 34.83% 38.63% M031242A 60.66% 65.75%
M041164 34.23% 30.41% M031242B 53.15% 51.78%
M041146 31.53% 30.14% M031242C 55.26% 57.26%
M041152 25.83% 26.85% M031247 2.40% 1.10%
M041258A 26.73% 24.11% M031219 55.26% 55.34%
M041258B 18.92% 16.44% M031173 66.67% 70.14%
M041131 14.71% 20.00% M031085 48.35% 45.21%
M041275 21.62% 26.85% M031172 64.86% 63.56%
M041186 29.43% 36.44%

Table 13: Subgroup success on each item, TIMSS.

Six items had a difference in success of 5% or greater between gender subgroups. All of

these items showed the male subgroup performing higher than the female subgroup. These

items required the attributes 1, 2, 3, 4, 8, 9, 13, and 15. All of these attributes except

attributes 3 and 9 had higher prevalence in the male subgroup, therefore it was not unusual

that the male subgroup performed higher on these test items.

To refer back to the items marked as potentially biased in the previous section, the male

subgroup did indeed perform better than the female subgroups on item 11 (M041131) and

item 18 (M031242A).

For comparison, the Wald test from the CDM package identified one of these items (item

M041275); the Wald test and the LR test from the GDINA package did not identify any of

these items. In this case, the Wald test provided by the CDM package performed better than

LR test at flagging these manually identified items, though not by much.

27



3.2.3 PISA Analysis

Understanding the PISA Dataset This subset of the PISA (Programme for Interna-

tional Student Assessment) 2000 exam came from a reading test administered to a large group

of 15-year-old German students. This test examines reading, math, and science knowledge.

The PISA 2000 dataset contains 1095 examinees, 26 test items, and 6 underlying attributes.

Of the 1095 examinees, 525 are labeled as male and 570 as female.

Wald Test Results Just as with the TIMSS dataset, the PISA dataset came with a

Q matrix and an X matrix which also contained gender subgroup membership for each

examinee. These were used to construct a DINA model using CDM::gdina, which was then

used to construct a DIF object. Of the 26 test items in the PISA dataset, the Wald test from

the CDM DIF-identifying function produced 8 significant p-values (≤ α = 0.05). These were

items 1, 2, 7, 10, 11, 16, 17, and 24. The names of these items are R040Q02, R040Q03A,

R077Q03, R077Q06, R088Q01, R110Q01, R110Q04, and R216Q06.

A DINA model was constructed, followed by a DIF object. Of the 26 test items in the

PISA dataset, the Wald test implemented by the GDINA DIF-identifying function produced

14 significant p-values. These were items 1, 2, 6, 7, 9, 10, 16, 17, 18, 20, 21, 22, 24, and

25. The names of these items are R040Q02, R040Q03A, R077Q02, R077Q03, R077Q05,

R077Q06, R110Q01, R110Q04, R110Q05, R216Q01, R216Q02, R216Q03T, R216Q06, and

R236Q01. 7 of these overlapped with the results of CDM Wald test.

Likelihood Ratio Test Results Of the 26 test items in the PISA dataset, the GDINA

DIF-identifying function produced 15 significant p-values, using the LR test. These were

items 1, 2, 6, 7, 9, 10, 16, 17, 18, 20, 21, 22, 24, 25, and 26. The names of these items

are R040Q02, R040Q03A, R077Q02, R077Q03, R077Q05, R077Q06, R110Q01, R110Q04,

R110Q05, R216Q01, R216Q02, R216Q03T, R216Q06, R236Q01, and R236Q02. 7 of these

overlapped with the results of the Wald test from the CDM function, and 14 of these overlapped

with the results of the Wald test from the GDINA package.

Benjamini-Hochberg Procedure The Benjamini-Hochberg (BH) Procedure introduced

the concept of controlling for false positives. False positives in the context of this research

indicate test items that were incorrectly said to display DIF. The procedure is discussed in

greater detail in Section 2.2.3.

The methodology of the BH Procedure was applied to each of the 26 items in the PISA data
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using the p-values obtained from the Wald test provided by the CDM::gdina.dif function.

Item Wald p-val Rank BH critical value
R040Q03A 0.0000 1 0.003846
R216Q06 0.0000 2 0.007692
R040Q02 0.0001 3 0.01154
R077Q03 0.0002 4 0.01538
R110Q04 0.0003 5 0.01923
R110Q01 0.0055 6 0.02308
R088Q01 0.0449 7 0.02692
R077Q06 0.0486 8 0.03077
R110Q05 0.0978 9 0.03462
R216Q01 0.1447 10 0.03846
R077Q05 0.1706 11 0.04231
R236Q02 0.2525 12 0.04615
R077Q04 0.2641 13 0.05
R040Q03B 0.2915 14 0.05385
R216Q04 0.3079 15 0.05769
R088Q04T 0.3539 16 0.06154
R236Q01 0.3934 17 0.06538
R088Q07 0.3997 18 0.06923
R040Q04 0.4805 19 0.07308
R040Q06 0.5318 20 0.07692
R077Q02 0.6116 21 0.08077
R216Q02 0.6771 22 0.08462
R216Q03T 0.6814 23 0.08846
R088Q05T 0.7753 24 0.09231
R088Q03 0.8731 25 0.09615
R110Q06 0.9794 26 0.1

Table 14: Benjamini-Hochberg Procedure, PISA

The largest p-value that was still smaller than the critical value was the item of Rank

6. This means that the BH Procedure determined that the first 1-6 items listed here (all

those above the dashed line in Table 14) were statistically significant and displayed DIF

when the examinees were grouped by gender and the false discovery rate was controlled at

10%. Comparatively, the Wald test originally identified the first 8 items to display DIF. This

implies that the Wald test produced a result with a false discovery rate greater than 10%.

Mantel-Haenszel Test 26 contingency matrices are constructed with simple counts of

item success among the subgroups, one for each item. An example is shown in Table 15

below.
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Item R040Q02 Correct Incorrect

Male 340 185
Female 327 243

Table 15: Subgroup success on Item R040Q02, PISA

The MH test took K contingency tables, so in this case all 26 contingency tables were

passed in. The χ2 test statistic with 1 degree of freedom was calculated, and a p-value was

given. If the p-value was statistically significant, this indicated that the gender subgroup

did appear to have an effect on item success in the exam as a whole.

Dataset χ2 statistic p-value

PISA 174.58 2.2e-16

Table 16: Mantel-Haenszel Test, PISA

The results in Table 16 showed that gender did appear to have a significant effect on the

outcome of the test as a whole.

McNemar Test The McNemar test took one contingency table at a time, and provided a

χ2 test statistic with 1 degree of freedom and p-value, just as the MH test, for that individual

test item. This showed item-wise which exam questions might have been affected by gender

subgroup.
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Item Name χ2 statistic p-value Item Name χ2 statistic p-value
R040Q02 38.83 4.623e-10 R088Q05T 49.295 2.202e-12
R040Q03A 3.1168 0.07749 R088Q07 11.391 0.0007382
R040Q03B 55.63 8.747e-14 R110Q01 198.07 2.2e-16
R040Q04 143.51 2.2e-16 R110Q04 182.05 2.2e-16
R040Q06 12.115 0.0005001 R110Q05 60.137 8.848e-15
R077Q02 124.38 2.2e-16 R110Q06 109.6 2.2e-16
R077Q03 14.565 0.0001354 R216Q01 95.208 2.2e-16
R077Q04 8.2086 0.004169 R216Q02 2.8045 0.094
R077Q05 98.799 2.2e-16 R216Q03T 18.348 1.84e-05
R077Q06 5.2354 0.02213 R216Q04 35.136 3.075e-09
R088Q01 35.705 2.296e-09 R216Q06 45.486 1.537e-11
R088Q03 47.108 6.718e-12 R236Q01 1.55 0.2131
R088Q04T 19.406 1.057e-05 R236Q02 161.16 2.2e-16

Table 17: McNemar Test for each item, PISA.

Similar to the TIMSS data, a majority of the items were found to be statistically significant

(23 of the 26 items). This aligns with the result of the MH test, which shows that gender

did have an effect on the test outcomes.

Attribute prevalence in subgroups To get a better sense of how the attributes pre-

sented in each gender group, attribute prevalence was examined. Each of the 6 attributes

are listed below, followed by the prevalence in each of the 2 genders in this study. This

was found by looking at the skill pattern and group statistics provided by the gender-based

CDM DINA model generated earlier. From Table 18, every attribute except 4 had higher

prevalence in the female subgroup.

Attribute Male Female
1: Locating Information 0.636 0.752
2: Forming a broad, general, understanding 0.696 0.825
3: Developing a logical interpretation 0.646 0.710
4: Evaluating a number-rich text with number sense 0.621 0.611
5: Evaluating the quality or appropriateness of a text 0.631 0.733
6: Test speededness 0.492 0.757

Table 18: Attribute prevalence for each gender, PISA.

The next step was to break down which items on the PISA test required certain attributes.

If success on one item was based heavily on an attribute that the female demographic group

was much more likely to possess, it might be expected to see this test item displayed DIF.
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Attributes in test items Next, it was relevant to see which attributes were deemed

necessary for success on each test item. This information was extracted from the Q matrix

provided with the data. After discovering which attributes were needed for particular test

items, certain items could be flagged as potentially biased. For example, if a test item

required 3 attributes most commonly held by the male subgroup, this item may have favored

the success of the male subgroup. These potentially biased items could then be compared

with the output of the statistical tests.

No. Item Name Attributes No. Item Name Attributes
1 R040Q02 3,4 14 R088Q05T 2,4
2 R040Q03A 1,4 15 R088Q07 2,4,5
3 R040Q03B 4,5 16 R110Q01 2,5
4 R040Q04 2,4 17 R110Q04 1,3
5 R040Q06 3,4 18 R110Q05 1,3
6 R077Q02 1 19 R110Q06 1,3
7 R077Q03 2,5 20 R216Q01 2,6
8 R077Q04 3,5 21 R216Q02 3,5,6
9 R077Q05 2,5 22 R216Q03T 1,3,6
10 R077Q06 1,3 23 R216Q04 3,6
11 R088Q01 2,4 24 R216Q06 1,3,6
12 R088Q03 1,4 25 R236Q01 1,3,6
13 R088Q04T 3,4 26 R236Q02 3,6

Table 19: Attributes necessary for each test item, PISA. Highlight indicates difference of at
least 5%.

Taking into consideration the prevalence of the attributes, it might be expected that the

female subgroup had greater success on items requiring attributes 1, 2, 5, and 6. Females

may have been better at items such as 7 (R077Q03), 9 (R077Q05), 20 (R216Q01), and 21

(R216Q02).
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Group success on test items In the table below, the percentages of each subgroup that

found success on each item are indicated. Just as with the TIMSS data in the previous

section, any items with a 5% difference or higher in performance are highlighted in yellow.

Any items with a 10% difference or higher are highlighted in green. Finally, any items with

a 20% difference or higher are highlighted in pink.

Item Female Male Item Female Male
R040Q02 57.37% 64.76% R088Q05T 63.68% 62.67%
R040Q03A 46.32% 57.33% R088Q07 57.72% 52.95%
R040Q03B 31.93% 32.19% R110Q01 85.44% 74.29%
R040Q04 76.49% 72.19% R110Q04 85.61% 72.00%
R040Q06 55.96% 55.05% R110Q05 70.70% 60.00%
R077Q02 77.54% 68.38% R110Q06 73.51% 68.57%
R077Q03 65.26% 47.81% R216Q01 80.70% 60.57%
R077Q04 57.02% 51.43% R216Q02 58.95% 44.19%
R077Q05 30.00% 21.52% R216Q03T 45.26% 30.29%
R077Q06] 47.54% 37.52% R216Q04 38.42% 30.86%
R088Q01 65.26% 57.14% R216Q06 75.26% 52.00%
R088Q03 63.86% 61.90% R236Q01 51.58% 37.90%
R088Q04T 60.18% 55.05% R236Q02 24.05% 15.43%

Table 20: Subgroup success on each item, PISA. Yellow highlight indicates difference between
5 and 10%, green indicates between 10 and 20%, pink indicates greater than 20%

19 out of the 26 PISA items, a majority, had at least a 5% difference in performance

between the gender subgroups. The item on which the male subgroup performed higher is

R040Q02; the female subgroup outperformed the male subgroup on the remainder of the

highlighted items. The items with a performance difference between 5% and 10% required

different combinations of all the attributes. The items with a performance difference between

10% and 20% also required different combinations of all the attributes. Finally, the items

with a performance difference of more than 20% required the attributes 1, 2, 3, and 6. All

attributes except attribute 4 were found in higher prevalence in the female subgroup, so it

is not unusual to see that the female subgroup outperformed the male group on almost all

highlighted items. In particular, much more of the female subgroup possessed attribute 6,

explaining the larger discrepancy in performance for the pink-highlighted items. Referring

back to the items flagged as potentially bias in the previous section, females did in fact

perform better on item 7 (R077Q03), 9 (R077Q05), 20 (R216Q01), and 21 (R216Q02).

For comparison, the Wald test conducted via the CDM package identified eight of these

items (items R040Q02, R040Q03A, R077Q03, R077Q06, R088Q01, R110Q01, R110Q04,

and R216Q06). The Wald test conducted via the GDINA package identified 14 of these
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items (R040Q02, R040Q03A, R077Q02, R077Q03, R077Q05, R077Q06, R110Q01, R110Q04,

R110Q05, R216Q01, R216Q02, R216Q03T, R216Q06, and R236Q01). The LR test con-

ducted via the GDINA package identified 15 of these items (R040Q02, R040Q03A, R077Q02,

R077Q03, R077Q05, R077Q06, R110Q01, R110Q04, R110Q05, R216Q01, R216Q02, R216Q03T,

R216Q06, R236Q01, and R236Q02). In this case, the results of the LR test aligned the most

with the manually identified biased items, closely followed by the Wald test provided by the

GDINA package.

4 Discussion

After an analysis of the Wald and LR tests on simulated data, the Wald test, specifically as

implemented by the CDM package, appeared to have more robust results. With the simulated

data, it was known precisely which items were manipulated to be biased and therefore it was

simple to see how well the Wald and LR tests performed. This was a supervised technique,

meaning the true labels (DIF or no DIF) were known. In this scenario, a false negative

was the most egregious error for the model to make, as this means biased items could go

unidentified and continue to perpetuate unfair testing for certain demographic groups. To

compare the performance of the Wald and LR tests, it was important to compare the false

negative and false positive rates. False positives were additionally important because if

the model over-identified DIF, i.e. signaled that every item was biased, the results became

meaningless. The Wald test outperformed the LR test in the simulated data, as seen in

Section 3.1.4. Notably, the LR test had a very high FPR, or overidentification of DIF, when

the sample size was large; this may be in part due to increased sensitivity as the sample

size increases. Of the Wald implementations, the CDM package performed better than the

GDINA package. This is likely because the CDM packages had more control over parameter

estimation. At the highest setting, there were 29 parameters to estimate (2 subgroups, 9

underlying attributes), which was very large.

Although the “true” answers were unknown, examining the data provided by the CDM

package gave a well-informed view on which test items may have displayed bias. Many more

items were identified as biased in the PISA 2000 dataset than the TIMSS 2007 dataset.

Simply due to the nature of the exams, it made sense that there might be more bias in

the PISA 2000 exam than the TIMSS 2007 exam, as PISA involves reading and TIMSS is

more mathematical. Additionally, the age group these exams test may have been significant.

4th graders (TIMSS) are much younger than 15-year-olds (PISA), and as students age and

progress, questions become more complicated; this means older groups are more susceptible
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to bias than younger children.

To make some recommendations for practitioners, for any of the described DIF-identification

methods, a larger sample size provides better results. More specifically, with a sufficiently

large sample size the Wald test yields the most favorable results, as has been seen in

other studies such as [Hou et al., 2014]. If a user is concerned of the possibility of over-

identification, the BH procedure will aid in controlling the FPR. If examining a test with

a large amount of latent attributes, of the methods examined in this study, the Wald test

is likely to give the best performance. However, more complex bias-identification is recom-

mended. This also applies for practitioners examining more than 40 items at a time. Finally,

it is not recommended to us the MH and McNemar tests as steadfast indicators of bias when

the test item is indicated as the strata. These tests are simple baselines, and while they can

provide a starting point for identifying DIF in test items, they do not provide a nuanced

enough examination of test items as they rely only on the success counts of each subgroup

and tended toward over-identification in this study.

There are limitations to this study, including the choice to examine a binary subgroup.

A multi-class subgroup such as race or country of origin would introduce another layer of

complexity to this study. This would be a future direction of reviewing DIF-identification

methods. Additionally, in this study the MH test is performed with test item as the third

grouping variable; another angle would be to use the latent attribute profile as the strata.

Introducing more complex models, such as neural networks and other machine learning

techniques, may also allow for models to finetune DIF-identification and alleviate some of

the limitations of simpler statistical methods. Additionally, the proportion of DIF items

was held constant at one fifth in each simulation, and it would be important to examine if

varying the proportion of biased items affects the performance of these methods. Finally,

introducing other types of CDMs in addition to DINA would be another further direction

this research could take.

As a whole, these statistical methods provide good starting points for the problem of DIF-

identification. There are certain limitations to the use of each test described in this study.

Therefore, this important discussion of equitizing standardized testing across the globe may

benefit from learning more complex models.
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