
、

Conditional Clustering Method on KNN for Big Data
A Thesis Presented in Partial Fulfillment of

Bachelor of Science
(Honors in Statistics)

Qi Chen

Supervisor: Prof. Mark Fredrickson

Final Version: May 23, 2022

Abstract

This thesis considers challenges faced by k-nearest neighbor (KNN) classifiers when handling
big data, particularly concerning large storage requirements and extended training times. The
proposed solution revolves around data filtering techniques. Drawing upon the fundamental
principle of KNN classifiers, which assumes that similar data possess similar conditional
distributions regarding the response variable, this study advocates for employing clustering
methods to segment the training data and subsequently filter it by selecting the closest cluster as
the training set. Stem from Bayes' rule and the Mixture distribution of data, the clustering
refinement involves utilizing clustering techniques conditional on the class of responses. To
execute this approach, the algorithm prefers a hierarchical clustering model, chosen for its
stability and efficiency. To counterbalance the loss of information resulting from filtering the
training set, the algorithm replaces the standard KNN classifier with a local KNN classifier. By
locally adjusting the parameters of the KNN classifier, the model achieves a more favorable
trade-off between bias and variance. The effectiveness of the proposed model is evaluated using
three sets of real-world data: Fashion MNIST, Forest Cover Type Prediction, and Online
Shoppers Intention from the UCI Machine Learning repository. The results of the tests
demonstrate that the conditional clustering method significantly enhances runtime efficiency
while employing the local KNN classifier improves model prediction ability. Notably, the
number of clusters proves to be a critical factor influencing the model's accuracy. While
increasing the number of clusters may reduce the filtered training dataset size, thus resulting in
information loss, a higher number of clusters affords the local KNN classifier greater
opportunities to strike a balance between variance and bias, consequently lowering model risk.

1

Contents

1 Introduction 3
1.1 Statistical Performance of KNN Classifier 4
1.2 Computational Performance of KNN 5

2 Method 7

3 Experiment 13
3.1 Comparing Clustering Methods 12
3.2 Computational Performance and Model Accuracy 13
3.3 Effect of Dendrogram Cutting 14
3.4 Comparison to Standard KNN 16
3.5 Apply Local KNN Classifier 17

4 Conclusion 18

Reference 19

2

1 Introduction

The K-nearest neighbor (KNN) classifier stands out as a robust supervised machine learning
algorithm suitable for classification tasks. As a non-parametric method, it does not rely on
assumptions about the underlying data distribution but instead operates on an instance-based
approach, in which it classifies new data points by comparing them with existing training data
points (Hastie, Tibshirani, & Friedman, 2009, chapter 13).

The classification process in the KNN algorithm involves finding the K nearest neighbors for a
given data point in a metric space , where k is an integer chosen by the researcher.𝑥

𝑡
∈ 𝑆𝑑 𝑆𝑑

Given a training set , to predict a class label or produce a regression estimate at , k data𝑋 ∈ 𝑆𝑑 𝑥
𝑡

points with the closest distance to the test point are found using a distance function. Let
be the k nearest neighbors of the test point:𝑆

𝑥
∈ 𝑆𝑑

𝑆
𝑥
⊆ 𝑋 | 𝑆

𝑥| | = 𝑘 ∧ ∀ 𝑥
1
 ⊆ 𝑋, 𝑆

𝑥
 ∀ 𝑥

2
 ⊆ 𝑆

𝑥
 , 𝑑𝑖𝑠𝑡(𝑥

𝑡
, 𝑥

1
) > 𝑑𝑖𝑠𝑡(𝑥

𝑡
, 𝑥

2
)

These k-nearest points are then averaged to achieve a regression prediction as follows:𝑌
^

.𝑌
^

= 1
𝑘

𝑖∈𝑆
𝑥

∑ 𝑌
𝑖

Classification is usually done through a voting mechanism based on the class labels of the
nearest neighbors. Since the voting mechanism is based on the belief that similar data has a
similar distribution of the response, it is reasonable to allocate more weight to more similar data,
which is similarity-weighted voting. Assume responses Y to be a categorical random variable
with J levels, X is a collection of predictor values, and is a collection of training data,{(𝑥

𝑖
, 𝑦

𝑖
)}

the simple voting and similarity-weighted voting for a test point with predictor value to be𝑦
𝑗

𝑥
𝑗

category j are given by (Cunningham & Delany, 2021):

Simple voting: 𝑉𝑜𝑡𝑒(𝑦
𝑗

= 𝑗) =
𝑖=1

𝑘

∑ 𝐼(𝑦
𝑖

= 𝑗)

similarity weights voting: 𝑉𝑜𝑡𝑒(𝑦
𝑗

= 𝑗) =
𝑖=1

𝑘

∑ 1
𝑑(𝑥

𝑗
,𝑥

𝑖
) 𝐼(𝑦

𝑗
= 𝑗)

While the KNN method stands out for its simplicity and intuitive nature, its reliance on
calculating distances between the point x and all training samples makes it computationally
expensive, especially as dataset sizes escalate. The inefficiency of the KNN method becomes
more pronounced with big data due to several factors. One of the most important is that the
computational complexity of the KNN method scales linearly with the size of the training
dataset, resulting in longer processing times and increased memory requirements. The choice of
distance function will also affect the calculation time, and many commonly used distance

3

functions have computational complexity that scales much worse than linearly (Cunningham and
Delany, 2021). For the KNN method to be a competitive technique in today's era of exponential
data growth, additional modifications are necessary. To mitigate these challenges and improve
the scalability of the k Nearest Neighbor method, I propose a novel method of integrating
clustering as a pre-processing step. By partitioning the training data into distinct clusters based
on similarity measures, clustering reduces the effective size of the dataset that the KNN method
needs to operate on. The specific operation is only using training data within the closest cluster
to make predictions instead of considering the entire dataset. While clustering has been used as a
solution in previous adaptations of the KNN method, the approach of this paper forms clusters
conditional on class labels. This approach improves both the statistical and computational
performance of the KNN classifier.

1.1 Statistical Performance of the KNN Classifier

As the training sample size (n) increases, the KNN method can incorporate more data points for
making predictions, so in principle, a larger value of k can be used. This typically leads to
smoother decision boundaries and reduces the impact of noise in the data. But if k is allowed to
grow too quickly relative to n, the variance of the estimates will not decrease. Stone has proved
that when k and n approach infinity and k/n approaches 0, the KNN estimator is universally
consistent, and the risk converges to the Bayes risk, the optimal prediction accuracy if the true
conditional distributions were known (Stone, 1977). Since the proper value of k is rarely known
in practice, selecting a value of k using the training data is of critical importance.

A frequently used method for selecting machine learning model parameters is k-fold
cross-validation, where the parameter with the lowest cross-validation error is applied to the
entire dataset for training. However, since the parameters of the KNN method are dependent on
the training set size, leave-one-out cross-validation (LOOCV) is used to determine the optimal
value of k. Azadkia (2020) has demonstrated that LOOCV identifies the optimal k quickly and
efficiently through a non-asymptotic error bound.

The performance of the KNN classifier is heavily influenced by the data distribution. The KNN
method operates on the belief that closely located data points exhibit similar conditional
distributions of the response variable given predictors. Consequently, in regions where data is
densely distributed, the model can access sufficiently similar data points, potentially leading to
high accuracy. However, when test data is situated in sparse data distribution areas, the training
set used for classification may lack similarity resulting in decreased prediction reliability.

Cannings et al. (2020) propose a method called local KNN which allows the choice of k for
KNN classifiers to depend on the estimated density of x so that the estimation k value varies
based on the estimation of the distribution of predictors. Cannings et al use a family of
bandwidths {h(Xi) : i = 1,...,n} instead of h = h(x) as density estimation so that the resulting
estimate is itself a density (Cannings et al., 2020).

Because the KNN classifier is an instance-based classifier, filtering data is an effective way to
improve the training process while maintaining classification ability based on the training data.

4

One such method is the Condensed Nearest Neighbor (CNN) rule, proposed by P.E. Hart in
1968. This method preserves the essence of the nearest neighbor idea but uses the filtered
consistent training subset. The CNN rule works by iteratively collecting data points that are
misclassified by the model based on the existing collected data. By doing so, CNN filters a
consistent subset by removing superfluous observations that will not affect the classification
accuracy of the training set (Hart, 1968). These observations are often referred to as interior
points since data points around the center of a cluster tend to have little effect on classification,
while those around the boundary of a cluster are more likely to influence the classifier's
decisions. Filtering a consistent training subset aims to select a subset of the training set that
classifies the remaining data correctly through the nearest neighbor (NN) rule (Hart, 1968).
However, the CNN method faces certain challenges: 1. Whether data is included in the training
set depends on the order in which it is selected. 2. For highly overlapping data, CNN tends to
select all data in the original training dataset.

Devi and Murty (2022) propose an MCNN rule (Modified CNN rule) dealing with CNN’s
order-dependent problem. The MCNN begins by defining a foundational set of prototypes, each
representing a unique class. The training dataset is then classified using these initial prototypes.
Following this, through the identification of misclassified samples, a representative prototype for
each class is recognized and added to the original set. The expanded set of prototypes is
subsequently utilized for another cycle of classification on the training data. This iterative
process continues as representative prototypes are fine-tuned based on misclassifications,
ultimately ensuring accurate classification of all patterns within the training set. By addressing
order-dependent issues, the MCNN tends to establish a consistent training subset with less data
than CNN, while still ensuring 100% classification accuracy on the training set.

As an instance-based classifier, the KNN classifier's parameter value is influenced by the number
of observations. A larger training set provides more data similar to the test points, enabling the
KNN classifier to better approximate Bayes' classifier and achieve higher accuracy. However,
even without utilizing the entire training set, the clustering KNN methods can train a KNN
classifier using a consistent training subset that achieves accuracy comparable to that of a KNN
classifier trained on the full dataset if the clusters are chosen appropriately.

1.2 Computational Performance of KNN

The computational complexity of the search method in KNN increases with the size of the
training dataset for each test sample, denoted as O(nd), where n is the size of the training dataset
and d is the dimensionality (Deng et al., 2016). To illustrate this behavior, refer to Figure 1,
which displays the relationship between the training time of KNN classifiers (with a k value of
10) and sample sizes. Similarly, Figure 2 shows the relationship between the training time of
KNN classifiers (with a k value of 10) and the number of predictors. Observe that the training
time is approximately linear in the size of the data set.

5

Figure 1 Figure 2

To improve the computational performance two main approaches are using better data structures
to allow for faster distance computations and clustering to effectively reduce the dimensionality
of the problem to a one-dimensional measure.

Filtering the training set is a practical approach to enhance the training efficiency of KNN.
R-Tree, a specialized index designed for range queries, can quickly identify all entries either
contained within or overlapping a specified query. Based on the problem of finding similar tumor
shapes, Korn et al. proposed a faster Nearest Neighbor Search in 1996. The method mainly
solves two problems: how to measure the distance between two shapes and how to do better than
sequentially scanning the entire database given such a distance function. To solve the problems,
Korn et al apply the F-index with n-d R-tree to the KNN method. Since not all data in the
training set influences predictions and most data with low similarity to the test points are
irrelevant to the prediction results, using n-d R-trees, which are tree data structures designed for
spatial access methods, can significantly enhance the training efficiency of the KNN method.
The specific operation is to submit the calculated size distribution of each image to a range or
k-nearest neighbor to search in the R-tree. This method can complete the search faster without
compromising correctness (Korn et al, 1996).

Clustering can also be a helpful technique to reduce the problem of sample size. Deng et al
propose an LC-KNN (Landmark-based Spectral Clustering) method to improve the efficiency of
the KNN method. Before doing nearest neighbor estimation, LC-KNN computes a
Landmark-based Spectral Clustering which has two advantages: low complexity and scales
linearly. The distinctive feature of Landmark-based Spectral Clustering lies in its representation
of each sample through its projection onto a set of basis vectors. After clustering training data,
LC-KNN uses training data in the closest cluster to make predictions. After clustering the
training dataset, KNN can focus solely on the training data within the cluster nearest to the test
point, which significantly reduces the computational load of the KNN method (Deng et al.,
2016).

There are still some flaws in the design of LC-KNN. The shapes of the formed clusters are
uncertain, which means the nearest cluster might not contain most of the training data that is
similar to some test points. Saadatfar et al propose an improvement based on LC-KNN. In
addition to considering the center of each cluster, their method also considers the shape and
distribution under each cluster. They demonstrate that KNN is more efficient after considering

6

those 2 parameters (Saadatfar, Khosravi, Hassannataj Joloudari, Mosavi, & Shamshirband,
2020).

2. Method

A common theme when considering both the statistical and computational performance of KNN
is that clustering can be a useful method to help improve local estimation of optimal k and also
reduce the search space when training and predicting using KNN. In this section, I will
introduce the two steps of this method, namely creating conditional clusters and making
predictions using the nearest neighbor method. The goal of the first part is to create clusters of
similar data for each response variable class. The second part will use the nearest clusters as the
training data set for prediction, which can reduce the usage of training data while maintaining the
required data.

When employing the nearest neighbor method, we leverage a neighborhood distribution to
approximate the distribution of the response variable at a specific point. However, this often
leads to an excess of calculations, as numerous distances are computed solely to identify the
nearest k neighbors.

Clustering, a common unsupervised learning technique, organizes data based on their
similarities, making it a valuable tool in data preprocessing. Similar to the nearest neighbor
method, clustering methods create groups of observations according to the data's similarity
(Hastie et al., 2023). Consequently, clustering can effectively classify data in advance of
applying KNN with any particular outcome Y. By properly creating clusters in the training set,
when performing classification or regression, we can eliminate a large amount of data with low
similarity to the predicted points, thereby reducing unnecessary calculations.

As previously discussed, preprocessing the data through clustering before applying nearest
neighbor methods has been proposed, particularly as a method for local KNN techniques that
select k = k(x), where the number of nearest neighbors is a function of the prediction point x. In
lower-density areas of the predictors, clustering methods tend to create clusters including only a
small number of training data. Cannings et al claimed that selecting k = k(x) allows for using
fewer neighbors in low-density regions, leading to a more balanced trade-off between local bias
and variance (Cannings et al., 2020). Consequently, clustering the data before using KNN
classifiers intuitively reduces computational costs without significant information loss.

Clustering methods are reliant on the data distribution; hence, general clustering methods tend to
form larger clusters centered around the densest regions of the sample space . Figure 3 shows 𝑆𝑑

how the data can be divided into two clusters without knowing the classes of Y.

7

Figure 3

As an unsupervised technique, however, the clusters found when clustering the entire training set
may not represent the clusters within a given response class. Therefore, performing clustering
based on each class can help separate the mixed distribution of predictor values. Figure 4 shows
how the data can be divided into two clusters for each class of Y.

Figure 4

This thesis proposes an algorithm that creates clusters conditional on the response variable
classes during the training phase. For prediction, it collects the closest cluster for each level of
the response variable and performs KNN on the union of all clusters that contain the prediction
point. Optionally, specific values of k can be learned for each set of overlapping clusters.

To further justify this approach, consider the application of Bayes’ rule to predicting the
probability of class label j.

8

𝑃(𝑌 = 𝑗|𝑋 = 𝑥) = 𝑓(𝑥|𝑌=𝑗)
𝑓(𝑥)

The marginal distributions of Y and X are easy to estimate, and unsupervised clustering can be
used to approximate the marginal distribution of X, but it provides no information about f(x | Y =
y), the conditional distribution of X for observations with class label j.

Therefore, the key point becomes estimating f(x|Y=y). Suppose this distribution can be written in
the form of a mixture distribution composed of c clusters:

𝑓 𝑥 | 𝑌 = 𝑗() =
𝑖=1

𝑐

∑ α
𝑖
𝑓

𝑖
𝑥 | 𝑌 = 𝑗()

where the represent the marginal probability of falling into the conditional cluster i. If weα
𝑖

further suppose that for any given value of x all but one approx 0, then estimating𝑓
𝑖

𝑥 | 𝑌 = 𝑗()
the marginal distribution of X given Y = j simplifies to just estimating the distribution within the
one cluster for which the component density is non-zero.

To perform the clustering step, we must select a particular method of performing clustering with
subsets defined by the response variable. Some common classifications of clustering methods
include Partitioning-based approaches, Hierarchical approaches, Density-based approaches,
Grid-based, Model-based, and Fuzzy-based approaches. In addition, there are some clustering
methods suitable for high dimensional data, such as Subspace-based clustering approaches,
Hypergraph-based, and concept-based clustering (Mittal et al., 2019).

To ensure the speed of the algorithm and avoid too much data being included in any single
cluster, which is easily caused by some methods of clustering, this algorithm uses a hierarchical
clustering method. Hierarchical clustering has efficient memory usage, it does not require the
storage of a complete distance matrix, which can be computationally expensive for large
datasets, and can be tuned to create clusters of specific sizes.

Hierarchical clustering methods are bottom-up clustering methods that begin by forming clusters
from individual data points, gradually merging them upward until reaching a unified cluster at
the top. Hierarchical clustering methods can be represented using dendrograms, as shown in
Figure 5.

9

Figure 5

Hierarchical clustering initially treats each data point X as an individual singleton cluster. It then
proceeds by computing pairwise distances or similarities between all data points, with Euclidean
distances being a commonly utilized metric.

𝐷
𝑖 𝑗

= ||𝑋
𝑖·

− 𝑋
𝑗·

||

At each iteration, we identify the two closest clusters based on a specified linkage method and
merge them into a single cluster. The choice of linkage method determines how the distance
between clusters is calculated. There are 4 types of link functions: Single linkage, Complete
linkage, Average linkage, and Centroid linkage. This thesis will use hierarchical clustering with
complete linkage which defines the distance between two clusters to be the maximum distance
between any two points in the clusters: .𝑓 = 𝑚𝑎𝑥 𝑑 𝑥, 𝑦()()

After merging clusters, the distance or similarity matrix is updated to incorporate the distances
between the newly formed cluster and the remaining clusters. This process is repeated iteratively
until all data points are merged into a single cluster or until a predefined stopping criterion is
satisfied.

An advantage of hierarchical clustering is that it doesn't require specifying the number of clusters
in advance. Clusters are formed by cutting the dendrogram, and different cutting strategies can
yield varying cluster arrangements. Two cutting strategies are commonly employed: setting a cut
height and specifying the number of clusters.

1. height of dendrogram: The dendrogram can be pruned by drawing a horizontal line at a chosen
height, which reflects the distance between observations and/or clusters. Adjusting height allows
dendrograms to form different numbers of clusters.

2. number of clusters: The choice of number of clusters can directly correspond to the number of
clusters generated after dendrogram pruning.

10

After applying clustering to training data, we can form high-similarity clusters. Assuming we
know the clusters, we choose the closest clusters as a training dataset which can also maintain
high similarity when filtering out some unnecessary data. Given a test point, clustered training
dataset, and each cluster’s centers, the algorithm is shown below:

Algorithm:
1. Perform clustering within each outcome category level.
2. For a new point, calculate the distance between the test point and the centers of each

conditional cluster.
3. Collect training data in the closest cluster for each level of the outcome variable.
4. Performing KNN based on this dataset:

1. Calculate the distance between test data and collected training data.
2. Choose the closest k training data.
3. Predict according to criteria (To maximize accuracy, we usually predict as the

category with the highest proportion)

Based on the algorithm, KNN depending on filtered data only needs to use a small proportion of
original training data, which reduces a lot of calculation compared to the general KNN method.
Even though clustering takes some time to complete, the clustered training data is reusable for
many prediction points and can be completed before selecting one or more k values, which is
often a very time-intensive activity. This means that applying the KNN classifier on new test data
does not require clustering training data again.

Since applying a clustering method before using a KNN classifier tends to remove mostly
unnecessary data, the proposed method will approximate KNN with an optimal k value selected.
Figure 6 shows the relationship between the k value and model risk of the normal KNN method
and the KNN method based on the filtered training data after the hierarchical clustering. Both
figures show a similar concave up curve indicating.

Figure 6

11

In the next section, the thesis investigates the statistical and computational performance of the
proposed method compared to KNN on the full data set.

3 Experiments

To evaluate the performance of the proposed method, we conduct experiments using real-world
datasets Fashion MNIST, Forest Cover Type Prediction, and Online Shoppers Intention from the
UCI Machine Learning repository. The validation process mainly compares the performance of
general KNN classifiers and KNN classifiers based on hierarchical clustering filtered training
data. What’s more, The validation process also includes a comparison of proposed algorithms
under different clustering methods.

3.1 Comparing Clustering Methods

The proposed algorithm employs hierarchical clustering, which draws on flexibility and
robustness to noise. This approach enables the utilization of diverse distance metrics and linkage
methods, offering adaptability to various data types and clustering goals. Hierarchical clustering
techniques tend to exhibit resilience to noise and outliers as they progressively combine or
separate clusters based on similarity. This gradual process fosters more reliable clustering
outcomes and saves a lot of clustering time. The following table compares applying hierarchical
clustering with applying k-man clustering starting with 20 clusters.

In order to ensure the reliability of the comparison, The validation process chose to use 3
different numbers of clusters (5, 10, 15) and repeated the experiment 3 times. The experiment
recorded the time used by the k-mean clustering method and the hierarchical clustering on the
Fashion MNIST dataset.

Table 1 Table 2

Based on table1 and table 2, the hierarchical clustering method takes less time in the clustering
process. In addition, the time required by the K-mean clustering method increases as the number

12

of clusters increases, while the hierarchical clustering method can maintain a relatively stable
training time. This is because the hierarchical clustering method uses bottom-up clustering
methods and forms clusters through pruning after forming complete dendrograms.

3.2 Computational Performance and Model Accuracy

Utilizing clustering methodology for data filtration on the training dataset proves advantageous
in speeding up the training process of the KNN classifier. This approach introduces a new
parameter controlling the number of clusters in each class. Therefore, it can control the trade-off
between KNN model training time and its accuracy.

Notice that using a single cluster is equivalent to standard KNN. Increasing the number of
clusters diminishes the amount of data available for training the KNN classifier. Excessive
clustering precipitates a diminution in the cluster's observational pool, thereby impeding the
efficacy of the filtered dataset for k-nearest neighbor classification. In Figure 7, I use the Fashion
MNIST dataset to compare the impact of choices of different numbers of hierarchical clusters to
filter data on the accuracy of the model (model risk is 1- accuracy).

Figure 7

Figure 7 shows a larger number of clusters tends to produce higher model risk. Nonetheless,
increasing the number of clusters will allow the KNN classifier to use a smaller training set and
reduce training time. Consequently, good selection of the cluster count is important for an
optimal balance between computational efficiency and model accuracy. What’s more, The
parameter for the number of clusters in each class also affects the tuning of the k-nearest
neighbor classifier parameters.

13

3.3 Effect of Dendrogram Cutting

Within the hierarchical clustering methodology, two primary pruning techniques are common:
cluster number selection and dendrogram height specification. When opting for cluster number
selection, the aim is to ensure an equal distribution of clusters across each class. Conversely,
when determining dendrogram height, the objective is to achieve distinct cluster counts for each
class. The determination of dendrogram height is contingent upon the inherent characteristics of
the data, with the height being Influenced by factors such as Inter-class variance and intra-class
similarity.

Based on the two data of the Fashion MNIST dataset and Forest Cover Type Prediction dataset,
figure 8-11 compares the relationship between the value of k and model risk generated by using
different pruning methods. In order to ensure the reliability of the experiment, 3 different
parameters were selected for each pruning method.

Figure 8 Figure 9

Figure 10 Figure 11

The parameter determining the number of clusters wields considerable influence over the
operational effectiveness of the algorithm. It intricately shapes the degree to which the
computational efficiency of the k-nearest neighbor classifier is augmented. By and large, the
manipulation of this parameter manifests in a discernible pattern: an increase in the number of
clusters tends to result In a more stringent filtration of data, consequently facilitating accelerated
computational processes. This intricate balance underscores the pivotal role played by the cluster

14

count parameter in optimizing both the fidelity of information retained and the computational
expediency of the algorithm. The common cluster numbers are 5, 10, and 15。

Based on the Fashion MNIST dataset, table 3 and table 4 show the comparison between the
general KNN method and KNN classifiers using hierarchical clustering filtered training data.
The comparison includes the average time it takes to predict each test point (prediction time),
the standard deviation of the prediction time (prediction time sd), and model accuracy
(Accuracy). In order to ensure the reliability of the comparison, the experiment used 3 different
values of k (5,10,15).

Table 3

Table 4

Experiments show that KNN classifiers using hierarchical clustering filtered training data can
still maintain accuracy close to general KNN. What’s more, it's worth noting that the proposed
algorithm involves two distinct steps. The clustering time, while time-consuming, serves the
crucial purpose of partitioning the training data into distinct clusters. Fortunately, this time
investment is fixed, meaning no additional time is required when performing prediction.
Conversely, the prediction time is remarkably shorter. This step, dedicated to making predictions,
benefits significantly from the earlier clustering process. By utilizing the training data to filter
out less pertinent information, numerous extraneous calculations are effectively avoided.

Considering the entire set of experiments together, what becomes evident is that employing the
data filtered through clustering expedites the model training process significantly compared to
using the entire dataset, with minimal compromise to accuracy. This underscores the ability of
clustering to exclude training data that holds little similarity with the test point while preserving
training data critical for prediction.

15

3.4 Comparison to Standard KNN

The KNN classifier is renowned for its resemblance to the Bayes classifier. As demonstrated by
Stone's theorem, as both k and n approach infinity, and the ratio k/n tends toward 0, the risk of
the k-nearest neighbor classifier converges to the Bayes risk (Stone, 1977). These convergence
scenarios persist within the proposed algorithm as well when the number of clusters remains
fixed.

As the sample size n increases, achieving minimal model risk in the k-nearest neighbor classifier
necessitates a larger value for the parameter k. To ensure universal consistency and convergence
of model risk, the ratio k/n approaches 0 as both n and k tend toward infinity. Given a fixed
number of clusters in each class, the number of observations within each cluster increases
proportionally with the sample size n. Consequently, as the sample size increases, the value of k
corresponding to the minimum risk in the KNN classifier also increases but at a smaller ratio
since k/n approaches 0 while the number of observations within each cluster escalates at the
same pace as n. Therefore, there exists a sample size n such that for all sample sizes larger than
n, the test point will encompass all necessary points for estimation.

Figure 12

Large numbers may also take a lot of time to run. Figure 12 shows that model risk for the general
KNN classifier and KNN classifier using hierarchical clustering filtered training data are both
decreased with large sample size at a similar rate. Model risk for the general KNN classifier is
always lower, which is because preceding the application of the KNN classifier with data
clustering, when the nearest cluster is chosen as the training set, some information within the
original training set is inevitably lost which is a common drawback of data filtering approaches.
Nonetheless, the essence of clustering lies in its ability to partition the predictor's domain,
thereby delineating distinct regions. This partitioning facilitates the implementation of local
k-nearest neighbor methods, rendering them both feasible and straightforward. What's even more
advantageous is that with the conditional clustered training data, local KNN does not require
additional time since filtering data already puts test points in a region.

16

3.5 Apply Local KNN Classifier

By employing the local KNN classifier on the clustered training dataset, we can fine-tune the
KNN algorithm to select a cluster-specific value of k. Table 5 shows the result of applying local
KNN to the Online Shoppers Intention dataset.

The experiment clustered the training data conditional on classes through the hierarchical
clustering method and applied local KNN in each training data sub-section. In order to ensure the
reliability of the experiment, four different numbers of clusters (2, 4, 5, 8) were selected for the
experiment. For each number of clusters, the table records the lowest model risk generated by
values of k from 1 to 36.

Table 5

The number of clusters here still plays an important role. It is worth noting that the relationship
between the number of clusters and model risk is not strictly increasing. Increasing the number
of clusters will shrink the sample size of the training dataset used by KNN leading to larger
model risk. However, increasing the number of clusters will partition predictors into more
sections, which will give local KNN classifiers more opportunity to have a better balance
between variance and bias which leads to lower model risk leading to lower model risk.

Applying the local KNN classifier will not affect the clustering method’s ability to reduce
running time since applying the local KNN classifier does not require any additional partition of
the training dataset. Based on the Online Shoppers Intention dataset with 100 test points and k
tuning from 1 to 36, the average time used by the general k-nearest neighbor classifier is
5.055978 seconds with a standard deviation of 0.2974746. For the method of local k-nearest
neighbor classifier on clustered training data time used in the clustering step, time used in the
prediction step, and its standard deviation are reported below, it is obvious using the clustering
method still maintains the ability to reduce running time on prediction even apply local k-nearest
neighbor classifier.

Table 6

17

4 Conclusion

The KNN classifier is a widely employed method but encounters challenges when confronted
with big data due to its sluggish runtime and the extensive range of tuning parameters. This
stems from two primary issues. Firstly, KNN necessitates computing pairwise distances between
test and training data, which can be computationally taxing, particularly for sizable datasets.
Secondly, as the dataset size increases, determining the optimal value of k for enhanced accuracy
becomes challenging, as it hinges on the dataset's distribution.

The proposed method in this thesis extends the nearest neighbor classifier algorithm, which
categorizes data based on its proximity to neighboring data points. This approach is predicated
on the notion that data exhibiting high similarity tends to possess similar conditional
distributions of the response variable. By integrating clustering techniques, which group akin
data points, we can initially cluster the training data and then utilize the training data within the
nearest cluster to classify the test points. Moreover, drawing insights from local KNN, where the
k value adjusts based on data point density or x value, facilitates a more adaptable approach. By
employing fewer neighbors in low-density regions, we achieve a more balanced bias-variance
trade-off. For clustering, a hierarchical clustering method is chosen in this thesis due to its
stability and operational efficiency.

Clustering methods naturally yield clusters with fewer observations in low-density regions,
aligning seamlessly with the tenets of local KNN. Through empirical testing on real data, it is
observed that applying a local k-nearest neighbor classifier on clustered training data aids in
mitigating the decline in model accuracy induced by data filtering, all while preserving the
efficiency gains attained through clustering.

This thesis also includes a validation process using real data. Experiments have proven that
hierarchical clustering can quickly form clusters and the number of clusters will not affect the
time consumed by the hierarchical clustering process. In addition, hierarchical clustering can
help KNN classifiers train faster without causing a significant loss of model accuracy. The
application of Local KNN has also proven to be effective. It can even help the model achieve
higher accuracy without losing the ability of clustering to accelerate the training of the model.

18

Reference

Azadkia, M. (2020).OPTIMAL CHOICE OF k FOR k-NEAREST NEIGHBOR REGRESSION.
arXiv.org. https://doi.org/10.48550/arXiv.1909.05495

Cannings, T. I., Berrett, T. B., & Samworth, R. J. (2020). Local nearest neighbour classification
with applications to semi-supervised learning. The Annals of Statistics, 48(3).
https://doi.org/10.1214/19-aos1868

Cunningham, P., & Delany, S. J. (2021). K-nearest neighbour classifiers - a tutorial. ACM
Computing Surveys, 54(6), 1–25. https://doi.org/10.1145/3459665

Deng, Z., Zhu, X., Cheng, D., Zong, M., & Zhang, S. (2016). Efficient KNN classification
algorithm for Big Data. Neurocomputing, 195, 143–148.
https://doi.org/10.1016/j.neucom.2015.08.112

Hastie, T., Tibshirani, R., & Friedman, J. H. (2023). The elements of Statistical Learning: Data
Mining, Inference, and prediction (second edition). Shi jie tu shu chu ban gong si.

Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE Transactions on
Information Theory, 14(3), 515–516. https://doi.org/10.1109/tit.1968.1054155

International Business Machines Corporation. (n.d.-a). Usage of KNN. usage of k-Nearest
Neighbors (KNN). https://www.ibm.com/docs/en/ias?topic=knn-usage

Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., & Protopapas, Z. (1996). Fast and effective
similarity search in medical tumor databases using morphology. In SPIE Proceedings (Vol. 2916,
pp. 116-129).
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c6b0508446947f9ed3f26fcda
c67d77e1309f3dc

Mittal, M., Goyal, L. M., Hemanth, D. J., & Sethi, J. K. (2019). Clustering approaches for
high‐dimensional databases: A Review. WIREs Data Mining and Knowledge Discovery, 9(3).
https://doi.org/10.1002/widm.1300

Saadatfar, H., Khosravi, S., Hassannataj Joloudari, J., Mosavi, A., & Shamshirband, S. (2020). A
new K-nearest neighbors classifier for big data based on efficient data pruning. Mathematics,
8(2), 286. https://doi.org/10.3390/math8020286

Stone, C. J. (1977). Consistent nonparametric regression. The Annals of Statistics, 5(4).
https://doi.org/10.1214/aos/1176343886

Susheela Devi, V., & Narasimha Murty, M. (2002). An incremental prototype set building
technique. Pattern Recognition, 35(2), 505–513.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6029643ee549753f8702071fc
8bf7fba98c7acf3

19

https://doi.org/10.48550/arXiv.1909.05495
https://doi.org/10.1214/19-aos1868
https://doi.org/10.1145/3459665
https://doi.org/10.1016/j.neucom.2015.08.112
https://doi.org/10.1109/tit.1968.1054155
https://www.ibm.com/docs/en/ias?topic=knn-usage
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c6b0508446947f9ed3f26fcdac67d77e1309f3dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c6b0508446947f9ed3f26fcdac67d77e1309f3dc
https://doi.org/10.1002/widm.1300
https://doi.org/10.3390/math8020286
https://doi.org/10.1214/aos/1176343886
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6029643ee549753f8702071fc8bf7fba98c7acf3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6029643ee549753f8702071fc8bf7fba98c7acf3

