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ABSTRACT

Optimizing query performance is a foundational challenge in modern database systems.

While machine learning for databases (ML4DB) has demonstrated strong in-system predic-

tion capabilities, most models remain tightly coupled to specific database engines, limiting

their cross-system generalizability. This thesis explores whether query cost estimation mod-

els can be designed to generalize across heterogeneous DBMSs, such as PostgreSQL and

MySQL, without requiring extensive retraining. We evaluate three modeling approaches: (1)

a classic operator-level machine learning (ML) method, (2) QueryFormer, a tree-structured

Transformer model, and (3) large language models (LLMs) fine-tuned for structured query

tasks. To bridge domain gaps in query cost estimation across heterogeneous database sys-

tems, we apply a stacked model approach for Classic ML and QueryFormer. In contrast,

LLMs are evaluated using a direct transfer strategy, as their semantic embeddings enable

cross-system generalization without the need for retraining. Using the TPC-H benchmark,

we compare these models on regression and classification metrics, including q-error, Mean

Relative Error (MRE), accuracy, and Mean Bucket Distance (MBD). Our results show that

LLMs achieve the highest accuracy and generalization with minimal target data, but offer

limited gains from cross-database transfer and incur high computational costs. QueryFormer

strikes an effective balance, benefiting significantly from stacking and maintaining consistent

performance across metrics and database systems. Classic ML, while efficient, struggles

with domain shifts and sometimes degrades under stacking. These findings highlight the

importance of model architecture and transfer strategy in ML4DB tasks and suggest future

directions toward hybrid and adaptive models for robust cross-database learning.
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CHAPTER 1

Introduction

Optimizing database performance has long been a critical task in the realm of data manage-

ment, with machine learning for databases (ML4DB) emerging as a transformative approach.

Tasks such as cost estimation, cardinality prediction, and query optimization are essential

to enhance database efficiency, affecting execution times and resource utilization.

Existing ML4DB models are typically trained on a single database system, limiting their

ability to generalize between different systems. This dependency not only incurs high com-

putational costs but also creates inefficiencies when transitioning models between systems.

Lack of cross-system adaptability often results in redundant retraining, increasing both the

cost and the complexity of maintaining optimal performance [16]. This challenge is further

highlighted by recent work showing that these instance-specific models require retraining

whenever the DBMS environment changes, with over 93% of time spent on running queries

for training rather than tuning [7].

Although large language models (LLMs) have demonstrated remarkable generalization

capabilities in diverse fields, their performance in database tasks remains suboptimal. LLMs

are not inherently specialized for database operations and often struggle with tasks that

require domain-specific optimizations, such as cost or cardinality estimation. This limitation

is consistent with broader findings on the weaknesses of LLMs in engineering-related tasks,

where they are unable to provide high-quality AI-based tools due to gaps in specialized

knowledge [11]. This gap underscores the need for specialized models tailored to database

tasks.

This study investigates whether a specialized database model can achieve strong cross-

system performance without requiring extensive retraining on different database environ-
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ments. Addressing this challenge could transform ML4DB by reducing system dependency

and enhancing scalability.

To this end, we explore three modeling approaches—classic machine learning (ML) meth-

ods, QueryFormer (QF), and LLM-based approaches—focusing on how different techniques

can facilitate built-in database statistics and optimizer estimations. Our primary goal is to

develop and compare methods for training models that can perform cross-database query

runtime or cost estimation, a crucial step toward building a more generalized foundation

model for database optimization.

Using the TPC-H benchmark, we evaluated these approaches on the basis of their gen-

eralizability, predictive accuracy, and overall effectiveness in database performance model-

ing. Additionally, we investigate the trade-offs between regression- and classification-based

training for query runtime prediction, assessing classification models using accuracy and

Mean Bucket Distance (MBD) and regression models using q-error and Mean Relative Error

(MRE).

Result Summary. In cross-database settings, LLM-based models demonstrate strong

generalization, consistently achieving the highest accuracy and lowest mean bucket distance

(MBD), even with minimal target data. However, their performance gains from stacking are

limited, and they incur substantial computational costs. QueryFormer proves to be the most

effective for cross-database knowledge transfer, showing stable improvements from stacking

and balanced performance across metrics. In contrast, Classic ML models struggle to adapt

across database boundaries due to their reliance on static features and operator-level predic-

tions, and often see degraded performance when stacking is applied. These results emphasize

the critical role of structural representation and adaptability in cross-DB transfer and moti-

vate future exploration of hybrid models tailored for heterogeneous database environments.
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CHAPTER 2

Background

2.1 ML4DB Methods

Machine Learning for Databases (ML4DB) aims to improve core DBMS tasks using ma-

chine learning techniques. As summarized by Cong et al.[1], the field can be organized

into three major themes: foundations, paradigms, and open problems. Foundations refer to

common techniques like query plan representation and transfer learning models. Paradigms

distinguish between ML as a replacement versus an enhancement to existing database com-

ponents [8, 9, 10]. Open problems include model efficiency, handling data shifts, and building

general-purpose models that transfer across tasks [1].

This thesis focuses on the cost estimation task, which predicts the latency or resource

consumption of a query plan—a critical step for query optimizers to choose efficient execution

strategies. Traditional cost models are built on heuristics and statistical assumptions, often

breaking down on complex or correlated data.

Over time, ML-based cost estimation models have evolved from early feature-based re-

gressors(e.g., MSCN [4]) to tree-structured neural networks like Plan-Cost [10] and E2E-Cost

[13], and more recently to models that deeply encode query semantics. Among these, BAO

[8], which enhances existing optimizers via reinforcement learning, and QueryFormer [15], a

transformer-based model for general-purpose query representation, have emerged as state-of-

the-art. A comparative study by Zhao et al.[16] confirmed that both BAO and QueryFormer

consistently achieve top-tier performance across in-distribution and out-of-distribution work-

loads.

Despite these advances, most ML4DB models are trained on a single database system,

making them tightly coupled to system-specific query plans and statistics. The predominant
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paradigm, instance-specific learning, involves executing large sets of SQL queries on each

target database to gather training data. While this can exploit system-specific patterns,

it incurs high computational costs and requires retraining for each new system. Moreover,

many models rely on manually engineered features tied to a specific optimizer, limiting

portability and scalability [16].

In response, recent work on foundation database models proposes to learn transferable

representations across tasks and datasets using pre-trained components (e.g., logical plan

or data experts) [16]. However, these models still require retraining when applied across

different database systems, limiting their practical generalization.

In contrast, our goal is to develop a cross-system foundation model that generalizes

across tasks, datasets, and DBMS architectures (e.g., PostgreSQL, MySQL, DuckDB) with-

out system-specific retraining. This would significantly improve scalability and reduce the

engineering effort required to deploy ML models in diverse real-world database environments.

2.2 Using LLMs in Databases

While Large Language Models (LLMs) have shown impressive generalization in NLP and

vision-language domains, their application to structured database tasks like cost estimation

remains limited. General-purpose LLMs (E.g., GPT, LLaMA [12, 2]) lack built-in mecha-

nisms to interpret critical database statistics—such as histograms, indexes, and execution

plans—that are essential for accurate query performance prediction. Their outputs are often

brittle—small changes in prompts can yield large variances in predictions—and they may

suffer from hallucinations, generating plausible but incorrect answers [3].

Moreover, general-purpose LLMs tend to struggle with mathematical reasoning, a key

requirement in database optimization. Unlike natural language tasks, database reasoning

involves precise numerical calculations, symbolic logic, and structural dependencies that are

not always explicit. This makes tasks like query runtime prediction especially challenging:

even small prediction errors can lead to order-of-magnitude mistakes in cost estimation [5, 6].

These limitations pose serious challenges for directly applying general-purpose LLMs to

ML4DB tasks. However, their strong generalization ability and capacity to encode complex

patterns make them an attractive candidate for foundational work in this space—provided

7



they are properly adapted. By fine-tuning LLMs with task-specific data and structured rep-

resentations—such as query plans, operator trees, and execution traces—we aim to reduce

their dependency on natural language patterns and ground them in semantically meaningful

input. To address their weakness in mathematical reasoning, we carefully control the out-

put format, minimize numeric variance in targets (e.g., by predicting log-scale values), and

constrain prediction tasks to classification or regression with bounded outputs. Through

this design, we explore whether LLMs—when structured appropriately—can learn to ap-

proximate cost models with competitive accuracy and potentially generalize across systems

and workloads more flexibly than traditional ML models. This investigation serves as a

step toward building interpretable, adaptable, and scalable foundation models for database

systems.
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CHAPTER 3

Method

Chapter Overview. This chapter outlines the methods used to evaluate query cost esti-

mation across both same-database and cross-database settings. We consider three modeling

approaches: (1) Classic Machine Learning (ML) using operator-level features and AutoML,

(2) QueryFormer, a tree-structured Transformer designed for encoding execution plans, and

(3) Large Language Models (LLMs) fine-tuned with structured query inputs. Section 3.1

introduces these three models and their use for same-database prediction. Section 3.2 ex-

plains how we adapt them for cross-database prediction, including a stacked model design

for ML and QueryFormer, and a direct transfer approach for LLMs. Section 3.3 defines the

evaluation metrics used for comparing model performance across both settings.

3.1 Same-Database Cost Estimation

3.1.1 Model 1. Classic Machine Learning

We include this Classic ML method as a simple, interpretable baseline to benchmark the per-

formance of more advanced models. This model predicts query execution times by learning

from structured features at the operator level. We train the model on raw EXPLAIN out-

puts (i.e., raw query plans) to predict runtimes of entire queries (obtained from EXPLAIN

ANALYZE outputs), and decomposed into individual operators such as Index Scan, Hash

Join, and Sort. Each operator instance is converted into a row in a flattened tabular format.

Input features include:

• Plan structure: Operator type, number of children, join and scan types

• Optimizer estimates: Estimated rows and estimated costs

• Parallel features: Worker utilization, execution distribution across threads
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Figure 3.1: Classic ML Model Structure

The target variable is the actual operator-level execution time. No runtime labels are

used as input features to prevent data leakage.

We train the model using AutoGluon-Tabular, an AutoML framework that ensembles

diverse models using multi-layer stacking (see Figure 3.1). This setup helps improve gener-

alization across heterogeneous query plans. The predicted execution time for a full query is

computed by summing the predicted runtimes of its constituent operators. This model serves

as a baseline for assessing advanced representation methods. In most cases, AutoGluon con-

structs the final model by combining LightGBM, CatBoost, and RandomForestMSE with

varying ensemble weights.
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Figure 3.2: QueryFormer Model Structure

3.1.2 Model 2. QueryFormer

We include QueryFormer because it represents the current state-of-the-art in ML-based

query cost estimation, demonstrating strong performance across both in-distribution and

out-of-distribution workloads [16].

QueryFormer is a tree-structured Transformer model that learns vectorized representa-

tions of query execution plans, capturing both operator-level details and global plan se-

mantics. Each node in a query plan—typically corresponding to a relational operator like

a join or scan—is embedded using a combination of learned representations for categorical

attributes (such as operator type, join conditions, and referenced tables) and numeric fea-

tures that characterize data distributions (e.g., histograms and sampled tuples). This rich

encoding enables the model to capture predicate selectivity and the statistical behavior of

columns, which are crucial for accurate cost estimation. Unlike traditional approaches that

rely on manually crafted features or optimizer-estimated cardinalities, QueryFormer directly

integrates raw statistical inputs, making it more robust to variations in query structure and

data skew [15, 16].
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Figure 3.3: Llama Finetuning Model Structure

To effectively model the hierarchical nature of query execution plans, QueryFormer intro-

duces several novel architectural modifications to the standard Transformer framework (see

Figure 3.2. (1) The Tree-Bias Attention mechanism biases the self-attention computation

to favor structurally valid paths, such as parent-child and ancestor-descendant relationships,

which mirrors the actual execution dependencies in query trees. (2) Height Encoding

adds positional information based on node depth in the tree, helping the model distinguish

between leaf-level scans and high-level aggregation or join operations. (3) Additionally, a Su-

per Node is injected into the model, acting as a global aggregator that attends to all nodes

in the tree and distills overall plan semantics into a single representation for downstream

prediction tasks. This design allows QueryFormer to capture both local operator interac-

tions and global query context, enabling it to outperform flat or sequence-based models in

predicting total execution time—without the need for hand-engineered features or recursive

architectures that are difficult to train.

3.1.3 Model 3. Fine-Tuning Large Language Models (LLMs)

We choose to fine-tune LLMs for their strong generalization capabilities and ability to learn

from unstructured or semi-structured data without extensive feature engineering. Specifi-

12



cally, we use the LLaMA 3 models because they are open-source, performant across a wide

range of NLP tasks, and available in multiple sizes (e.g., 3B, 8B, 70B), making them suit-

able for experimentation under varying compute constraints. Their flexibility and scalability

make them a promising candidate for modeling complex patterns in query execution plans.

We fine-tune the LLaMA 3.2-3B and LLaMA 3-8B models on raw EXPLAIN outputs (i.e.,

raw query plans) to predict runtimes of entire queries, as measured by their corresponding

EXPLAIN ANALYZE outputs. As illustrated in Figure 3.3, the model architecture consists

of a sequence of transformer blocks—layer normalization, multi-head self-attention, and feed-

forward layers—followed by two task-specific heads. The classification head maps each query

plan to one of 100 evenly distributed latency buckets, while the regression head outputs

a continuous log-scale estimate of query latency, which is later unnormalized to produce

runtime in milliseconds. This dual-objective setup captures both coarse-grained and fine-

grained latency signals.

To balance training efficiency with representational capacity, we explore both LLaMA

3.2-3B and 8B variants. Fine-tuning on domain-specific data has been shown to enrich LLM

capabilities, enhance reliability, and reduce hallucination [5, 3]. Following this approach, we

investigate two predictive settings:

• LLM Regression: Predicts a continuous runtime directly from the query plan.

• LLM Classification: Discretizes runtimes into 100 latency buckets and classifies each

query into the appropriate bucket.

The classification setting helps mitigate LLMs’ numeric brittleness by modeling broader

distributional patterns instead of relying on precise value prediction. For comparison, we

also map the regression output to bucket indices to evaluate both modes under a common

metric. All models are trained and evaluated within a single DBMS (e.g., PostgreSQL or

SQL Server), ensuring consistency in query plan format and runtime behavior.

3.2 Cross-Database Adaptation Methods

3.2.1 Stacked Model Approach for Classic ML and QueryFormer

Cross-database cost estimation is challenging due to differences in optimizer behavior, exe-

cution engines, statistics, and runtime scale. Even identical query plans can result in very
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Figure 3.4: Cross-database Stacked Model Structure

different runtimes across systems due to variations in memory usage, parallelism, and caching

policies.

Stacked Model. To address domain gaps between heterogeneous database systems, we

adopt a Stacked Model approach for both Classic ML and QueryFormer (see Figure 3.4).

This strategy enables knowledge transfer from a well-trained source model to a new target

domain using minimal additional training data. The procedure involves four key steps:

1. Train Bottom Model (BM): A model is trained on a large dataset from a source

database (e.g., PostgreSQL). This model captures performance patterns based on the

source system’s query execution behavior.

2. Apply BM on Target Data: The bottom model is then used to generate predictions

on a small subset (x%, in the range of 1%–10%) of queries from the target database

(e.g., MySQL). These predictions represent how the source model interprets target

queries and act as cross-domain signals.

3. Train Top Model (TM): A top model is trained on this same target subset using two

inputs: (1) Original features from the target database (e.g., MySQL EXPLAIN output),
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Figure 3.5: Baseline Model Structure

and (2) The predictions from the bottom model as an additional feature. This allows

the top model to learn how to adjust or reinterpret the source model’s outputs to better

align with the target domain.

4. Final Prediction on Target Test Set: Once trained, the top model is used to

predict runtimes on unseen target queries (i.e., the held-out target test set). This

constitutes the final prediction output.

The top model effectively learns how runtime patterns from the source system relate to

those of the target system, enabling improved generalization under limited target data. To

evaluate transfer success, we compare this Stacked Model setup against a Baseline Model

trained solely on the small target subset without cross-domain signals (see Figure 3.5). Su-

perior performance of the Stacked Model indicates successful and efficient knowledge transfer

across databases.
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3.2.2 LLM Generalization Across Databases

Unlike tabular ML models, LLMs generalize across database systems without the need for

stacked adaptation. This is because LLMs operate on high-dimensional embeddings of struc-

tured text that implicitly encode semantic and structural properties of queries. LLMs do not

depend on explicit feature alignment between systems. Instead, their latent space captures

patterns across execution traces, query structures, and performance distributions. As a re-

sult, an LLM fine-tuned on PostgreSQL data can be directly evaluated on MySQL queries,

bypassing the need for retraining or domain-specific transformation.

This design allows us to investigate whether LLMs can serve as flexible, cross-system pre-

dictors of query performance—especially under low-data regimes where traditional methods

require system-specific retraining.

3.3 Evaluation Metrics

To evaluate model performance, we adopt a range of metrics depending on the prediction

task. These metrics are designed to capture both regression-based accuracy and classification-

based interpretability in query cost estimation.

3.3.1 Q-error

Q-error is the primary metric used to evaluate regression-based models such as Classic

ML, QueryFormer, and LLM regression, following prior work [16, 14, 13]. It measures

the multiplicative deviation between the predicted cost and the actual cost, and is defined

as:

Q-error = max

(
P

A
,
A

P

)
(3.1)

where P and A represent the predicted and actual execution costs, respectively. A

perfect prediction yields a Q-error of 1, and lower values indicate better accuracy. This

metric is particularly robust to skewed distributions and outliers, as it treats over- and

under-estimation symmetrically.

3.3.2 Mean Relative Error (MRE)

The Mean Relative Error (MRE) offers a complementary, additive view of prediction

quality. It quantifies the average relative deviation from ground truth, and is defined as:
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MRE =
1

n

n∑
i=1

∣∣∣∣Pi − Ai

Ai

∣∣∣∣ (3.2)

where Pi and Ai are the predicted and actual costs for the i-th query. MRE is more

interpretable than Q-error, as it corresponds to the average percentage error across predic-

tions. It is particularly useful for identifying systematic bias and is less sensitive to extreme

outliers caused by small denominators.

3.3.3 Accuracy and Mean Bucket Difference (MBD)

For classification-based models—such as LLMs trained to predict runtime buckets—we dis-

cretize the target runtimes into 100 equally spaced buckets based on the min-max cost range.

Performance is then evaluated using:

• Accuracy: The fraction of queries whose predicted bucket exactly matches the actual

bucket.

• Mean Bucket Difference (MBD): The average absolute distance between the pre-

dicted and true bucket indices, defined as:

MBD =
1

N

N∑
i=1

|Predicted Bucketi − Actual Bucketi| (3.3)

This classification framework enables us to fairly evaluate LLMs that output class labels

rather than continuous values, and also provides an interpretable way to compare regression

and classification approaches.

3.3.4 Cross-task Metric Estimation

To ensure fair comparisons between regression and classification models:

• For classification models: Regression-specific metrics (Q-error and MRE) are esti-

mated by assigning each predicted bucket its midpoint cost and comparing this to the

actual runtime (labeled as Est.).

• For regression models: Classification-specific metrics (Accuracy and MBD) are

estimated by mapping predicted continuous costs to their corresponding bucket index

(labeled as Est.).
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This unified evaluation strategy ensures consistent metric reporting across heterogeneous

model architectures and reveals trade-offs between numeric precision and categorical classi-

fication.
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CHAPTER 4

Experiment

4.1 Training Infrastructure and Performance

Training Environment. In the Classic ML method, models were trained locally on CPU

(Intel Core i7-10875H, 8 cores, 16 threads). QueryFormer and LLM-based methods were

trained on GPU resources from the MIG40 and SPGPU partitions from University of Michi-

gan’s HPC cluster. MIG40 provides access to NVIDIA A100 80GB GPUs with up to 156

TFLOPS peak performance, while SPGPU features NVIDIA A40 GPUs with 48GB memory

and 74.8 TFLOPS performance. GPU partition selection depended on availability.

Training and Inference Costs. Table 4.1 compares cross-database training and infer-

ence costs for Classic ML, QueryFormer, and LLM (CLA) methods in query cost prediction.

Training costs reflect the time required to train on 80% of 2,200 queries (i.e., 1,760 queries),

while inference costs are reported per query. Classic ML, executed on CPUs, incurs moderate

training times—417.56s for PG to MS and 1397.91s for MS to PG—but exhibits significantly

higher inference latency, particularly for PG to MS (9.18s/query). Despite its simplicity, this

makes Classic ML less suitable for latency-sensitive or real-time applications.

In contrast, QueryFormer demonstrates both efficient training (under 300s) and extremely

low inference cost (0.00059s/query), leveraging GPU acceleration for rapid deployment and

scalability. LLM Classification, while offering potentially higher modeling capacity, requires

substantially more training time (up to 10,108s) and exhibits moderately low inference la-

tency (0.74–2.42s/query). Overall, QueryFormer provides the most favorable trade-off be-

tween training cost and inference efficiency, making it a strong candidate for latency-sensitive

workloads, whereas LLMs may be better suited for tasks emphasizing model performance

over runtime constraints. Note that MS to PG takes longer to train than PG to MS for

Classic ML and LLM due to the increased complexity of the raw query plan format in MS.
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This is particularly evident in the LLM-based method, where the tokenized input for MS

plans is approximately three times longer than that of PG plans.

Table 4.1: Training and test costs (s)

Method Device Databases Bottom Top Train Total Test per query

Classic ML CPU PG to MS 400.97 16.59 417.56 9.18
Classic ML CPU MS to PG 1329.17 68.74 1397.91 1.11
QF GPU PG to MS 198.70 86.61 285.31 0.00059
QF GPU MS to PG 195.68 63.70 259.38 0.00059
LLM (CLA) GPU PG to MS 1302.00 529.00 1331.00 2.42
LLM (CLA) GPU MS to PG 9945.00 163.00 10108.00 0.74

Note: ”Bottom” refers to models trained only on source database data. ”Top” refers to stacked models
that take predictions from the Bottom model (on x% target data) as additional input features, and are
then trained on x% of target database data.

4.2 Same-database Cost Estimation

Experiment Setup. In this section, we evaluate the performance of regression-based meth-

ods and LLM-based classification models in the cost estimation task within the database.

Metrics. For regression methods, we report metrics that include the Q error, the

mean relative error (MRE), the estimated accuracy and the estimated mean bucket dis-

tance (MBD). For LLM classification models, we report the estimated Q error, the estimated

MRE, the accuracy, and the MBD, consistent with the definitions outlined in Section 3.3.

All QueryFormer models are trained 200 epochs, and all LLaMA models are finetuned 30

epochs.

Observations. From Table 4.2, the LLaMA 3-8B CLA model delivers the highest

overall performance, achieving top accuracy on both MS (88.41%) and PG (75.45%), along

with the lowest mean bias distance (0.17 and 0.46, respectively). This indicates strong

predictive precision and stability. Classic ML performs best on low-quantile metrics (q50 of

1.02 on MS, 1.03 on PG; MRE of 0.05 on MS), making it reliable for median-range estimates

but less robust under long-tail queries, particularly on PG. QueryFormer excels in tail

stability with the lowest q99 and qmax on PG (1.19 and 1.32), but its overall accuracy and

bias metrics lag behind LLaMA-based models.

Selection of LLM-Based Method. When comparing the regression (REG) and clas-

sification (CLA) variants of LLaMA, the CLA models significantly outperform their REG

counterparts in both accuracy and stability. For instance, LLaMA 3-8B CLA achieves 88.41%
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Table 4.2: Same-DB Cost Estimation Performance

Model DB q50 q90 q99 qmax MRE Accuracy (%) Avg Dist

AutoGluon MS 1.02 1.13 1.22 1.34 0.05 76.82 0.41
QueryFormer MS 1.08 1.12 1.21 1.60 0.08 41.82 1.09
LLaMA 3-8B REG MS 1.28 1.77 2.75 8.59 0.29 25.68 4.48
LLaMA 3-3B REG MS 1.11 1.45 1.76 1.87 0.14 39.70 3.08
LLaMA 3-8B CLA MS 1.10 2.80 3.17 3.23 0.24 88.41 0.17
LLaMA 3-3B CLA MS 1.10 2.80 3.17 3.23 0.24 87.27 0.18

AutoGluon PG 1.03 2.14 2.52 2.67 0.15 46.14 3.68
QueryFormer PG 1.05 1.12 1.19 1.32 0.06 37.58 1.65
LLaMA 3-8B REG PG 1.24 1.68 6.06 12.76 0.31 14.09 5.41
LLaMA 3-3B REG PG 1.16 1.28 1.38 4.30 0.17 10.91 3.66
LLaMA 3-8B CLA PG 1.10 1.72 2.86 2.88 0.14 75.45 0.46
LLaMA 3-3B CLA PG 1.12 1.72 2.86 2.88 0.15 73.86 0.52

accuracy on MS compared to only 25.68% by the REG version. Similarly, on PG, CLA im-

proves accuracy by over 60 percentage points while reducing MBD by a factor of ten.

Based on this evaluation, we select LLaMA 3-8B CLA as the final large language model

for cost estimation tasks. It not only outperforms other models across the majority of evalua-

tion metrics, but also offers a strong balance between accuracy, robustness, and low bias. Its

classification-based design mitigates extreme prediction errors, making it particularly suit-

able for integration into cost-sensitive applications such as query optimization and resource

planning in DBMSs.

4.3 Cross-database Cost Estimation

Experiment Setup. In this section, we evaluate the transferability of our models across

heterogeneous database systems. Our focus is on transferring between PostgreSQL and

MySQL, though future work should consider a broader range of database systems to evaluate

generalizability. For all three methods, we begin by training a Baseline Model using only

a small fraction of data from the target database (see Figure 3.5 for the model setup).

For both Classic ML and QueryFormer (QF), we then train a Stacked Model (illustrated

in Figure 3.4), which integrates learned knowledge from the source database along with a

limited amount of target database data. In contrast, as detailed in Section 3.2.2, the LLM-

based method does not require stacking. Instead, we directly continue fine-tuning the model

initially trained on the source database using target database data.
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Metrics. We use the same metrics as the same-database cost estimation. All Query-

Former bottom and top models are trained 200 epochs. All LLaMA models are first finetuned

30 epochs on source database, and then finetuned for 100 epochs on target database.

Result Organization. The results are organized into six groups based on the proportion

of data from the target database used for training (1%, 3%, 5%, 7%, 9%, 10%). Within each

table corresponding to a fixed proportion, we first report the performance of the baseline

method across all three modeling approaches, followed by the performance of the stacked

method. For each data proportion, we present results from PostgreSQL to MySQL transfer

first, followed by MySQL to PostgreSQL.

LLM Model Selection. For LLM-based methods, we chose to focus on the LLaMA

3–8B classification model due to its superior performance compared to other variants of

LLM, as demonstrated in Section 4.2.

4.3.1 1% Target Database Data

Table 4.3: Cross-DB Prediction (PostgreSQL to MySQL, with 1% MySQL Data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.29 3.28 inf inf 0.54 29.55 4.91
QF B 1.60 10.47 41.76 44.07 0.51 23.94 8.97
LLM B 1.35 11.99 34.72 37.95 2.65 49.55 11.55

Classic ML S 1.27 3.49 inf inf 0.53 25.00 4.94
QF S 1.43 7.15 39.06 41.17 0.65 25.68 7.44
LLM S 1.35 6.73 34.58 37.95 2.40 54.09 10.39

Note: Q-errors reports inf when prediction is very close to zero.

Table 4.3 Observations (PostgreSQL to MySQL). In this direction, comparing

across methods, although LLM achieves the highest Estimated Accuracy (49.55% for B and

54.09% for S), it also suffers from the worst MRE (2.65 for B and 2.40 for S) and largest Est.

MBD, indicating highly dispersed and less reliable predictions. Classic ML performs best

on low quantiles such as q50 and q90, but its q99 and qmax are inf, likely due to close-to-zero

underpredictions inflating ratios. Comparing Baseline vs. Stacked, QF demonstrates the

most notable improvement with a substantial reduction in q90 and MRE and an increase in

Estimated Accuracy from 23.94% to 25.68%. In contrast, stacking leads to only marginal

improvement for LLM and slightly reduces performance for Classic ML.

Table 4.4 Observations (MySQL to PostgreSQL). In this reverse direction, LLM

again delivers the highest Estimated Accuracy (34.55% for B and 34.77% for S), but at the
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Table 4.4: Cross-DB Prediction (MySQL to PostgreSQL, with 1% of PostgreSQL Data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.49 3.66 4.45 4.56 0.40 1.14 12.62
QF B 1.31 6.98 19.10 20.45 1.01 24.02 7.87
LLM B 1.16 3.87 31.27 31.45 1.92 34.55 10.06

Classic ML S 3.48 7.18 10.36 11.13 2.81 5.45 29.40
QF S 1.26 7.75 34.58 35.55 0.35 29.09 7.03
LLM S 1.16 4.98 10.90 11.54 1.28 34.77 9.47

cost of high MRE (1.92 for B and 1.28 for S) and Est. MBD. Classic ML-B achieves the

best q50 and q90 values but struggles with high variability in q99 and qmax in the stacked

version, where performance degrades significantly (MRE = 2.81, Est. Accuracy = 5.45%).

QF, however, benefits consistently from stacking, showing a drop in MRE from 1.01 to 0.35

and a boost in Estimated Accuracy from 24.02% to 29.09%, suggesting improved robustness.

Main Takeaways (1%). LLM consistently yields the highest accuracy across Baseline

and Stacked model, while MRE of Classic ML and QF outperform that of LLM. Cross-

Database Knowledge Transfer While Stacked Model improved LLM performance by a

moderate amount (particularly in reducing high q-error quantiles for MS-to-PG transfer), it

leads to unstable and less consistent improvements for Classic ML and QF.

4.3.2 3% Target Database Data

Table 4.5: Cross-DB Prediction (PostgreSQL to MySQL, with 3% of MySQL Data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.11 1.67 2.07 2.27 0.25 36.93 2.49
QF B 1.17 1.83 10.21 11.13 0.24 35.23 3.32
LLM B 1.22 3.18 7.80 8.06 0.47 69.55 1.42

Classic ML S 1.08 1.56 4.23 7.57 0.19 40.45 2.08
QF S 1.28 3.43 15.88 18.82 0.51 29.47 5.02
LLM S 1.22 2.81 3.23 9.57 0.39 71.82 1.06

Table 4.5 Observations (PostgreSQL to MySQL). At the 3% level, LLM maintains

its lead in Estimated Accuracy (69.55% for B and 71.82% for S) and now achieves the lowest

Est. MBD, suggesting more reliable average predictions. However, its high q99 and qmax

values indicate lingering tail issues. Classic ML continues to excel on q50 and q90 with
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modest stacking gains. In contrast, QF’s performance deteriorates, especially in the stacked

setting, with pronounced spikes in upper quantiles and overall variability.

Table 4.6: Cross-DB Prediction (MySQL to PostgreSQL, with 3% of PostgreSQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.16 2.39 2.56 3.10 0.22 21.82 8.48
QF B 1.08 1.18 1.97 2.53 0.09 47.57 1.25
LLM B 1.15 1.80 7.48 7.52 0.53 60.23 1.80

Classic ML S 2.19 6.63 9.37 9.43 2.10 10.91 25.78
QF S 1.16 3.06 15.93 16.43 0.48 33.41 5.08
LLM S 1.15 1.80 3.32 3.34 0.27 60.23 1.31

Table 4.6 Observations (MySQL to PostgreSQL). In the reverse direction, LLM

sustains the highest accuracy (60.23% for both B and S) and remains strong in MBD. Classic

ML performs reliably on lower quantiles, but its stacked variant shows major instability

(MRE = 2.10, MBD = 25.78). QF again demonstrates strong baseline precision (MRE =

0.09) but suffers from substantial error inflation in the stacked model.

Main Takeaways (3%). LLM maintains its lead in accuracy and now shows improved

MBD, while Classic ML dominates low q-error metrics and both Classic ML and QF obtain

better MRE across Baseline and Stacked model. Cross-Database Knowledge Transfer:

While stacking provides moderate gains for LLMs, it leads to unstable and less consistent

improvements for Classic ML and QF, consistent with the findings at 1%

4.3.3 5% Target Database Data

Table 4.7: Cross-DB Prediction (PostgreSQL to MySQL, with 5% of MySQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.03 1.13 1.40 1.49 0.05 68.18 0.54
QF B 1.23 2.30 23.59 25.06 0.33 26.89 5.04
LLM B 1.10 2.81 3.22 3.24 0.33 80.00 0.44

Classic ML S 1.07 1.42 1.54 3.00 0.10 38.30 0.95
QF S 1.20 1.76 17.37 18.94 0.27 32.35 3.26
LLM S 1.16 2.81 3.22 3.24 0.34 75.68 0.47

Table 4.7 Observations (PostgreSQL to MySQL). LLM continues its trend of high

Estimated Accuracy (80.00% for B) and lowest MBD, reinforcing its reliability across splits.
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Classic ML remains strong on lower quantiles but shows increased tail errors in the stacked

version. Notably, QF—despite severe tail errors in its Baseline model (qmax = 25.06)—sees

modest improvement from stacking, with reduced MRE and MBD.

Table 4.8: Cross-DB Prediction (MySQL to PostgreSQL, with 5% of PostgreSQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.14 2.21 2.67 3.29 0.21 28.18 5.25
QF B 1.06 1.31 24.81 26.53 0.86 31.65 1.94
LLM B 1.11 1.80 7.48 7.52 0.51 66.59 1.42

Classic ML S 3.01 6.24 8.22 13.71 2.18 10.45 25.94
QF S 1.37 3.09 3.44 3.57 0.43 37.27 4.10
LLM S 1.11 1.80 7.48 7.52 0.51 66.82 1.41

Table 4.8 Observations (MySQL to PostgreSQL). LLM again demonstrates stable

performance, while Classic ML’s stacked variant continues to degrade sharply in tail metrics.

A key shift here is QF’s clear improvement from stacking: dramatic reductions in q99 and qmax

and a sizable boost in Estimated Accuracy to 37.27%, indicating more robust generalization

in this direction at 5

Main Takeaways (5%). Consistent to findings from previous proportions, LLM main-

tains its lead in accuracy and now shows improved MBD, while Classic ML dominates low

q-error metrics and both Classic ML and QF obtain better MRE across Baseline and Stacked

model. Cross-Database Knowledge Transfer: At this proportion, stacking yields stable

gains for QF—whereas it had previously offered more consistent improvements for LLM—but

shows less reliable benefits for both Classic ML and LLM.

4.3.4 7% Target Database Data

Table 4.9: Cross-DB Prediction (PostgreSQL to MySQL, with 7% of MySQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.02 1.12 1.32 1.96 0.04 74.20 0.48
QF B 1.19 2.19 21.68 23.03 0.29 31.06 4.92
LLM B 1.15 2.80 3.17 3.23 0.24 82.73 0.23

Classic ML S 1.04 1.17 1.35 2.20 0.07 73.98 0.49
QF S 1.19 1.74 10.56 11.89 0.26 37.05 3.20
LLM S 1.16 2.80 3.17 3.23 0.24 79.77 0.26

25



Table 4.9 Observations (PostgreSQL to MySQL). LLM maintains its lead with

top accuracy (82.73% for B) and minimal MBD, showing excellent stability. Classic ML

continues to perform well on lower quantiles with only slight stacking degradation. QF, while

still suffering from extreme tail errors in its Baseline model, shows moderate improvement

post-stacking—reducing q99 and boosting accuracy to 37.05

Table 4.10: Cross-DB Prediction (MySQL to PostgreSQL, with 7% of PostgreSQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.06 2.09 2.56 4.16 0.14 32.95 3.94
QF B 1.06 1.30 2.20 2.26 0.09 57.88 1.49
LLM B 1.12 1.72 2.86 2.88 0.16 72.05 0.79

Classic ML S 2.77 7.74 9.29 10.09 2.07 0.23 25.95
QF S 1.09 1.33 1.54 1.70 0.12 46.14 1.46
LLM S 1.12 1.72 2.86 2.88 0.16 72.27 0.79

Table 4.10 Observations (MySQL to PostgreSQL). LLM’s accuracy and stability

persist. Classic ML, however, collapses entirely when stacked—accuracy plummets to 0.23%,

and tail metrics spike drastically. QF demonstrates its most balanced performance yet,

significantly reducing MRE and tail errors while retaining strong accuracy, continuing its

trend of stacking gains.

Main Takeaways (7%). Consistent with previous proportions, the LLM approach con-

tinues to lead in both accuracy and Mean Bucket Distance (MBD). However, now both Clas-

sic ML and QF now outperform LLM on low q-error metrics (but similar MRE) across both

Baseline and Stacked models. Cross-Database Knowledge Transfer: Similar to 5%,

stacking yields stable gains for QF, but shows less reliable benefits for both Classic ML and

LLM. Notably, at this higher proportion, stacking significantly degrades performance for the

MS-to-PG transfer when using the Classic ML method.

4.3.5 9% Target Database Data

Table 4.11 Observations (PostgreSQL to MySQL). LLM sustains peak performance,

achieving 86.59% accuracy and the lowest MBD, with consistent behavior across quantiles.

Classic ML, though strong in the Baseline model, deteriorates sharply when stacked—most

notably in accuracy (dropping by over 50 percentage points). QF remains steady but strug-

gles with extreme outliers, showing only modest gains from stacking.

Table 4.12 Observations (MySQL to PostgreSQL). LLM continues to lead with

high accuracy and stable metrics, unaffected by stacking. Classic ML collapses in the stacked
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Table 4.11: Cross-DB Prediction (PostgreSQL to MySQL, with 9% of MySQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.02 1.10 1.36 1.47 0.04 73.30 0.46
QF B 1.10 1.47 3.89 5.24 0.19 41.52 2.51
LLM B 1.10 2.80 3.17 3.23 0.24 86.59 0.19

Classic ML S 1.19 1.43 2.75 2.82 0.27 19.77 2.65
QF S 1.17 2.01 3.53 5.38 0.34 34.62 2.90
LLM S 1.10 2.80 3.17 3.23 0.24 85.23 0.21

Table 4.12: Cross-DB Prediction (MySQL to PostgreSQL, with 9% of PostgreSQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.04 2.10 2.32 4.06 0.13 41.59 3.75
QF B 1.11 1.49 4.36 4.72 0.23 44.17 2.74
LLM B 1.11 1.72 2.68 2.88 0.15 73.64 0.53

Classic ML S 2.97 7.46 11.11 11.97 2.55 0.00 27.58
QF S 1.08 1.24 1.33 1.45 0.09 58.79 1.28
LLM S 1.11 1.72 2.86 2.88 0.15 73.41 0.54

mode with near-zero accuracy and spiked tail errors. QF, by contrast, shows its strongest

stacking benefit yet—substantially lowering tail risks and achieving nearly 59% accuracy.

Main Takeaways (9%). The LLM approach continues to lead in both accuracy and

Mean Bucket Distance (MBD), though Classic ML shows signs of closing the gap. As ob-

served at the 7% level, both Classic ML and QF outperform LLM on low q-error metrics

across both Baseline and Stacked models. Cross-Database Knowledge Transfer: Con-

sistent with the 5% and 7% setting, stacking yields stable improvements for QF. However,

similar to findings from 7%, stacking does not enhance the performance of the LLM method

and even degrades the performance of Classic ML.

4.3.6 10% Target Database Data

Table 4.13 Observations (PostgreSQL to MySQL). LLM continues to excel with top

accuracy (up to 86.82%) and the lowest MBD, reinforcing its stability with more target

data. Classic ML’s strong baseline performance again breaks down when stacked, showing

significant drops in accuracy and increases in error. QF benefits modestly from stacking,

improving across all metrics but still trailing LLM.

Table 4.14 Observations (MySQL to PostgreSQL). LLM remains highly consis-
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Table 4.13: Cross-DB Prediction (PostgreSQL to MySQL, with 10% of MySQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.03 1.14 1.27 1.46 0.05 71.25 0.56
QF B 1.15 1.61 3.32 3.52 0.20 40.23 3.65
LLM B 1.15 2.80 3.17 3.23 0.24 84.32 0.22

Classic ML S 1.06 1.41 1.64 1.76 0.13 51.25 0.76
QF S 1.11 1.36 2.00 3.38 0.16 43.71 1.50
LLM S 1.15 2.80 3.17 3.23 0.24 86.82 0.18

Table 4.14: Cross-DB Prediction (MySQL to PostgreSQL, with 10% of PostgreSQL data)

Method Model q 50 q 90 q 99 q max MRE Accuracy MBD

Classic ML B 1.06 2.16 2.56 3.95 0.14 37.27 3.83
QF B 1.11 1.26 1.42 1.44 0.12 43.04 2.12
LLM B 1.13 1.72 2.86 2.88 0.16 72.95 0.58

Classic ML S 2.79 6.65 8.29 8.41 2.22 0.00 26.99
QF S 1.06 1.15 1.23 1.30 0.07 57.43 0.88
LLM S 1.13 1.72 2.86 2.88 0.16 71.59 0.60

tent with strong accuracy and low dispersion. QF shows its best stacked performance to

date—achieving minimal MRE and the lowest tail errors across all models. Classic ML’s

stacked version collapses once more, with 0% accuracy and a surge in MBD.

Main Takeaways (10%). As noted previously, the LLM approach continues to lead in

both accuracy and Mean Bucket Distance (MBD), with Classic ML steadily narrowing the

gap. Both Classic ML and QueryFormer (QF) outperform LLM on low q-error metrics across

both Baseline and Stacked models. Cross-Database Knowledge Transfer: Consistent

with the 5%, 7%, and 9% settings, stacking provides stable improvements for QF. However,

similar to the 7% and 9% case, stacking fails to improve the performance of the LLM method

and even degrades the performance of Classic ML.
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CHAPTER 5

Conclusion

1. Cross-Database Knowledge Transfer. The effectiveness of stacking varies notably

across methods:

Classic ML. Classic ML models (e.g., XGBoost, Random Forest) rely heavily on the

statistical distributions of input features. However, different databases often produce diver-

gent query plan structures, cost estimations, and operator usage patterns. Since Classic ML

constructs query run times by predicting at the operator level and summing the results, it

struggles to generalize across these domain shifts. Additionally, Classic ML depends on fixed,

manually engineered features, which limits its ability to capture the structural complexity of

query plans—unlike QueryFormer’s tree-aware architecture or LLMs’ token-level semantic

modeling—resulting in weaker cross-database transferability.

QueryFormer. QF demonstrates strong cross-database transfer performance, as it is

explicitly designed to encode tree-structured query plans using Transformer-based architec-

tures. This enables it to capture both local operator characteristics and global structural

context, enhancing robustness across DBMSs. Stacking consistently improves QF perfor-

mance, especially at higher proportions of target database data. This suggests that a suf-

ficient quantity of target data is needed to mitigate source bias and support meaningful

knowledge transfer.

LLM Finetune. Despite achieving the highest accuracies and lowest mean bucket dis-

tances, LLMs show limited improvement from stacking. This is likely due to their pre-

training on large, diverse corpora, which provides strong general-purpose representations.

When fine-tuned on even a small fraction of target database data, LLMs can quickly adapt

to system-specific patterns, reducing the added value of transferring knowledge from the

source. As a result, the impact of stacking becomes negligible, with most performance gains

coming directly from target-domain fine-tuning.

2. Model Performance Across Metrics. While transferability varies across methods,

the overall performance trends also differ significantly depending on the evaluation metric.
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The LLM-based approach consistently achieves the highest accuracy and lowest Mean Bucket

Distance (MBD) across both baseline and stacked settings. This reflects the model’s strong

global understanding of query semantics and cost patterns, likely enabled by its pre-training

on large, diverse corpora and adaptability during fine-tuning. In contrast, Classic ML per-

forms particularly well on low q-error quantiles (e.g., q50), especially at higher proportions

of target data. This strength stems from its operator-level granularity, which allows it to

make precise local predictions. However, it often struggles with higher quantiles and overall

accuracy due to its limited global view and sensitivity to distribution shifts between source

and target databases. QueryFormer (QF) strikes a balance across metrics. While it may not

match the LLM in raw accuracy or MBD, it shows consistent performance across all q-error

metrics, including both low and high quantiles. This stability is attributed to its tree-aware

design, which effectively captures both local and global aspects of query plans. Furthermore,

its performance is notably enhanced by stacking, which allows it to integrate transferable

knowledge from the source while adapting to the target database.

3. Trade-offs in Efficiency versus Performance Based on empirical training and

inference cost data (Table 4.1), QueryFormer (QF) emerges as the most efficient method

overall, achieving the fastest training times (259.38–285.31 seconds) and near-instantaneous

inference latency (0.00059s per query) on GPU. In contrast, LLM (CLA) requires substan-

tially more training time, especially for the MS to PG transfer task (over 10,000 seconds),

and shows moderate inference latency (0.74–2.42s), making it the most computationally de-

manding model. Classic ML, trained on CPU, falls between these two extremes—its training

times range from 417.56s to 1397.91s, and inference takes 1.11–9.18s per query depending on

the transfer direction. While Classic ML could benefit from GPU acceleration in practice,

its reliance on traditional ML pipelines makes it less optimized for modern hardware paral-

lelism. Overall, QF achieves the best trade-off between speed and predictive improvement

when stacked, LLM excels in accuracy but at high resource cost, and Classic ML remains a

viable baseline with moderate efficiency and simplicity.

4. Implementation Complexity and Generalization. From an engineering stand-

point, Classic ML and LLM are relatively straightforward to implement and adapt to new

databases or benchmarks, largely due to their reliance on general tabular data structures

and input features. QF, on the other hand, poses significantly more implementation chal-

lenges—it requires database-specific query plan parsing, operator embedding alignment, and

careful design of attention architectures suited for varying schemas. This complexity can

hinder quick experimentation or transfer to new DBMS environments without tailored ad-
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justments.

5. Overall Recommendations and Future Directions. Our results suggest that the

choice of method and transfer strategy should be guided by both the evaluation goals (e.g.,

accuracy vs. low q-error performance) and the availability of target database data. LLM

fine-tuning is a strong default choice when even a small amount of target data is available,

as it provides high accuracy and generalization with minimal need for additional transfer

mechanisms like stacking. However, due to diminishing returns from knowledge transfer, its

performance gains plateau quickly with increased stacking complexity. In contrast, Query-

Former is a compelling option when both source and target databases are available and

moderate target data proportions can be used for transfer. Its structure-aware design and

responsiveness to stacking make it well-suited for robust performance across a range of met-

rics, including consistent low and high q-error bounds. Classic ML, while less flexible and

more sensitive to domain shifts, still offers strong operator-level precision and benefits from

stacking when sufficient target data is present—particularly in tasks where low q-error quan-

tiles are critical.

For future work, we recommend investigating hybrid models that combine the structural

awareness of QueryFormer with the language-driven generalization capabilities of LLMs.

Additionally, incorporating unsupervised or semi-supervised pretraining directly on target

DBMS logs could enhance adaptability without requiring labeled data. Finally, better un-

derstanding when and how to apply stacking—especially for large models—remains an open

direction for improving cross-database transfer in low-resource scenarios.
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