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Few meteorites are perfectly pristine 
samples.

• Meteorites record 
significant geophysical 
processing on their 
parent bodies 

✦ Melting and Differentiation 
of Irons and Achondrites 

✦ Metamorphism in 
Chondritic meteorites 

• This alters the physical 
and chemistry 
properties of the bulk 
meteorite and their 
individual components. 



Radiogenic heating is believed to be largely 
responsible for planetesimal processing.

• Decay of short-lived 
radionuclides provided energy 
to heat early Solar System 
bodies 
• 26Al - t1/2 = 0.7 Ma 

• Favored as the most  important 
(or only) heat source

26Al       26Mg +Heat
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Models for thermal evolution do fairly well in 
matching data.

• 8 H chondrites with 
chronological constraints on 
cooling 

• Harrison and Grimm (2010) 
model matched 7 meteorites 

• H-chondrite parent body 
constrained to be Rp~100 km 
and form 2.2 Myr into Solar 
System evolution



Planetesimal collisions were most frequent 
and energetic during planetary accretion.
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All planetesimals experience collisions 
throughout the first 100 Myr.
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Impacts create localized effects, affecting a 
small fraction of the body.
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• iSALE hydrocode 
simulations of impact 

• 100 km radius dunite 
target 

• 10 km radius dunite 
impactor @ 4 km/s 

• Equivalent energy of the 
most energetic impact 
100% of bodies of this 
size would experience.
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Heat from an impact can persist for same 
time as radiogenic heat.

• Solve 2D heat 
equation 

• No radiogenic heat 

• Evolution of post-
impact temperature 
anomaly 
• 10 Myrs, Tpeak > 1100K 

• 20 Myrs, Tpeak > 900K 

• 50 Myrs, Tpeak > 800K 

• 100 Myrs, Tpeak > 600K
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Planetesimals were not cold, dense objects 
in the early Solar System.
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Impact outcomes strongly depend on state of 
the target body.
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Impacts may explain anomalous meteorites, 
provided constraints are met.
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• The anomalous 
meteorite, Ste. 
Marguerite, can be 
explained by impact 
into radiogenically 
heated body 

✦ Must occur between 
2-5 Myr after Solar 
System formation 

✦ Must be energetic 
enough to liberate 
materials from 
depth of ~20 km.



Evidence for/against other impacts exists in 
meteorite record.

• Thermal alteration of the Iron 
IAB/Winonaite meteorites (Schulz 
et al. 2009) 
✦ Heating to 1000-1100 K at t~14 Myr  

• Vaporization and condensation of 
CB chondrite metal (Campbell et al. 
2001, Krot et al 2005)  
✦ Metal vaporization requires lots of 

energy at ~5 Myr. 

• Preservation of CV chondrites in 
crust of large planetesimal over 
~50 Myr (Elkins-Tanton et al. 2011) 
✦ Must avoid impacts almost entirely, 

but such bodies tend to experience 
most impacts, and most energetic 
ones.

Krot et al. (2005)

Elkins-Tanton 
et al (2011)



Conclusions/Summary

• Planetesimal collisions were most frequent and energetic during 
the first 10-100 Myr of Solar System history. 

• Impacts into warm/uncompacted bodies had greater collateral effects than 
in previous models.  Important for debris disks? 

• Meteorites record a number of energetic (large bodies, high 
velocity) impacts 3-15 Myr into Solar System history. 

• Preservation of pristine materials limits number and scale of 
impacts. 

• Impacts <1-3 km/s during “compaction phase” of chondrites.  

• Preservation of “pristine crust” means some bodies avoided significant 
collisions outright.
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