Planetesimal and planet migration and growth in turbulent discs

Richard Nelson Queen Mary, University of London

Collaborators: Oliver Gressel (NBI), Neal Turner (JPL), Clement Baruteau (Toulouse), Sebastien Fromang (CEA, Paris)

Key issues

- Planetesimals: how does MRI turbulence and the dead zone affect the dynamical and collisional evolution?
- Low mass planets: how does MRI turbulence and the dead zone affect migration?

Question

• Does a coherent picture emerge that supports current ideas about planet formation?

Turbulent density fluctuations generated in the disc by the MRI create a time-varying stochastic gravitational field

- i) Turbulence will excite the random velocities of planetesimals
- Implications for the collisional growth/destruction and runaway growth during planet formation
- ii) Turbulence will induce radial diffusion
- Implications for the spreading of volatiles across the snow line and radial mixing of asteroid taxonomic types

Nelson & Papaloizou (2004) Nelson (2005) Ida, Guillot & Morbidelli (2008) Nelson & Gressel (2010) Gressel, Nelson & Turner (2011, 2012)

Shearing box simulations with and without dead zones

Non-ideal MHD shearing box simulations performed using NIRVANA-III (Ziegler 2008)

Initial B-field configuration: net B₇

$$H_2 + h\nu \rightarrow H_2^+ + e^-$$

$$H_2^+ + e^- \rightarrow H_2$$

$$H_2^+ + Mg \rightarrow H_2 + Mg^+$$

$$Mg^+ + e^- \rightarrow Mg + h\nu$$

Equilibrium ionisation chemistry including gas-grain interactions (Ilgner & Nelson 2006)

Ionisation sources:

X-rays (Igea & Glassgold 1999)

Cosmic rays + radionuclei (Umebayashi & Nakano 1981)
Gas phase X(e⁻) ———— Ohmic resistivity η

25 planetesimals evolved R=5 AU, H/R=0.05, T=108 K, Σ =135 g/cm³ (Gressel, Nelson & Turner 2011,2012)

Turner & Drake (2009) fits to X-ray ionisation rates from Igea & Glassgold (1999)

Overview of models

- (1) Fully active model.
- (2) Dead zone models with varying X-ray ionisation (Gressel, Nelson & Turner 2011):

	Domain [H]	Resolution	XR	SR	CR
A 1	$4 \times 16, \pm 4.0$	$128 \times 256 \times 256$	_	_	_
D1	$3 \times 12, \pm 5.5$	$72 \times 144 \times 264$	0	×10	0
D2	$3 \times 12, \pm 5.5$	$72 \times 144 \times 264$	×20	×10	0
B1	$4 \times 16 \times 2$	$128 \times 512 \times 64$	_	_	_

(3) Dead zone models with varying disc mass: (Gressel, Nelson & Turner 2012)

	$ ho_{ m mid}$	$\sum \left[\frac{g}{cm^2}\right]$	domain [H]	resolution
D1.1	1	134.6	3×12, ±5.500	72×144×264
D1.2	2	269.2	3×12 , ± 5.667	$72\times144\times272$
D1.4	4	538.4	3×12 , ± 5.833	$72\times144\times280$

R_m versus height for D1.1, 1.2, 1.4

(4) Dead zone models with varying net vertical magnetic field strength: Models based mainly on model D1.1 with 2.7, 5.4, 10.7, 21.5, 43 mG

Fully active model versus dead zone models

Random velocities in fully active disc (A1) grow \sim 20 x faster than in nominal dead zone model (D1)

Varying the disc mass

$$L_{
m u} = rac{v_{
m A}^2}{\Omega \eta}$$
 Dead zone boundary occurs where L_u=1

Dependence on magnetic field strength

$$L_{\rm u} = \frac{v_{\rm A}^2}{\Omega \eta}$$

Dead zone boundary occurs where $L_u=1$

Dependence on magnetic field strength

$$L_{\rm u} = \frac{v_{\rm A}^2}{\Omega \eta}$$

Dead zone boundary occurs where $L_u=1$

Equilibrium velocity dispersion of planetesimals

excitation time-scale

$$au_{
m grow} = rac{e}{de/dt} = rac{2e^2v_{
m K}^2}{C_{\sigma}(v_r)^2}$$

where
$$v_{\rm disp}(t) = C_{\sigma}(v_r) \sqrt{t}$$

collisional damping

damping time, inelastic coll.

$$au_{
m coll} = rac{8R_{
m p}
ho_{
m p}}{3\Sigma_{
m p}\Omega_{
m k}} \left(rac{1}{1-C_{
m R}}
ight)$$
 (cgs)

equilibrium dispersion

$$v_{
m disp}^{
m eq} = \sqrt{rac{4R_{
m p}
ho_{
m p}C_\sigma^2(e)h^2v_k^2}{10^9\Sigma_{
m p}\Omega_k}}$$
 (cgs)

assuming restitution $C_R = 0$

gas-drag damping

damping time-scale, gas Ida, Guillot & Morbidelli (2008)

$$au_{
m drag} = rac{2m_{
m p}v_{
m disp}}{C_D\pi R_{
m p}^2\varrho v_{
m disp}^2}$$

equilibrium dispersion

$$v_{\rm disp}^{\rm eq} = \left(\frac{4\varrho_{\rm p}R_{\rm p}C_{\sigma}(v_r)^2}{3C_D\varrho}\right)^{1/3}$$

Collisional disruption thresholds

- varying disc mass, constant magnetic field strength

Catastrophic disruption velocities from Leinhardt & Stewart (2009)

Constant disc mass, varying magnetic field strength

Conclusion: it is *just* possible to construct a disc model with required mass accretion rate and which allows even weak planetesimals to avoid catastrophic disruption

Implications

- Building icy planetesimals in an incremental growth scenario possible in either a disc with 4 x MMSN and dm/dt $\sim 10^{-8}$ M_{sun} yr⁻¹ or in a MMSN disc with dm/dt $\sim 10^{-9}$ M_{sun} yr⁻¹
- Prompt formation of 10 km planetesimals leads to delayed runaway growth as $v_{\text{dispersion}} \sim 10~m~s^{\text{-1}}$ in $< 10^5~\text{years}$
- Prompt formation of 100 km planetesimals leads to immediate runaway growth of these bodies as $v_{\text{dispersion}} < v_{\text{esc}}$
- Migrating small planetesimals into inner disc regions, as in some *in situ* planet formation scenarios, leads to their rapid collisional destruction

Low mass planets in turbulent discs

Stochastic migration

Stochastic migration in a dead zone unlikely to influence or solve type I migration problem

Nelson & Papaloizou (2004)
Papaloizou, Nelson & Snellgrove (2004)
Laughlin, Steinacker & Adams (2004)
Johnson, Goodman & Menou (2006)
Adams & Bloch (2009)

Corotation torques

Corotation torques are driven by vortensity & entropy gradients

Sustaining corotation torques

→ require viscous & thermal
diffusion times across corotation
region ~ horseshoe orbit time
(Paardekooper & Mellema 2007;
Baruteau & Masset 2008;

Pardekooper & Papaloizou 2008)

Note that viscous stresses are required to unsaturate both entropy- and vortensity-related corotation torques

Key questions:

Can fully developed MRI turbulence prevent saturation of corotation torque for low mass planets?

(Baruteau & Lin 2010 Baruteau, Fromang, Nelson, Masset 2011)

Can the Reynolds stress in a dead zone prevent saturation of the corotation torque?
(Nelson, Baruteau, Fromang 2014)

The transition between the fully active region and the dead zone at ~ 0.3 AU may provide a planet trap

Corotation torques in dead zones

- Global simulations of discs with dead zones performed using NIRVANA (Nelson, Baruteau & Fromang 2014)
- Planets with masses m_p = 5 M_{earth} orbiting at 3 AU
- H/R=0.05
- Disc mass varied between $0.1 1 \times MMSN$ to vary dead zone depth
- $\Sigma \sim \Sigma_0 R^2$ \rightarrow strong and positive corotation torque

Preventing saturation (prediction!):

 $m_p=5$ M_{earth} and H/R=0.05 \rightarrow require $\alpha \sim 10^{-3}$

MMSN

Maxwell stress →

1/4 MMSN Maxwell stress → R (AU) Reynolds stress -> 1

1/10 MMSN Maxwell stress →

½ MMSN model Midplane $\alpha \sim 8x10^{-5}$ Volume averaged $\alpha \sim 5x10^{-4}$ Model evolution corresponds to $10^{-4} \le \alpha \le 5x10^{-4}$

MMSN model

Midplane $\alpha \sim 3x10^{-5}$ Volume averaged $\alpha \sim 8x10^{-5}$ Model evolution corresponds to $10^{-5} \le \alpha \le 10^{-4}$

Volume averaged $\alpha \sim 1.5 \times 10^{-3}$ Model evolution corresponds to $10^{-4} \le \alpha \le 5 \times 10^{-4}$

Conclusion: cannot prevent saturation of corotation torque for low mass planets in dead zones unless at the end of disc life time → require additional stresses to prevent catastrophic migration

Implications for planet formation

Planetesimals

An incremental planetesimal growth model cannot operate in a disc with fully developed turbulence.

It is only just possible to construct such a model in a ~ MMSN disc with a dead zone.

Prompt formation of 1 - 10 km planetesimals leads to delayed runaway growth, but 100 km planetesimals may undergo immediate runaway growth.

In situ formation models of planets based on rapid inward migration of small planetesimals cannot operate in an inner disc region with fully developed turbulence.

Low mass planets in dead zones

Corotation torques are unsaturated by fully developed MRI turbulence – may operate in disc inner regions

Corotation torques saturate in dead zones of discs with ≥ MMSN masses

→ rapid inward migration of super-earths and Neptune-mass bodies

Conclusions

Recent models of disc evolution including Hall effect and ambipolar diffusion (Lesur et al 2014; Bai 2014) may allow incremental and prompt planetesimal formation models to operate – and may allow corotation torques of low mass planets to remain unsaturated.

Caveat: These models predict that discs with be essentially laminar between radii $0.2 \le R_{disc} \le 30$ AU. How to maintain population of small grains in disc atmospheres required by SEDs (Dullemond & Dominik 2005)