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Effects of  the Cluster 
Environment on Protoplanetary 

Disks 
  Truncation/disruption due to dynamical 

interactions   

  Photoevaporation due to FUV/EUV/X-ray radiation 
fields (from OB stars) 

Most stars are born in groups, rather than in isolation  
(Lada & Lada 2003), so external effects can be important 



Effects of  the Cluster 
Environment on Protoplanetary 

Disks 
  Truncation/disruption due to dynamical 

interactions   

  Photoevaporation due to FUV/EUV/X-ray radiation 
fields (from OB stars) 

Most stars are born in groups, rather than in isolation  
(Lada & Lada 2003), so external effects can be important 

How does this affect disk dispersal? 

Is planet formation compromised? 



Outline 
  Develop photoevaporation + viscous evolution 

model due to external FUV fields 

  Combine with existing internal photoevaporation 
model (Owen et al. 2010, 2011, 2012) 

  Compare model predictions with observed proplyd 
masses/radii in the Orion Nebula Cluster (ONC) 

External fields = fields from nearby stars 
Internal fields = fields from the host star 



Review of  disk structure & evolution 

  Time evolution for the surface density Σ obeys the 
diffusion equation 

Specify the disk viscosity (ν) by a dimensionless 
parameter α (Shakura & Sunyaev 1973) 
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Viscous disk 
evolution 

Mass 
accretion 
onto star   Mass is transported inward 

through the disk and accreted 
onto the host star 

  Surface density decreases 
and disk spreads with time 

  Disk disperses, but on much 
longer timescales than 
observed disk lifetimes of   
~ a few Myr 

t = 0 

Need additional sources of  
mass loss 
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Specify dimensionless external FUV field flux G0   

G0   temperature  evaporation radius rg  

Ṁ(r) = Ar3/2g r1/2e�rg/2r
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Analytic approx for total mass loss rate  
(Adams et al. 2004) 

Sink term due 
to evaporation 



Externally-driven photoevaporation 

  Specify dimensionless 
external FUV field flux G0   

  Calculate gas temperature 
as a function of  number 
density and visual 
extinction (distance from 
FUV source) 

  temperature  rg  total 
mass loss rate 

Adams et al. 2004 



Summary of  externally-
driven photoevaporation 

  Incident radiation heats the gas near the disk edge, causes 
mass to flow outward 

  Gas flows outward from disk edge where gravitational 
potential of  the host star is shallow, eventually crosses rg ~ 
100 AU and can escape 

  Disk is eroded from the outside in 



Parameter Space 
Explore different viscosities (α) and FUV flux (G0) to 

constrain disk masses, evaporation rates, and radii 

G0 ~ 300 – 30,000 (local interstellar value  G0 ~ 1) 

α = 10-2, 10-3, 10-4 



With ext. 
radiation 

No ext. 
radiation 

Disk Evolution 

Disk is 
truncated 
and mass 
depleted 



Disk Evolution 

accretion onto star 
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Disk Evolution 

Neptune’s 
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Disk Evolution 

Neptune’s 
semimajor axis 

External FUV fields can efficiently deplete disk masses and 
truncate the radii, especially disks with high viscosity 
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Disk Lifetimes 

α = 10-2 

α = 10-3 

α = 10-4 
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FUV field strength  



What about 
photoevaporation from the 

host star? 

Host star generates FUV/EUV/X-rays – 
We focus on evaporation due to X-rays 



Internal X-Ray vs External FUV 
fields 
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Internal X-Ray vs External FUV 
fields 

•  Outer edge affected 

•  rg ~ 100 AU (lower temps) 

•  Disk is eroded from the 
outside in 

•  Inner edge affected 

•  rg ~ 10 AU (higher temps) 

•  Disk is eroded from the inside 
out 



Internal X-Ray Evaporation 

    Specify mass loss rate 
from X-ray luminosity 

     (LX ~ 1028 – 1031 erg/s) 

FUV 

X-rays 



LX ~ 1031 erg/s 

Internal X-rays + External FUV 

LX ~ 1030 erg/s 



Internal X-rays + External FUV 
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Only highest 
stellar luminosities 
(LX ~ 1031 erg/s) 
can compete with 
external fields 



Application: Proplyds in the Orion 
Nebula Cluster 



Application: Proplyds in the 
Orion Nebula Cluster 

  ~ 1 – 2 Myr old 

  θ1 Ori C, a 40 Msun O star at 
center 

  Cluster radius ~ 2.5 pc 

  28 proplyds with measured mass 
+ radius, 25 additional systems 
with mass upper limits 



Expected fluxes G0 > 1000 

Estimated flux distribution of  observed Proplyds  



Evolutionary Tracks/Isochrones 

Evolutionary tracks (solid curves) 
    (α= 10-4, α= 10-3, α= 10-2)  

α= 10-3 
α= 10-2 

α= 10-4 

Start with (Md, rd) = (0.1 Msun, 30 AU) 



Evolutionary Tracks/Isochrones 

Evolutionary tracks (solid curves) 
    (α= 10-4, α= 10-3, α= 10-2)  

 Isochrones (dashed curves) 
   (t = 0.25, 0.5, 1.0, 1.5, 2.0 Myr) 

α= 10-3 
α= 10-2 

α= 10-4 

Start with (Md, rd) = (0.1 Msun, 30 AU) 



Evolutionary Tracks/Isochrones 

Blue: measured masses 
Green: mass upper limits 

Evolutionary tracks (solid curves) 
    (α= 10-4, α= 10-3, α= 10-2)  

 Isochrones (dashed curves) 
   (t = 0.25, 0.5, 1.0, 1.5, 2.0 Myr) 

ONC proplyd  data from Mann 
& Williams 2010, Vicente & 
Alves 2005 

α= 10-3 
α= 10-2 

α= 10-4 

Start with (Md, rd) = (0.1 Msun, 30 AU) 



Most objects well-characterized by G0 = 3,000 – 30,000, α= 10-2  - 10-3, t < 2Myr 



Summary of  results 

  Viscosity (α) most important parameter in governing disk dispersal 
by external photoevaporation 

  X-rays from host star often less important than FUV radiation from 
external stars 

  Useful to analyze disk evolution by looking at (Mdisk, Rdisk) plane 

  Proplyds in the ONC are consistent with evaporation by external field 
strengths G0 ~ 3,000 – 30,000 and α ~ 10-2 – 10-3 

  External fields could prohibit planet formation due to short disk 
lifetimes, and truncated disks 


