Helium Rain and The State of Water Ice in Giant Planets Predicted with Ab Initio Simulations

Burkhard Militzer

University of California, Berkeley

http://militzer.berkeley.edu

Outline

- **1. Introduction to Simulations**
- 2. Helium rain on Jupiter
- 3. Phase diagram of water ice
- 4. Erosion of icy and rocky materials in cores in giant planets
- 5. Do iron and rocks ever mix in planetary interiors

Supported by NASA and NSF.

NSF

Ab Initio Simulations of Materials at High Pressure

<u>Focus:</u> Characterization of the Interior of Solar and Extrasolar Giant Planets

1) Path integral Monte Carlo for T>5000K

Path integral Monte Carlo for T>5000K Density functional molecular dynamics below

Born-Oppenheimer approx. MD with classical nuclei:

F = m a

Forces derived DFT with electrons in the instantaneous ground state.

What is meant by first-principles simulations?

Schrödinger equation:

$$-\frac{\hbar^2}{2m} \ \vec{\nabla}^2 \ \psi(\vec{r}) + V(\vec{r}) \ \psi(\vec{r}) = E \ \psi(\vec{r})$$

Look for an antisymmetric solution (Pauli exclusion):

$$\Psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) & \cdots & \chi_N(\mathbf{x}_1) \\ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) & \cdots & \chi_N(\mathbf{x}_2) \\ \vdots & \vdots & & \vdots \\ \chi_1(\mathbf{x}_N) & \chi_2(\mathbf{x}_N) & \cdots & \chi_N(\mathbf{x}_N) \end{vmatrix}$$

Density functional theory:

Local density approximation (LDA) Gen. Gradient approximation (GGA) Hybrid functionals Van der Waals functionals Quantum Monte Carlo

Simulation of molecular hydrogen

Methane – molecular orbitals

Quantum Monte Carlo Calculations of MgSiO₃ Perovskite and Post-Perovskite

Y. Lin, R. E. Cohen, S. Stackhouse, K. P. Driver, B. Militzer, L. Shulenburger, J. Kim Phys. Rev. B, in press (2014)

Comparison of molecular and metallic hydrogen

Molecular hydrogen

Metallic hydrogen

Jupiter's Composition

The Size of Jupiter's Core is uncertain

Guillot et al. (Jupiter book, 2002, chap.3)

Juno Mission Iaunched successfully August 2011

My contribution:

- Equation of state calculations for hydrogen-helium mixtures
- Thermodynamics of heavier elements

Mission Timeline:

- Launch August 2011
- Earth flyby gravity assist October 2013
- Jupiter arrival July 2016
- End of mission (deorbit) October 2017

Jupiter's Interior Temperature Profile

Jupiter's Interior Temperature Profile

Interiors of Saturn and Jupiter are more dense

Recalibration of Mass-Radius Relationship of Hot Jupiters

Militzer, Hubbard, Apj (2013)

Galileo Entry Probe found: Helium and Neon depleted in Jupiter's Atmosphere

Can hydrogen and helium become immiscible? Helium rain inside Saturn?

G(P,T)=E+PV-TS Main difficulty is to calculate the mixing entropy!

Neon depletion is consistent with helium depletion in Jupiter

Why grew the giant plants so large while all terrestrial planets stayed small? Because they form beyond the ice line.

Phase Diagram of water ice

Phase Diagram of water ice

Phase Diagram of water ice

Pbcm phase predicted with ab initio simulations by Benoit et al. (1996)

Phonon instability leads to new phase of water ice at 7.6 megabar

Militzer and Wilson, PRL 105 (2010) 195701

2013: Ab Initio Structure Search Methods predict Two New Ice Structures at Megabar Pressure

Name/Symmetry	Author,Year	Pressure (Mhar)	#mol.	
Ice X (Pn-3m)	Polian,1984	0.44	2	
Pbcm	Benoit, 1996	3	4	
Pbca	Militzer, Wilson, 2010	7.7	8	lce X
P3121	Pickard, Needs, 2013	8.1	12	0.6 Mbar
Рсса	Pickard, Needs, 2013	14.4	12	Pbcm 3.0 Mbz
P2 ₁ /c	Ji, 2011	19.6	8	
C2/m	McMahon, 2011	56.2	2	
(metallic)	Hermann, 2011	60	2	
H_2O_2	Pickard, Needs 2013	~50		
H ₄ O	Zhang, Militzer, 2013	~50		Pbca 7.6 Mba

 Militzer, Wilson, Phys. Rev. Lett. 105, 195701 (2010).

 McMahon, PRB 84, 220104(R) (2011).

 Pickard, Needs 110 (2013) 245701

 Zha

LO). Ji *et al.*, *PRB*, 84, 220105(R) (2011). Hermann *et al.*, *PNAS 109*, 745 (2011). Zhang, Wilson, Driver, Militzer, *PRB* 87, 02411 (2013).

Is the interface between ice and metallic hydrogen stable in giant planet cores?

Wilson and Militzer, Astrophys. J. 745 (2012) 54

Analysis of Gibbs Free Energy differences shows ice erosion is an entropy driven process

Computer simulations predict erosion of icy cores in Saturn and Jupiter

Conclusions

- Indirect evidence for helium rain on Jupiter based on low neon abundances in atmosphere
- Superionic H₂O water could be relevant for Uranus and Neptune
- All core materials such as ices, rocks and iron are thermodynamically unstable – core erosion timescale unclear
- Iron and rocks mix at temperatures 4,000-10,000 K.

