in the ISM

Xander Tielens Leiden Observatory

The Grand Challenges of Astrochemistry

- What is the organic inventory of space, in particular in regions of star and planet formation and how does that relate to the prebiotic origin of life ?
- What is the role of molecules in the evolution of the Universe ?
- How can we use molecules to study the Universe ?

From small to big Building the Solar System's Organic

From big to small

Stars as sooting

candles

Protective environment of dense clouds

Comets

Asteroids

Chemical growth: a few atoms at a time

Tielens 2011

UV and energetic particle processing

CO reservoir

Building the Solar System's Organic

PAH reservoir

stars:

soot chemistry

shock chemistry

gas: ion-molecule reactions cosmic-ray photolysis

ices: hydrogenation photolysis thermal polymerization ice-ion-molecule ice segregation

Tielens 2011

comets: energetic processing

hot core: ice evaporation ion-molecule reactions asteroids: aqueous alteration

> nebula : UV & X ray photolysis radical reactions hydrocarbon chemistry Fischer-Tropsch shocks, intermittent accretion, diffusion

Gas Phase Composition of Dark Clouds

	Species	TMC1	L134N	Species	TMC1	L134N	Species	TMC1	L134N
<	H2	$(1)^{b}$				i continta			
	CO	8 (-5)	8.7 (-5)	\mathbf{CS}	4.0(-9)	1.7 (-9)	CN	3(-10)	4.8 (-10)
	HCO ⁺	8.0 (-9)	1.2(-8)	HCS^+	4.0(-10)		C_3N	6.0(-10)	< 2.0 (-10)
	HOC^+		< 7.0 (-13)	H_2CS	7.0 (-10)		C_5N	3.1 (-11)	
<	HCO			OCS	2.0(-9)		HCN	2(-8)	4.0 (-9)
	H_2CO	5.0(-8)	2.0 (-8)	C_2S	8.0 (-9)		HNC	2(-8)	6.0 (-9)
	CH ₃ OH	3.0 (-9)	3.0 (-9)	C_3S	1.0(-9)		HCNII	2.9 (9)	
	HCOOH	2.0(-10)	3.0(-10)	H_2S	5.0(-10)		HC_3N	1.6(-8)	
	CH3CHO	6.0(-10)	6.0(-10)	SO	2.0(-9)		HC_5N	4.0(-9)	1.0(-10)
	H_2CCO	6.0(-10)		SO_2	1.0(-9)		HC_7N	1.1(-9)	< 2.0 (-11)
	C_2O	6.0(-11)		NH	$(-10)^{g}$		HC ₂ N	4.5 (-10)	
	C_3O	1.0(-10)	< 5.0 (-11)	NH_2	$6 (-11)^g$		NO	2.7(-8)	2.0(-8)
	O_2	< 7.7 (-8)	<1.7 (-7)	NH ₃	$-2.0(-8)^{g}$		$C_4 n$	8.0 (-13)	< 4.0 (-12)
	OH	3.0 (-7)	7.5 (-8)	N_2	$(-5)^d$		C_6H^-	1.2(-11)	
	H_2O	< 7.0 (-8)	5.0 $(-9)^i$	N_2H^+	4.0 (-10)		C_8H^-	2.1 (-12)	
	H_2O_2	$2.5 (-11)^m$		C_4H	7.1(-8)	1.8(-9)	$C_3 N^-$	< 7.0 (-11)	
	CH	1.6(-8)	1.0 (-8)	C_5H	5.1(-10)	< 5.0 (-11)	CH_2CN	5.0(-9)	
	C_2	5.0(-8)		$C_{e}H$	7.5(-10)	< 4.3 (-10)	CH_3CN	6.0(-10)	
	C_2H	6.0 (-8)	2.3(-9)	$C_8 H$	4.6(-11)		CH_3C_2H	6.0(-9)	
	c-C ₃ II	10(-9)	4.3 (-10)	CH_3C_4H	4.0(-10)		HC_2NC	5.0(-10)	
	$l-C_3H$	8.4(-11)	1.3(-10)	$\mathrm{CH}_3\mathrm{C}_3\mathrm{N}$	8.0 (-11)		HNC_3	6.0(-11)	
	$c-C_3H_2$	5.8 (-9)	2.1(-9))	C_2 CHCN	4.0(-9)		HNC_3	6.0(-11)	
	$l-C_3H_2$	2.1(-10)	4.2(-11)				1		

Table 9.2: The composition of dark clouds

^a Abundance relative to H₂. Taken from the compilation of [?], which should be consulted for the original references, and the studies by [?, ?, ?]. ^m Measured in the warm carbon chain source L1527 [?]

Kinetics of C & O Chemistry

Ion-molecule chemistry: Carbon forms small hydrocarbon radicals but the route to CH_4 is closed. Hence, carbon burns to CO. A small fraction flows to carbon chains through radical reactions.

Kinetics of N Chemistry

NH₃ NH₄ NH₃⁺ NH_2 HNC If this were ns meeting would NH₂⁺ HCN NH as ar as CH₂ NH⁺ CN le N_2H^+ N₂ N⁺

Neutral neutral reactions with radicals flow to N_2 . The ionmolecule or neutral routes to NH_3 are really closed.

Interstellar Ices

Gibb et al, 2004, ApJS, 151, 35 Boogert et al 2015, ARAA, 53, 541

(non) Hydrogen-bonding Ice

hydrogen bonding ices: H₂O:CO₂:CH₃OH:CO=100:20:10:3 non hydrogen bonding ices: CO₂:CO=3:20

Species	Quiescent	Low mass	High mass	$Comets^{e}$
	$cloud^b$	$protostar^{c}$	$protostar^d$	
H ₂ O	100	100	100	100
CO (total)	25	5	13	23
CO (H ₂ O-ice)	3	10	6	_
CO (pure CO)	22	4	3	_
CO_2 (total)	21	19	13	6
CO_2 (H ₂ O-ice)	18	$(10)^{f}$	9	_
CO_2 (CO-mix)	3	$(10)^{f}$	2	_
CO ₂ -CH ₃ OH complex	_	_	1.2	_
CO ₂ (pure crystalline)	_	_	1.0	_
CH_4	< 3	< 1.4	1.5	0.6
$CH_{3}OH$	10	30	18	2.4
H_2CO	_	_	6	1.1
HCOOH	< 1	< 1	7	0.09
OCS	< 0.2	< 0.1	0.2	0.4
NH_3	< 8	< 11	15	0.7
OCN-	< 0.5	< 0.2	3.5	0.1^{g}

Table 9.4: The composition of interstellar ice^a

Grain Surface Reactions

- Hydrogenation & oxidation
- Tunneling
- Deuteration

H₂CO/CH₃OH/CO₂/CO

Fuchs et al 2009, A&A, 505, 629; Hidaka et al, 2004, ApJ, 614, 1124; 2009, ApJ, 702, 291; Hiraoka et al 1998, ApJ, 498, 710; loppolo et al., 2008, ApJ, 686, 1474

H_2O

loppolo et al., 2008, ApJ, 686, 1474; Dulieu et al 2010, A&A, 512, A30; Hiraoka et al 1998, ApJ, 498, 710; Miyauchi et al 2008, Chem Phys Lett, 456, 27; Mokrane et al, 2009, ApJ, 705, L195

Tielens & Hagen, 1982, A&A, 114, 245

Gas-Grain Interaction is at the core of interstellar chemistry

- Depletion in dense cores (i.e., B68, L1489)
- Interstellar ice
- H₂O & surfaces of molecular clouds
- Gas phase HO₂ & H₂O₂ (i.e., ρ Oph)
- High deuterium abundances of CH₃OH/ H₂CO in protostellar envelopes
- Hot Core composition &

Caselli et al, 1999, ApJ, 523, L165 & Bergin et al, ApJ, 2001, 570, L101 Gibb et al, 2004, ApJS, 151, 35; Boogert et al 2015, ARAA, in press Parise et al 2012 Ceccarelli et al, Blake et al 1987, ApJ, 315, 621 & Ceccarelli et al, 2007, PPV, 47

Deuterium Chemistry

High atomic D/H in the accreting gas Tunneling abstraction reactions

Tielens 1983, A&A, 119, 177 Charnley et al, 1997, ApJ, 482, L203 Hama & Watanabe, 2013, Chem Rev, 113, 8783

Simple Organic Molecules ("SOM")

- Warm dense gas with rich organic inventory: of relatively simple organic molecules
 - CH₃OH, CH₃CH₂OH, CH₃OCH₃, H₂CO, CH₃CHO, HCOOH, NH₂CHO, ...
 - HCN, CH₃CN, CH₃CH₂CN, ..
- Large deuterium fractionations
- Driven by evaporation of ice mantles formed in cold phase

Blake et al, 1987, ApJ, 315, 621 Ceccarelli et al, 2007, PPV, 47 Bergin et al 2010, A&A, 521, L20

Origin of "SOM"

Deuterium fractionation implies formed from cold-reservoir-progenitors

- Surface chemistry in cold regions
- Photolysis of ices
- Evaporation followed by gas phase reactions

15 15

• Ion molecule chemistry in ices

<u>Gas phase chemistry</u>: Charnley et al 1992, ApJ, 399, L71, Caselli et al, 1993, ApJ, 408, 538; Geppert et al, Faraday discussions, 133, 177, Horn et al, 2004, ApJ, 611, 605

Grain surface chemistry: Charnley & Rodgers 2007 Bioastronomy

<u>Charged ices</u>: Bouwman et al, 2011, A&A, 529, 46; Schutte et al, 2003, 398, 1049; Demyk et al, 1998, A&A, 339, 553, Balog et al 2009, Phys Rev Lett, 201, 73003

<u>Photolyzed ices</u>: Garrod et al, 2008, ApJ, 682, 283; Oberg et al, 2010, ApJ, 718, 832

Grain Surface Chemistry

"SOM" molecules require 'free' carbon Dark clouds: C/CO~6x10⁻³

Evaporating Ices

- Evaporating ice molecules drive rich chemistry
- Protonated methanol & methyl transfer
- Issues:
 - Experimental studies disagree
 - formation of intermediaries inhibited
 - Recombination leads to fragmentation
 - Role of ammonia as proton scavenger
 - Chemical clock ~3x10⁴ yr incompatible with hot corinos ?

Charnley et al 1992, ApJ, 399, L71 Caselli et al, 1993, ApJ, 408, 538 Geppert et al, Faraday discussions, 133, 177 Horn et al, 2004, ApJ, 611, 605

Photolyzed Ices

UV photolysis/ion bombardment & warm up

- Radical production (CH₃
 & others)
- Recombination
- Issues:
 - Polymerization
 - Chemical specificity
 - Simple photolysis products (HCO) not observed

8

Garrod et al, 2008, ApJ, 682, 283 Oberg et al, 2010, ApJ, 718, 832

Charged Ices

Ion-molecule Chemistry in Ices

- Ices are charged & charges are localized:
 - Na, PAHs
 - OCN-
 - Polarization charge
- Warm-up leads to segregation
- H-bonding
- Stereochemistry
- Methanol drives chemistry
- Near evaporation, "droplets" may conduce methyl transfer without fragmentation

charged ices: Bouwman et al, 2011, A&A, 529, 46; Schutte et al, 2003, 398, 1049; Demyk et al, 1998, A&A, 339, 553, Balog et al 2009, Phys Rev Lett, 201, 73003

From small to big Building the Solar System's Organic

20

From big to small

Stars as sooting

candles

Protective environment of dense clouds

Comets

Asteroids

Chemical growth: a few atoms at a time

Tielens 2011

UV and energetic particle processing

Ine incredibly rich spectrum 0 interstellar

21

Orion

PAHs in Orion

PAHs in the Protoplanetary Disk of HD 97048

24

Doucet et al 2007, A&A, 470, 625

PAHs and Herbig Stars

Boersma et al, 2008, A & A, 484, 241

PAH Variations in Regions of Star Formation

- Peak position of the 6.2 & 7.7 μm bands vary depending on local characteristics
- Aromatic versus aliphatic hydrocarbons
- N-incorporation
- PAH size

Active chemistry: Key is strength of the radiation field Key is stability

Sloan et al 2007, ApJ, 664, 1144 Boersma et al, 2008, A & A, 484, 241

IC 2023: The Movie

Peeters, et al, 2017, ApJ, 836, 198

Stills from the Movie

Two Components: 6.2, G7.6, & G8.6 versus G7.8, G8.2 & 11.2

Peeters, et al, 2017, ApJ, 836, 198

nterstellar PAH Sizes

29

60

160

Croiset et al, 2016, A&A, 590, A26

The Largest Molecule in Space: C60

C_{60}^+ & the DIBs

C₆₀ in the PNe, TC1

30

Campbell et al, 2015, Nature, 523, 322

Cami et al, 2010, Science, 329, 1180

PAHs & C₆₀ in NGC 7023

Berne & Tielens, 2012, PNAS, 109, 401

PAHs & C60 abundance

Berne & Tielens, 2012, PNAS, 109, 401

PAH photolysis

- Dehydrogenation & isomerization
- Stable intermediaries: cages & fullerenes
- Fragmentation products: hydrocarbon chains & radicals
- Relevant for hydrocarbon reservoir in PDRs ?

Berne & Tielens, 2012, PNAS, 109, 401 Pety et al, 2005, A&A, 435, 885 Wehres et al, 2010, A&A, 518, 36

PAHs Photolysis

Ekern et al, 1997, ApJ, 488 L39 Joblin et al, 2003, Edp. Sci. Conf. Ser. 175 Zhen et al, 2014, Chem Phys Lett, 592, 211

- Multiphoton absorption leads to fragmentation in a laser pulse
- Many pulses strip the molecule down
- Loss of all H followed by loss of C₂ and C units (magic numbers)

From PAHs to C60

From PAHs to C60

UV Processing in Space

Bare clusters

fully hydrogenated

Superhydrogenated

Andrews et al, 2016, A&A, 595, A23 Montillaud et al, 2013, A&A, 552, A15

PAHs & Soot

PAH "Formation" in (Interstellar) Shocks

Shattering of carbon soot produces PAHs galore

Jones et al, 1996, ApJ, 469, 740

- Bottom-up chemistry (~10% of elemental C)
 - Gas inventory: Largely CO (~99.5%), small amounts of hydrocarbon chains: ion-molecule & neutral-neutral radical chemistry
 - Icy inventory: H₂O dominated with CO, CO₂ & CH₃OH at 10-25%: Hydrogenation "activates" CO
 - Hot Cores Inventory: Largely CO (~98%), small amounts of methanol and its "daughter" products; Origin of SOM: methanol ice released to the gas
- Top-down chemistry (~10% of elemental C)
 - Largely aromatic
 - Produced in stellar outflows & shattering in interstellar shocks
 - Photochemistry: PAHs —>GrandPAHs—>Graphene—> C_{60}