TANG Xiaoxiao

EDUCATION University of Michigan, Ann Arbor 09/201 Master of Science in Quantitative Finance and Risk Management	17-04/2019
University of Michigan, Ann Arbor 09/201 Master of Science in Quantitative Finance and Risk Management	17-04/2019
Master of Science in Quantitative Finance and Risk Management	
Musici of belence in guantitative i manoe and Risk Management	
Math & Stats: Stochastic Process, Linear Regression, Multivariate Statistical Model, Data Mining	
Finance: Portfolio Dynamics, Arbitrage Pricing, Risk Management, Computational Finance	
Shandong University (SDU) 09/201	13-07/2017
Bachelor of Science in Statistics	
• Coursework: Operational Research, Time Series Analysis, Partial Differential Equations, Insurance Actuarial Mathematics	
WORK EXPERIENCE	
KPMG China, Beijing 06/201	18-08/2018
Department : Financial Risk Management, Risk Analyst	
• Designed 8-grade default risk rating model for Hyundai Capital to monitor the credit level of clients	
• Created list of 150 risk points and shorten it to 40 by calculating AR and VIF	
• Determined the weight coefficient by AHP and logistic regression, using SAS and R programming	
LENOVO, HQ 08/201	16-10/2016
Division: Financial Management Department, Business Analyst Intern	
Cleaned operational data from all branches in China using SPSS	
• Built automated spreadsheets to calculate yields, net value and other indicators to monitor business operation efficiency	
Delivered profit-and-loss statement and updated finance system monthly	
CHINA EVERBRIGHT BANK, Hefei Branch 08/20	15-10/2015
Cebbank Young Talent Program, Intern	
Offered account, wire transfer and foreign currency exchange services	

• Communicated with potential customers during outdoor marketing activities

PROJECTS

Research on the Complex Networks Theory-based Modeling of Adaptive Market Hypothesis and Its Evolution

- Established a complex network-based Adaptive Market Hypothesis (AMH) to simulate fluctuations of market via MATLAB
- Used Bayesian learning network theory to describe the trial and error learning behavior of investors
- Applied DE Groote model to quantitatively describe the irrational behavior of investors, such as overconfidence, herd effect, and risk preference of investors.

Analysis on Investors' Short-term Herd Behavior

- Established a more general BHW model which can analyze the short-term herd behavior based on risk-averse BHW model
- Introduced investor sentiment factors to short-term utility function, and simulated the generation of information cascade
- Analyzed the optimal decision-making behavior of investors based on information accuracy in the market, and offered policy suggestions to government

The Bath System Model based on Dynamic Programming and Brownian Motion

- Designed dynamic water temperature model with random parameters, using Brownian Motion to describe random disturbance of people
- Improved previous model by taking into account heat transfer between different medium, and approximated heat loss
- Solved three-dimensional heat conduction equation numerically by using two-dimensional Monte Carlo value equation, and determined optimum resources configuration for customers

Optimization Model for Portfolio Investment and Risk Allocation

- Conducted risk-control model and profits-gaining model to simulate investor's investment behavior, based on Portfolio Theory
- Set up multilevel statistical model to balance the revenue and risk by adopting risk preference coefficient, offered different investment plans for investors

COMPUTER SKILLS / OTHER