HILBERT FUNCTIONS OF SQUARE-FREE MONOMIAL IDEALS

MARIANNE DEBRITO & MEIXUAN SUN

ABSTRACT. In commutative algebra, a common question is to ask how the number of generators of an ideal
changes as you change the ideal. In this project, we concentrate on answering this question for square-free
monomial (SFM) ideals. Specifically, we explore symbolic powers of an SFM ideal and ask how the number
of generators changes as the power increases. The answer to this question is phrased as a Hilbert quasi-
polynomial. We introduce several theorems to give insight on the quasi-polynomial of certain families of
SFM ideals and how it changes as the ideal itself changes.
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1. INTRODUCTION

In commutative algebra, a common question is to ask how the number of generators of an ideal changes
as you change the ideal. In this paper, we will first introduce the class of ideals for which we want to study
this question, which are known as square-free monomial ideals, and a particular way to raise a ideal to a
power, called a symbolic power. Our main focus is to compute the minimal number of generators of symbolic
powers of an ideal and ask how this number of generators changes as you increase the power.

It turns out this can be described by a quasi-polynomial, which we completely describe in this paper
for every square-free monomial ideal of up to 4 variables, up to relabeling. Furthermore, we prove several
theorems of two types: the first being characterizations of the quasi-polynomials of every ideal within a certain
family, and the second being rules of how certain changes made to an ideal affect its quasi-polynomial. These
theorems can be combined to describe more families in full.

Note: Any known results, including folklore results, have been labeled as “Exercises” when they have
been included.

2. PRELIMINARIES

There are many ideals worth studying in commutative algebra and algebraic geometry, and in this paper
we will be focusing on a special family: square-free monomial ideals. In this section, we will introduce some
basic definitions related to our research and some others to prepare for the tricks that we will later play.
Throughout the entirety of this paper, we will be working in the ring R = K[z1, - -+ , x,] of polynomials over
a field K.

Date: June, 2020.
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2.1. Squarefree Monomial Ideals and Simplicial Complexes. We first define our objects of interest,
the square-free monomial ideals.

Definition 2.1. An ideal I C R is generated by a set {mq,ma,...,my} if every x € I can be written as the
sum of R-multiples of elements in {mi, ma,...,my}, i.e. =), rym,; for some r; € R. Each m; is called a
generator of I. And we write I = (mq,ma,...,mg).

Definition 2.2. We say an ideal I C R is a monomial ideal if the following equivalent conditions hold:

(1) I can be generated by monomials
(2) If f=f1+ -+ fr € I where each f; is a monomial, then f; € I for all ¢

The following exercise illustrates how the elements in an ideal relate to the generators of the ideal.

Exercise 2.3. Let I C R be a monomial ideal generated by monomials my, ---, m,. Then a monomial
m € I if and only if there exists an 7 such that m;|m.

Proof. For the forward direction, consider m € I. It can be written m = 2?21 r;m;. Since m is a monomial,
m = r;m;. Thus, m;|m. For the reverse direction, consider a monomial m such that m;|m. Then m = rm;
for some r € Rsom € I. O

Now, we continue with the definition of the SFM ideal.

Definition 2.4. A square-free monomial has no variable with power greater than 1. A square-free monomial
(SFM) ideal can be generated by only square-free monomials.

The following three definitions describe ideals which contain much information about the ideals they are
related to, and are in general very useful in proving propositions related to ideals.

Definition 2.5. Let S be a commutative ring and P C S be an ideal. We say P is a prime ideal if for all
a,b € S such that ab € P, we have either a € P or b € P.

Definition 2.6. The radical of an ideal I in a ring S is the ideal v/T = {f € S|f™ € I for some n € N}; we
say that an ideal is radical if VI =T

Definition 2.7. A ring S is Noetherian if all ascending chains of ideals I C Io C ... in S stabilize, i.e.
there exists some N such that I,, = Iy for all n > N.

Note that R = K[zy, -+ ,2,] is Noetherian so we will be working with a Noetherian ring throughout the
entirety of this paper.

Before we dive deeper into the research, we want to help readers better understand 1) the internal structure
of the family of square-free monomial ideals and 2) some important facts that we may not use explicitly for
the rest of the paper, but are essential to one’s understanding of ideals and will be very helpful in future
research.

Exercise 2.8. The two conditions in Definition [2.2] are equivalent.

Proof. (1 = 2) Suppose I is generated by monomials my,...,m,, and let f = f1 + -+ fi € I where
each f; is a monomial. We know we can also write f as a sum of monomials of the form rm; where r € R,
since I must be generated by my,..., m,. Then, since we are in the polynomial ring, we must have f; is a
sum of some of the terms of this form, and since f; we a monomial we have f; = r-m{*---m&», wherer € R
and the exponents are non-negative integers (and at least one is positive). Thus, f; € I since each f; can be
generated by the generators of I.

(2 = 1) Consider a polynomial generator m; in I such that m; = m;; +--- + m;;, where mgy ... my; are

all monomials. Then by assumption, m; = m;1 +--- 4+ m;; € I and my1, ..., m;; € I. Thus, we can replace
m,; with the list m;1, - -+, and m;;. Proceeding through each nonmonomial generator in this manner gives a
set of monomial generators. O

Exercise 2.9. If I is a monomial ideal, then VT is a monomial ideal.
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Proof. Let I be a monomial ideal, and consider some r € v/I and monomials 71,79, ..., , such that r =
r1 +rg + --- + r,. Then there exists some power m such that ™ € I. Note that r]* is a monomial term of
r™ for every ¢ € {1,2,...,m}. By Exercise ri™ € I for all ¢. This implies that r; € V1T for all i by the
definition of the radical. It follows immediately by Exercise that v/T is a monomial ideal, since r € v/T
implies r; € VT for all i. O

Exercise 2.10. A monomial ideal is square-free if and only if it is radical.

Proof. Let us first consider the forward direction. Let I be a square-free monomial ideal in K[z, z2, ..., Z,].
We already know that I € /I, so we only need to show I D v/I. Consider a generator r € v/I. Then by
definition, there is some p such that r? € I. By Exercise[2.9] we may assume without loss of generality that r
is a monomial. Then r = x;, x4, - - - 2, for some iy, ..., i € [1,n], so P = zf af - ~xfk. Since I is square-free
and monomial, there exists some square-free monomial generator m € I such that m|:zf1 z? -
is square-free, this implies m|x;, a4, - - - @;, , thus m|r so r € I.

For the reverse direction, we proceed by proving the contrapositive. Suppose I is a monomial ideal which
is not square-free (we will show that I # /T). Then I has some minimal monomial generator which is not

. :z:fk Since m

square-free, given by mg = 7' x5? - - - % for some powers s, ..., o, not all less than 2. It follows that the
square-free monomial s = xf1x§2 . xg" is in VT for B; =1if a; > 1 and 8; = 0 if a; = 0. Since mg is
minimal and s|mg, we know s must not be in I. Thus, I # VI, so I is not radical. O

In order to prove more results like the previous one, we need to have a more concrete way to describe
the structure of square-free monomial ideals. After some reading, we found that there is a one-to-one
correspondence between square-free monomial ideals and simplicial complexes, which we now introduce.

Notation 2.11. For any set S, we denote by P(S) the power set of S, or the set of all subsets of S.

Example 2.12. There are four subsets of the set with two elements. In particular:

P({z,y}) = {2, {z}, {y}, {z,y}}

Definition 2.13. A simplicial complez on n elements is a subset A C P({x1,...,2,}) such that if S € A
and S’ C S then S’ € A.

Simplicial complexes have nice, pictorial representations. For example, by definition of simplicial com-
plexes, if A is a simplicial complex and any subset of A corresponds to a tetrahedron, then A will also
contain subsets corresponding to each face, edge, and vertex of this tetrahedron. Geometrically, we can
consider the following correspondence:

subset type geometric shape
P({z}) point
P({z,y]) odge
P({x,y,z}) filled triangle
P({z,y,z,w}) | solid tetrahedron

For a square-free monomial ideal I, we can associate a simplicial complex in the following way. Given I’s
unique prime decomposition (see the next subsection)

I=PN---NP,

then I’s simplicial complex is the simplicial complex with a simplex for each P;. Namely, if P; = (z;,,...,;,)
we include the corresponding simplex P({z;,, ..., ;,}). We will now further explain how we draw the pictures
by an example.

Example 2.14. Let R = K[z, 22, ..., x,], and let I = (2)N(y, 2z, w) = (2y, xz, zw) be a square-free monomial
ideal in R. The picture of I’s simplicial complex is in Figure
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FIGURE 1. The simplicial complex for the (xy,xz,xw)

At the beginning of the research, the pictures for simplicial complexes help us collect all the cases in 4
variables and better understand the combinatorial structure of the ideals.

2.2. Primary Decomposition and Powers. In order to explore the Hilbert polynomials and Hilbert quasi-
polynomials related to ideals, we must first understand powers of ideals. The primary decomposition of an
ideal is useful in finding the symbolic power of square-free monomial ideals and is essential to classification
of ideals through the previously mentioned simplicial complexes. So, we will proceed by discussing powers
and primary decompositions.

There are two ways to take a power of an ideal: ordinary, which we will see gives a Hilbert polynomial,
and symbolic, which gives a Hilbert quasi-polynomial. We first introduce the ordinary power:

Definition 2.15. Let I be an ideal of R. Then we define the ordinary power I¢ to be the ideal generated
by the product of any d elements of I, namely:

I*:=({a;---aq | a; €I for all 1 <i < d})

We can now say the following about the relationship between an ideal’s minimal generators and its ordinary
powers:

Exercise 2.16. If [ = (fi,..., fx) then I? is generated by products of d generators. In other words, I is
generated (possibly not minimally) by {fi, --- fi, | 1 < i; < k}.

Proof. Let I = (f1,...,fx) be an ideal of R. Then by definition, I? is generated by {a;---aq | a; €
I for all 1 < ¢ < d}. Note that each a; = r1f1 + -+ + rifx for 7; € R. Then it means that every possible
(but not necessarily minimal) generators are in the form:

(riafi+-+rfe) - (ranfi + -+ racfe)

It is now clear that every possible generator can be generated by {fi, --- fi, | 1 < i; < k}. Then it follows
directly that I is generated by {f;, --- fi, | 1 <i; < k}. O

The following exercise illustrates that powers of SFM ideals are still SFM, and therefore agree with
everything we’ve discovered so far.

Exercise 2.17. If I is a monomial ideal, then I? is also a monomial ideal for any n € N.

Proof. We will proceed by proving the contrapositive. Suppose I¢ is not a monomial ideal. Then it must
have at least one minimal generator that is not a monomial: call it m/. By Exercise [2.16, we know that I¢
is generated by products of d generators of I, so m’ must be a product of d generators of I. This implies
that I must have a non-monomial generator, since the product of monomials is always a monomial but m’
is a non-monomial product of generators of I. Thus, I must not be a monomial ideal. (|

Recall that we are interested in studying the number of minimal generators as the power of an ideal
changes. For convenience, we use the following notation:

Notation 2.18. We denote u(I) to be the minimal number of generators of I.

We now introduce symbolic powers of an ideal.
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Definition 2.19. The d-th symbolic power of a prime ideal P C R = K[zy,...,z,] is the set P¥ = {a €
R|sa € P4 for some s ¢ P}.

A theorem of Zariski-Nagata gives that this is equivalent to a very geometric definition for those who
know a bit of algebraic geometry.

Theorem (Zariski-Nagata, [Zar49)],[Nag62]). Let I C R = K|x1,...,x,] be a prime ideal such that V(I) = X
for an irreducible algebraic variety X, then

I'D = {f € R, f vanishes to order at least d on all of V(I)}

However, don’t be scared by the fancy word such as ‘vanishes’ since we don’t need to know that much
to solve our problem. Because we are working with SFM ideals, the computations of symbolic powers are
relatively simple and rely on the primary decomposition.

For general ideals, we have the following definition, which we won’t explain in detail, since we can simplify
the problem for SFM ideals.

Definition 2.20. The d-th symbolic power of an ideal I C R is

I“=Rrn () IRp
PeAss(P)

For SFM ideals, this definition simplifies to a nice characterization in terms of their primary decomposi-
tions.

Definition 2.21. Let R be a Noetherian commutative ring, and I an ideal in R. Then I has an irredundant
primary decomposition into primary ideals.

I=Q:NQ2---NQy

A theorem by Lasker and Noether tells us that every ideal in a Noetherian ring can be decomposed
as an intersection of finitely many primary ideals [Las05], [Noe2I]. We will be interested in using this
decomposition to study the symbolic powers of a SFM ideal and to classify different families of ideals. This
definition is expanded upon in the following example:

Exercise 2.22. Let I be a square-free monomial ideal. Then I’s primary decomposition is of the form
I =Q1N---NQy where each Q; is generated by a subset of the variables. Furthermore, if this decomposition
is irredundant, i.e. if Q); ¢ @; for all ¢ and j, then this decomposition is unique up to reordering.

Proof. Observe that since I is a monomial ideal, if I = (mimg,J) for some list of monomials J and
ged(my, mo) = 1, then I = (mq, J) N (mg,J). By induction if I = (2 ---z%,J), then I = (]_,(z}*, J).
Thus, we may assume that the primary decomposition of I only has primary ideals of the form (z{*, -, z%")
by breaking I down from its generators. In particular, since I is square-free, a; = 1 as there were no higher
exponents in the generators. The uniqueness follows from the uniqueness of intersections of subsets of the

variables. |
The following exercise illustrates the simple computation of symbolic powers of SFM ideals.

Exercise 2.23. If I is a square-free monomial ideal and I = @1 N--- N Qy is a primary decomposition of I,
then

I(d):Q‘lim...sz.

This statement is Exercise 2.3 in [Gril9] so we defer the proof.
To further simplify symbolic power computations, we produced the following result:

Exercise 2.24. Let I, J, and K be three square-free monomial ideals such that I = J N K. Then (4 =
J A K@)

Proof. By Exercise we know I, J, and K have primary decompositions, and these are unique up to
including redundant ideals. Then let P N P> N---N P be the unique irredundant primary decomposition of
J and let Ppyy NPy N---N P, be the unique irredundant primary decomposition of K. Then [ = JN K =
P N---NP,. We note that some of the P; here could be redundant since they could show up in both J and



6 MARIANNE DEBRITO & MEIXUAN SUN

K, but this will not affect our result since adding a term multiple times in an intersection does not change
the intersection. By previous proposition,

ID=pin...APL=(PIn---nPHN(PLynPL) =T DN KD,
0

2.3. Hilbert Polynomials and Quasi-Polynomials. We will be interested in how the number of gener-
ators of the regular and symbolic powers of an ideal grows as we take higher and higher powers. It turns
out that the number of generators grows like a (quasi-)polynomial. In order to see that, we now want to
associate a polynomial to each graded module over a graded ring. We start by associating a function to each
one.

Definition 2.25. The Hilbert function of a graded module M over the graded ring R = Klz1, ..., x,] is the
function hps @ Z>o9 — Z>o by d — dimg My where dimg My is the number of generators of My as a vector
space over K. We then have the following definition.

In the case that M is standard graded, i.e. every element in M is a sum of products of things in the degree
0 and 1 pieces. The following is a theorem of Hilbert, see for example, [BH93] Chapter 4 for details.

Definition 2.26. If M is standard graded, there is a polynomial H); in the variable d such that hps(d) =
Hp(d) for d >> 0. Hjpy is called the Hilbert polynomial of M.

In the case that M is finitely generated, but not by the degree 1 piece, then the Hilbert function is not a
polynomial. It is, however, a quasi-polynomial.

Definition 2.27. A quasi-polynomial is a generalization of polynomials, whose coefficients come from a
ring. The coefficients of quasi-polynomials are periodic functions with integral period.

q(k) = aa(k)k? + ag_ 1 (K)k 4+ -+ ag(k)
where «; (k) is a periodic function with integral period.

We will focus primarily on two cases for an ideal I C K[zy,...,z,]. In particular, let m = (x1,...,z,).
Then we look at the Hilbert polynomials of

M =5 1¢/m1?

d>0

and the Hilbert quasi-polynomials of

M = @ 1D jmI@
d>0

which are related to the Rees algebra € asol 4 and symbolic Rees algebra asol (@) of T (they are each of
these tensored with R/m = K, and are typically called the special fiber ring and symbolic special fiber ring
of I).

Since the the (symbolic) Rees algebra for a SFM ideal is finitely generated [HHTOT7], there is a Hilbert
(quasi-) polynomial which computes the minimal number of generators of (I (d)) I? for d >> 0. In particular,
we note that

dimg I?/mI? = p(1)
and
dimy (D /m](d) - M([(d))
Throughout, we will call the polynomial Hys(d) = (1) for d >> 0 the “Hilbert polynomial of I” and denote
it by H;(d) and we will call the quasi-polynomial Hyy (d) = p(I) for d >> 0 the “Hilbert quasi-polynomial

of I” and denote it by Hj(d) when we really mean the Hilbert (quasi-)polynomial of the (symbolic) special
fiber ring of I.
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3. FIrRsT RESULTS - BOUNDS OF REGULAR POWERS

Armed with those important facts, we come to the first stop in the journey - ordinary powers. To help
readers build some intuition on what we are counting, we include a table of the ordinary powers of square-free
monomial ideals in 4 variables.

Ordinary Powers

Name 1 hr(n) =(1,2,3,...) Hi(n)
4vigA (xyzw) 1,1,1,... 1
4v2gA (z,yzw) 2,3,4,5, ... n+1
4v2¢B (zy, zw) 2,3,4,5, ... n+1
4v2gC (zyz, zw) 2,3,4,5, ... n+1
4v2gD (zyz, xyw) 2,3,4,5, ... n+1
4v3gA (zy, z,w) 3,6, 10,15, ... n32)(n+l)
4v3gB (xy, xz, TW) 3,6,10,15, ... W%ﬂ
4v3gC (zy, 2w, 2w) 3,6,10,15, ... A2 nt])
4v3gD (xy, xz,w) 3,6,10,15, ... (7:—5—2)2&
4v3gE (zyz, 2w, yw) 3,6,10,15, ... A2 nt])
4v3gF (xyz, zyw, zw) 3,6,10,15, ... M&
4v3gG (zyw, zzw, yzw) 3,6,10,15, ... Wl)zﬂ
4vagA (z,y,z,w) 4,10,20,35, ... (")
4v4gB (xy, xz,yz,w) 4,10, 20, 35, ... (”;rg)
4v4eC (zy, xz, yw, zw) 4,9,16,25, 36, ... (n+1)2
4v4gD (zw,yz, yw, zw) 4,10, 20,35, ... (":{3)
4v4gE (xyz, zw, yw, zw) 4,10, 20, 35, ... (”;rg)
4v4gF | (zyz, xyw, v2w, yzw) 4,10, 20, 35, ... (”;3)
4v5gA (zy,xz, zw, Yz, yw) 5,14,30,55,91, ... %(Qn +3)(n+1)(n+2)
4vbgA | (zy,zz, 2w, yz, yw, zw) | 6,19,44, 85,146, ... %(n +1)(2n? +4n + 3)

The following three results arose from observations as we constructed the above table, using Python as
an assistant in computing the Hilbert-polynomials.

Lemma 3.1. Let I C R be a square-free monomial ideal which is minimally generated by 1 element. Then:
p(Ih) =1

for all d € N.

Proof. Let m be the monomial which minimally generates I. Note that m? € I¢, by Def Consider

h € I?. Then there exist some ki, ks, ..., kq € I such that H?Zl k; = h. Since m is the only generator of I,

mlk; for all i € [1,d], thus m?| [[°_, ki = h. Thus, every element in I is divisible by m<, hence I has only

one minimal generator, m?. O

Lemma 3.2. Let I C R be a square-free monomial ideal which is minimally generated by 2 elements. Then:
p(IY =d+1

for all d € N.
Proof. Let my, ma be the minimal generators of I. Note that m; t ma and mg 1 m;.
By Exercise [2.16] I? is generated by m¢m$, with a +b = d and 0 < a,b < d. Before we simplify I¢, we
see that these d+1 elements are in fact generators of the ideal. Now we want to show there are not any
redundant ones. It’s enough to show that:

m?mg ¢ ({m(lia mil_lm% s 7mg} \ {mlllmg})

for any a + b = d. By the Exercise this is equivalent to showing that for all ¢’ + V' = d with a # o’ and
b # ', we have:

a b a, b
mi my { mims.
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Assume without loss of generality that o’ < a. Note, this implies that b’ > b. Let k = ged(mq, m2), then
ged(™r, ™2) = 1. Then k' (1)a’ (m2)V" y ga+b(mi)a(m2)b if and only if (Z2)® (22) § (#1)a(22)b. Can-
celling from both sides, we see this is true if and only (%)b/’b 1 (%)“*“l, which is true since ged(%2, %2) =

1. ]

Lemma 3.3. Let I C R be a square-free monomial ideal which is minimally generated by 3 elements. Then:

urty = (37)

Proof. Let my, mg, m3 be the minimal generators of I. Note that they don’t divide each other. We already

know that the ideal is generated by m‘fmgmg7 with a4+b+c=d, and 0 < a,b,c < d, which gives us (d?iIl)

generators. We want to show that there is no redundant generators, i.e., for all o’ + b + ¢/ = d with a # d,
b# 1V and c # ¢/, we have:

for all d € N.

a' b __c a, b, __c
m{ mgms ¥ mimoms.
. . / / / . . . .
Assume for contradiction that m$ m§ m§ | m¢mimg. As I is a square-free monomial ideal, there is at least
one variable that either divides only two generators or only one generator (otherwise the generators would
be the same monomial). Assume without loss of generality those are my and ms or just my.

If the variable w only divides m; and mo then a + b = a’ + ', then we arrive at the conclusion that ¢ = ¢’
If the variable w only divides m1, then it follows that a = a’.

This reduces us to the case when one of a, b, or ¢ is equal to a’, b, or ¢/, respectively. Assume without loss
of generality that a = a/, it follows from Lemma 1.10 that m% m§ + mims. O

We will see a similar combinatorial pattern in the Hilbert polynomials for some ideals. However, we note
that it is not always this simple (i.e. we do not always have that u(I?%) = (d',:f;l) if I has k generators).
Sometimes, we find that minimal generators may combine to create non-unique elements of I, as in the

following example.
Example 3.4. Let I = (2y, zw, 2z, yw). Then note that:
(29)(210) = (22)(yw),
i.e. we have a situation where mims = msmy.
The following result explains these observations.

Proposition 3.5. Let I C R be a square-free monomial ideal which is minimally generated by k elements.
Then:
d+k—1
1% <
p(I) < ( ko1 )

for all d € N. Furthermore, for k =1, 2, or 3, we get equality.

Proof. The inequality is an immediate consequence of Exercise When k£ = 1, 2, or 3, the equality
follows from Lemmas and respectively. O

We can also describe one clear instance when generators begin canceling each other out due to a pigeonhole-
principle-like situation:

Proposition 3.6. Let R = K|[x1, 22, ..., 2], and let I be a square-free monomial ideal in R which is minimally

generated by k elements. If k > n, then u(I?) < (d;i;l).

Proof. This is equivalent to the generators being algebraically dependent. As there are more generators than
variables, they must be algebraically dependent and the result follows. O

Note, the Proposition may seem like a contradiction to the previous lemmas, however when n =1, 2,
or 3 then any square-free monomial ideal is generated by at most 1, 2, or 3 elements respectively.
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4. SYMBOLIC POWERS

4.1. Rules: How generators change as we modify our ideal. One way to think about SFM ideals is
that in many cases ideals in n variables can be constructed from old ideals which have already studied in
n — 1 variables. In other words, what will happen if we add a new variable somewhere in one of the old
ideals? This section studies the relation of these new ideals to the old ideals.

Theorem 4.1. For a field K, let L be a square-free monomial ideal in R = Klw,z1,...,x,] minimally
generated by mq, . .., my, none of which are divisible by w. Consider the ideals I = LN(w) and J = LN(w, m;)
in R for a fivedi € {1,2,...,k}. Then p(I'9D) = u(J D) = u(LD) for all d.

Proof. Suppose m = w®z{" -z € (4. By Exercise we know that (ayg,...,«,) must satisfy some
linear inequalities:

Ll(al,...,an) Z d

Li(aq,...,an) > d

where L;(aq,...,qy,) is a linear expression in aq,...,a, corresponding to P; in the primary decomposition
of L = PpN---N P (and the first inequality corresponds to the (w) in the primary decomposition of
I =LnN(w)). If m is a minimal generator of J then (ao,...,q,) must satisfy these inequalities minimally,
meaning that there is no («f,..., ) satisfying these inequalities with o) < «; for all ¢ unless o = «; for
all i (otherwise, if a; < a; we could replace m with %)

Similarly, if m = w®z{* -+ 2% is a minimal generator of J@ then (ao,...,aq,) must still satisfy the

linear inequalities above, except that we replace the first inequality with:

o+, >d

a0+ oy, >d

where m; = z;, -+ -z,

We claim that m = z{* --- 2% is a minimal generator of L@ if and only if wm is a minimal generator

/

of I9) if and only if mw?~—® = w“f)afl ---xp™ is a minimal generator of J(), where o, = d — a, o) = a; for
i>1,and a € {0,1,...,d} is the largest power so that there is some monomial f such that m = fm$ and

The first if and only if in the claim is clear as the only inequality for I(?) that is not an inequality for L(®)
is ag > d and it does not involve any of the other a;. The second if and only if follows as the maximal power
« determines the minimal aéj in the new inequalities. Again, this generator is minimal because w does not
divide any minimal generator of L. Informally, these say that once you have fixed the powers on the other
variables in the minimal generator, the power on w is determined as 0, d, or d — min;(ay;, ), respectively. [

This theorem will become useful later on in Corollary when it allows us to expand our knowledge of
one family of ideals using what we know about another family. The following two examples serve to better
illustrate Theorem [£.1] in action.

Example 4.2. Consider the polynomial ring K[z, y, z] containing the ideals I = (zz,yz) = (z,y) N () and
J = (z,yz) = (z,y) N (x, z). We have the case above, where L = (z,y). We know

ID = ({2%yP27 |a+ B >d, v >d})

JD = {2y |a+B>d, a+y>d})
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Note that the minimal generators of I (@ are of the form xo‘yd_azd where 0 < a < d, and the minimal
generators of J@ are of the form xayd_azd_o‘ where 0 < a < d. In this example, it is clear that there are
d 4+ 1 generators in the d symbolic power of both I and J. For example, we get:

1® = (2222, xy2?, y?2%)

and
J? = (22, zyz,y?2?).

Example 4.3. Now consider the polynomial ring Klw, z,y, z] containing the ideals I = (2w, yw, zw) =
(z,y,2) N (w) and J = (z,yw, z2w) = (x,y,2) N (x,w). Again, we have the case above, where L = (z, v, 2).
We know
ID = ({zyP27w° | a4+ B+~ >d, § >d})
JD = ({2920’ |a+ B+v>d, a+8>d})
Note that the minimal generators of I(®) are of the form z*y” 24~ B where 0 < a, 8 < d and the minimal
generators of J(® are of the form z®y?29=*=Fwa=* where 0 < o, B < d. For example, we get:

2 2 2 .2, 2
,xzw” yzw®, 2 w”)

1® = (z2w?, zyw?, y*w
and

J? = (22, zyw, y*w?, xzw, yzw?, 22w?).
The following corollary expands on Theorem [4.1

Corollary 4.4. Define the ring R and the ideal L = (my, ..., myg) in the same manner as above. Consider the
ideal J = L0 (w,my,, My, ..., my,) for some fized iy, io,. .., andig in {1,2,... k}. Then u(J@D) = p(L)
for all d.

Proof. Suppose m = x§* -+ 2% € LY. By Exercise we know that (a1, ..., a,) must satisfy some linear
inequalities:

Ll(Oél,...,Oén) >d

Lk(ala"'aan) > d

where L;(aq, ..., ap) is a linear expression in ay, . . ., a, corresponding to P; in the primary decomposition of
L = PiN---NPg. If m is a minimal generator of L then (aq, ..., o, ) must satisfy these inequalities minimally.

Similarly, if m = w®*z{* -+ 2% is a minimal generator of J(@  then (a1, ..., q,) must still satisfy the

linear inequalities above, and we also have some additional linear inequalities:

ap+ Li(ag,...,an) >d

ag+ Ly(ag,...,an) >d

where L} correspond to @; in the primary decomposition (m;,, m,,...,m;) = Q1N+ N Qp.

Given a minimal generator of L(¥), we have a minimal generator of J(¥ with the same powers on z;
through x,, and the power on w given by d — min;(L}(a1, - ,a,)), and every minimal generator of J
arises in this way. ]

Theorem and its following corollary describe a way to change ideals without changing their quasi-
polynomials. We are now interested in describing one way to change an ideal so that its quasi-polynomial
also changes in a predictable way. In particular, we focus on making changes to the primary decomposition.
First, we explore what happens to the minimal generators of an ideal when we introduce a new variable into
the primes of its primary decomposition.
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Lemma 4.5. Let I be a squarefree monomial ideal in K[zg, 21,...,z,] with unique irredundant primary
decomposition I = Py N Py N --- N Py, which exists by Ezercise . Let J = (P1,20) N (Pa,2z9) N -+ N
(Py o) N Ppy1 N -+~ N Py for some m € {0,...,k}. If o & P; for all i, then all the minimal generators of
ID gre also minimal generators of J(@.

Proof. Suppose xg ¢ P; for all i. For each j € {1,...,k}, consider the inequality
> aizd
iEAj

where A; is the set of all indices ¢ such that z; is a generator of P;. Using Exercise we can note that the

generators of (9 are of the form x7txg? - - 2% where the exponents aq, ..., «, satisfy the above inequality
for every j € {1,...k}. Now consider J(¥ whose generators are of the form x{°z{'z3?---2%~. For each
j €40,...,m}, the exponents must satisfy the inequality
ap + Z a; > d
i€A;

where A; is the set of all indices ¢ such that x; is a generator of P;. Note that if ag = 0, then the same values
of e, ..., o, which satisfied the inequalities to be a generator of I(?) also satisfy the inequalities to be a
generator of J(¥. Thus, each generator of 19 is a generator of J( where the exponent of z is zero. They
are zn)inimal as xo does not divide them so they are in the intersection of (¥ N J(@ and they are minimal
in I(D, O

The following is an example which illustrates the lemma in action:

Example 4.6. Let I = (y, 2)N(y, w)N(z,w), J1 = (z,y, 2)N(y, w)N(z,w), and Jo = (z,y, 2)N(z, y, w)N(z, w).
Then generators of 19 are of the form y®zfw?, where a + 3 >d, a +~ > d, and 3+~ > d. We also have
that generators of Jl(d) are of the form z°y®2%w?, where 6 + o+ > d, a +~ > d, and 3+~ > d. Note that
the same solutions for «, 8, and ~ that satisfy the inequalities for (9 also satisfy the inequalities for de)
when 6 = 0. Thus, all the generators for I(®) are also generators of Jl(d). The argument is the same for Js,
except for we have the inequality 6 + o + v > d instead of oo + v > d.

So, now we know that appending new variables into the primes of the primary decomposition increases
the number of minimal generators, but by how much? The following result describes exactly how much the
quasi-polynomial changes.

Proposition 4.7. Let I be a square-free monomial ideal in K[xg, 1, . . ., x,] with unique irredundant primary
decomposition I = PyNPaN... Py, which exists by Exercise[2.22 Let { be the number of minimal generators
of Py, and let J = (xo, P1) N PoN---N Py. If I satisfies the following conditions:

(1) zo & P; for all i

(2) Py contains all but one generator of each P
then 1 (J0) = p (I0) + (4471,

Proof. Suppose I satisfies those conditions, and let J = (zo, P1) N P N---N P;. By Lemma we know
that every minimal generator of I is also a minimal generator of J(®: in particular, they are all the
generators in J(? where the exponent of x is zero. Thus, the rest of the minimal generators of J(® must
have 0 < ap < d. Let A; is the set of all indices ¢ such that z; is a generator of P;. Note that a minimal
generator of J(%) must satisfy the inequalities

ao—l—ZaiZd and Z%‘Zd

€A 1€A;

for all j € {2,...,k}. Note, we can see that the first inequality is in fact an equality since if ap > 0 and
@0 + D ica, @i > d, then the generator is not minimal (since we could divide by o and still be in J@),
Without loss of generality, assume that Py = (x1,--- ,2;). It follows that we only need to count minimal
solutions for ag,a,...,ap_1, since these will fix ay by the first equation and the rest of the powers are
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automatically determined once the first £ — 1 of the a; (for i > 1) are fixed by condition (2). The number of
possibilities for (ag,...,ar—1) are:

d dfa() dfaofal d*Zf«,;zo Qm,
d+/4-1
SR ST SRR T (|

a0:1 041:0 a2:0 01271:0

Alternatively, counting the set of a through «ay which satisfy these inequalities is equivalent to counting
length £ partitions of d where the first integer is at least 1. That is equivalent to counting length ¢ partitions
of d — 1, and the number of those is given by (d 1+4) Hence, (J(d)) =L (I(d)) + (d7é+f). |

The following two examples illustrate exactly what is happening in these ideals.

Example 4.8. Consider again I = (y,2) N (y,w) N (z,w) and J; = (x,y,2) N (y,w) N (z,w) (4vdgD in the
second chart), where £ = 2. Then we need to count generators of J(?) which are of the form z%y” 27w’ where
O<a<d a+p+vy>d, f+d>d, and v+ 6§ > d. Note that once we choose o and  for our minimal
generators, we have that v and § are fixed at Yy =d—a—f and § = d— 5. So, we only need to count possible
choices for a and (3, which gives us

d d—«

ZZl—Z —a+1):d2—d(d2+1)+d:(d;1>:(d+ﬁ_1>.

a=1 B=0 a=1

Example 4.9. Now consider Iy = (y,z,w) N (y,z,v) N (y,w,v) and Jo = (z,y, z,w) N (y, z,v) N (y,w,v),
where ¢ = 3. Then we need to count generators of J(¥ which are of the form 2%y®z7wv” where 0 < a < d,
a+pB+v+d=d,8+v+0>d,and S+ 0+ o > d. We only need to count possible minimal solutions for
a, B, and ~ now, since it would follow that § =d —a — f — v and 0 = d — 8 — v in minimal generators. So,

this count gives us
4t d+2 d+0—-1
sx s =)=

Our final result from this section describes the (symbolic) Hilbert function of an ideal with respect to
the (symbolic) Hilbert functions of the ideals in a decomposition of our ideal into ideals in disjoint sets of
variables. These ideals are the SFM ideals corresponding to the connected components of the ideals simplicial
complex.

Proposition 4.10. Let I be a square-free monomial ideal in K[z, ...x,] that can be decomposed into I =
IiN---N1Iy so that each I can be written in distinct generators (i.e. if x; divides a minimal generator in I;,
then x; does not divide any of the minimal generator in Iy if £ # j). Let the corresponding Hilbert functions
be Ty, ..., Ty. Then the Hilbert function for I is T(d) = T1(d)T>(d)...Tk(d) (and the same type of result
also holds for the symbolic Hilbert function).

Proof. By induction, this reduces to the case of I = I; N Iy with the appropriate property on the genera-
tors. Then if I{ is minimally generated by (a1, ...,a,) and I§ is minimally generated by (b1, ...,bs), then
lem(a, b;) € I N I§ and is equal to a;b; since ged(a;, b;) = 1. We claim that a;b; is a minimal generator
of I N I§ since anything that strictly divides a; can’t be the minimal generator; similarly, anything that
strictly divides b; can’t be a minimal generator. Thus I{ N I$ = I{ - I$ = I and is minimally generated by
all products of the generators. Thus, T'(d) = T} (d)T»(d) and the result follows. Similarly, 19 = Il(d) N I2(d)
by Exercise and since all of the generators of I{d) and IQ(d) are in distinct variables, we have that
Il(d) N Iz(d) = Ild) -IQ(d) and p(I?) = ,u(Il(d)) -M(IQ(d)) as m is a minimal generator of I(9) if and only if it is a
product of minimal generators of Il(d) and IQd), by the same argument as above. O

4.2. Families of SQM Ideals. In this section, we compute the Hilbert quasi-polynomials giving the number
of generators of the symbolic powers for several families of SFM ideals. As stated previously, we use the
simplicial complex drawings to categorize ideals into families. Two of which are stated here:
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Definition 4.11. FEdge ideals are the ideals that correspond to simiplicial complexes consisting of only edges,
or in other words whose primary decomposition consists of ideals of the form (x;, ;).

I= ﬂ(%,xj)

%]

Definition 4.12. Triangle ideals are the ones that correspond to simiplicial complexes consisting of only
‘triangles’, or in other words whose primary decomposition consists of ideals of the form (z;, z;, zy).

I = ﬂ (x4, x5, Tk)

.3,k

The following chart lists the quasi-polynomials of SFM ideals in 4 variables. In it, we observe similarities

and differences which assist us in developing conjectures to explore further.

Symbolic Powers

Name 1 Decomposition H;(d)
4vlg (zyzw) ()N (y)N(z)N(w) 1
4v2gA (z,yzw) (z,y) N (z,2) N (z,w) d+1
v2gB ey, z0) (2,2) 0 (2,0) 0 (4,2) 1 (5, 0) 1
4v2¢C (zyz, xzw) () N (y,w) N (z,w) d+1
4v2gD (xyz, zyw) ()N (y) N (z,w) d+1
4v3gA (xy, 2, w) (2, 2,0) N (y. 2. w) -
4v3gB (zy, xz, W) (z) N (y, z,w) w
4v3gC (2w, yz, yw) (2.9) N (g, w) O (z,w) - caa
4v3gD (ay, 2z,w) (2,w) N (3,2, w) i)
L(d® +6d + 4) d even
4V3gE (ZyZ,I’LU,y’LU) (xvy) ﬂ(x,w) n (va)m(z7w) {jli(dQ +6d+5) d odd
3d+1 d
w3gF | (eyz,ayw, zw) (20) 1 (@) N (,2) O (3,0) N (3, 2) Sden) dod
3d+1 d
4v3gG (xyw, xzw, yzw) (x,2)N (y,2) N (y,z) N (w) {g(j; oo Z\(;edn
aF3
4vigA (,y, 2, w) (,y, 2, w) (z)
3d2 4+ 2d+1 d even
4V4gB (xayzvywvzw) (xvyvz)m(xvva)m(xvsz) {i(3d2+8d+5) d odd
4v4gC (zy, x2z, yw, zw) (z,w) N (y, 2) (d+1)?
$d*>+2d+1 deven
todgD | (o yz, g ) (@9,2) 0 () 1 (2,) { e vaied e
+(3d? +13d+6) [d)s =
4v4gE (zyz, 2w, yw, zw) (z,y,2) N (w,z) N (w,y) N (w, 2) +(3d*+13d+8) [ds=1
+(3d* +13d +10) [d]s =2
2d+1 d
tvigh | (oyzoyw zzw,yzw) | (0,0) 0 (50) 0 (5:2) 0 (209) 0 (00) 0 (22 {2 Ly o
L(7d?> +18d +8) deven
dvbgA | (22, 7w,yz, yw, 2w) (z,y,2) N (z,y,w) N (z,w) {z(7d2 +20d+13) dodd
A?+8d+1 [de=0
P+8d+I [de=1
d2 + 8d2 2 (=2
4V6gA (xy,xz,xw,yz,yw,zw) (va7w)m(yasz)m(yaI7w)ﬁ(yaxaz) d2 8d2i§ {dt -3
d2 8d2+§ [d]s =5
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We first work out the case where the simplicial complex of the ideal is the complete graph on n vertices.

Proposition 4.13. If I is a square-free monomial ideal in K[zy, 2o, ..., z,] whose simplicial complez is a
complete graph - that is, it can be decomposed into

7@ — ﬂ (.’I:i7.'I:j)d = (@1 Tp1, e L1 Ly Ty ,$2...xn)<d>,
1<i<j<n
then
nd
224+ 1 deven
7y = 2
.u( ) n(d2+1) d odd
FiGURE 2. Complete Graph on Eight Vertices
Proof. We know I'D = ({z$" ... 2%"|a; + a; > d, for each 1 <4 < j < n}) where a1,...,q, are nonnega-

tive integers. Furthermore, 2§ ... 22" is a minimal generator of I(?) if and only if (v, . .., a,) satisfies these
inequalities minimally, meaning that if (o], ..., ) also satisfies these inequalities and o < «; then we have

a; = o for each i. For any minimal generator, consider the power on .

If o < g, then we must have that as,...,a, > d — a1 (with equality if our generator is minimal) so that

the sum of any two powers are greater than or equal to d. There are % + 1 possible choices for a; (and then

d 4+t
2

ag,...,ap are fixed) if d is even an possible choices for a; (and again aw, ..., a, are fixed) if d is odd.

If o > g, then oo, ...,a, > d — «a;. However, we can have at most one of o; such that d — a1 < o; < %
(otherwise, 2(d — a;) < a; + o; < d). In fact, this is again back to the first case but with 0 < o; < 4 that
gives us 4(n — 1) possibilities if d is even and %t (n — 1) possibilities if d is odd. Therefore, p(I®) = 24 +1
if d is even and pu(I?) = "(dT'H) if d is odd. O

Then what if we delete only one edge?

Corollary 4.14. If I is a square-free monomial ideal in K[z1, ... x,] whose simplicial complex is a complete
graph missing 1 edge - (x1,23), then u (I(d)) =u (J(d)) where J is a square-free monomial ideal with the
complete graph of n — 1 variables.

i

FiGure 3. Complete Graph Missing 1 Edge
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Ny

F1GURE 4. Complete Graph Missing 3 Non-intersecting Edges

Proof. First we have that
n
N @oz)n () (@)
2<i<j<n i=1,j#1,2,i

n

ﬂ (i, i) N (21,2324 ... Tp).
ij=2

~
Il

Note that here
ﬂ (x;,z;) is a complete graph for n-1 variables
2<i<j<n
1 is a new variable
T3Ty4 ... 1T, is a generator of ﬂ (@i, 25).
2<i<j<n
So the proof follows directly from Theorem |

We can now say something about the quasi-polynomial of the complete graph minus any set of disconnected
edges, i.e. none of the edges share any vertices. (Check table ideals 4v2gB, 4v3gF for reference)

Corollary 4.15. If I is a square-free monomial ideal in K[z1, ... x,] whose primary decompositions consists
of all prime ideals generated by pairs of the variables except for the k ideals - (c11,c12), -, (¢i1,¢2), -+,
(ck1,cr2) such that c;j # cy unless i = w and j = 1, then p (I(d)) = ,u(J(d)) where J is a square-free
monomial ideal with the complete graph of n — k variables.

Proof. Without loss of generality, we may assume that ¢;; = x9;_1 and c;2 = x2;. We work by induction
on the number of missing edges. The base cases of Kk = 0 and k& = 1 are the previous two results. Assume
the result is true if we move k — 1 edges. Let I be the ideal whose simplicial complex is the complete
graph on the variables 7 to z, minus the k edges (z1,z2),(2s3,24),...,(Tok—1,Z2;), and let J be the
ideal whose simplicial complex is the complete graph on the variables xs to x, minus the k£ — 1 edges
(x3,24), (x5,%6), - - -, (Tog—1, ok ). Then, we have that
n
I=Jn ﬂ (SCZ‘, Ij)
i=1,j#1,2,i
=JnN (33‘1,.’)33.%‘4 .. ,’En)
Note that here
J is a complete graph for n-1 variables missing & — 1 edges
1 is a new variable

T3T4...T, is a generator of m (@i, xj).
2<i<j<n

So the induction step follows directly from Theorem By induction, the result holds. O

Then, to generalize more into the whole edge family, we notice that each ideal in the family consists of
loop and chains. We are still studying them. See the future work section.
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Now we consider another family of ideals: those whose simplicial complexes are the complete “2-graphs”
on n vertices, by which we mean you include all possible simplices given by three of the vertices, as in the
table ideal 4v4gB.

Proposition 4.16. If I C R is a square-free monomial ideal with n variables that can be decomposed into

I = (@i g op)t = (@1 Tpay oy wg - 2) D, then
nignd2+%2d2+%2_%n d=1 mod6
n215nd2+7gid+% d=4 mod®6
nZ—n n2 n(n+1 —

= d2+?d+ (12) d=5 mod®6

Proof. Consider a minimal generator m = " --- 2% of I (d) where I is as in the statement of the proposition.
Note that if all of the exponents are greater than %7 than this generator would not be minimal so we can
assume that there is one exponent less than or equal to %. Conversely, if at least three of the exponents are
less than or equal to %7 then in order for the inequalities to be satisfied, all of the exponents must be exactly
%. This leaves us to count the case where exactly one or two of the exponents is less than or equal to %. We
will do this by counting all of the ways for one exponent to be less than or equal to it, then subtracting off
the doubly counted ways of having two of them less than or equal to it, and finally adding back in the case
where all of the powers are g.

First, we count the ways for at least one of the exponents to be less than or equal to g. For simplicity,
we treat the case where a1 < g. Then for all 2 <i¢ < j <k <n, we have

wo; + a; 2 d— (65}

o +op > d—oy

aj o >d—o
If we add these together, we get: 2(o;+a;+ay) > 3(d—a1) which implies that (o +oj+a) > %(dfal) > d.
Thus, the only inequalities that we need to consider are the inequalities of the form a7 + o; + o > d or
equivalently o; +a; > d — o, since we will automatically have a; + o; + oy > d for all 7, 5,k # 1 as long as

we satisfy all the inequalities with «;. After fixing o, we see that these equations are precisely the equations
giving the minimal number of generators of .J(?=®1) where

J = ﬂ (xi,xj).
2<i<j<n

This gives an initial count:

ﬁ
ol

]
p(IDy <n D (g,
0

ay

but this has double counted the case when two of the exponents are less than or equal to g. Therefore,

we want to subtract off this double count. For simplicity, we treat the case of ay,as < g. This forces
a; = d — a1 — ag for all other 7. Thus, we need to subtract off the term (g) (L%J + 1)2, corresponding to
fixing two of our «; between 0 and %.

But this has overcorrected for the term when all of the powers are exactly %. In particular, we have
counted that monomial n — (Z) times so we need to add it back (Z) —n + 1 times. Note, this term only
occurs if d =0 (mod 3).

Putting these three pieces together yields the expression

L] 7(d—i)y _ (n
(1) {nZ};é R4 = () (|

J+1)°+(()=n+1) #d=0 (mod3)

d
3
N ifd=1,2 (mod 3)
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where we can use Proposition to compute the summands. Letting d = 6e+3f + g where 0 < f < 1 and
0 < g <2, we can write this expression as

d,—3éf—g ) d_séf_gflJrf .
@Y = (n—1)(d —2i) (n—1)(d—(2i+1)+1)
1 (I ) n ; ( 5 +1)+n ; .
n\ (d—g 2 n
() (52 er) + () —)
if d =0 (mod 3), and
d=3f=g ( 1)(d— 24) d=3f-9_14f ( )(d— (2 +1) +1) d 9
@) — nwZ\@— 4 n= — g (" —9

M(I ) n ZZ:(:) ( 5 —|—1>—|—n ; ( 5 ) <2>< 2 _|_1> 7
if d=1,2 (mod 3) Substituting in for f and g gives the result O

5. COMPARISON - SYMBOLIC POWERS VS REGULAR POWERS

We observed that there are some interesting relations between the two powers. Some of them are turned
into beautiful facts in this section, and some others still remain as conjectures. We will start with when the
two powers always yield the same ideal.

Proposition 5.1. If I is a square-free monomial ideal with 1 generator, then

7@ — d
foralld e N
Proof. Let I = (x;, -+ x;,). Then we can see that I¢ = (zf -2l ). Since I = (x4, ---x;,), we have that
I=(z;,)N---N(x;,). By Exercise , I@ = (z;)2N---N (xik)d = (zfll sz) = I, O
Proposition 5.2. If I C R is a square-free monomial ideal with 2 generators, then

7@ — d
foralld e N

Proof. Since [ is square-free and generated by 2 elements (and R is commutative), we may assume (by group-
ing similar terms first and re-ordering the variables) that I = (z1 -+ ZpTgy1 - Ty T1 -+ TpTmt1 - - Tg). We
know:

d d
4 :(xl...xkxk_,_l...xm,ml...xkxm+1...$4)( )

= ﬂ ()4 N (Zht1 - - - Ty Ty - - - )@

s=

k
m(xs)dﬂ ﬂ (mivmj)d

=1 k+1<i<m
m+1<5<¢

—

»

(acs)dﬁ({xz_ﬁl...x?z|ai+aj >dforall k+1<i<m<j</{})

I
)=

s=1

By observation, the defining equations are symmetric with respect to ag41 through a,, and with respect
t0 iy 1 through ay. Fix an element 7 --- % € T4, Then if i and j are both in the same subset (namely,
ifi,j <mori,j>m+1) and we also have o;; > «;, then o; can be replaced by o; — 1 and the defining
equations would still be satisfied (since they are satisfied for «;) so that monomial is not a minimal generator
of the symbolic power. This implies that for the minimal generators, we have that ag; 1 = -+ = ap = a
and a1 = --- = ay = b, and a + b = d. This means that 1@ can also be written as

1@ = ({(xl ) (@1 Tn) O (Tt )T 10 < gy < d}) =1
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But we cannot go on like this forever - the following quickly shows us that in three generators, the two
powers do not yield the same ideal.

Example 5.3. For the ideal I = (zy, yz, 2z), the analogous statement to the previous two propositions fails
in contrast to the ordinary power case.

Proof. We will show that I? # I(®). Tt is easy to see that I? = (2242, 2222, 4?22, 2%yz, xy’z, 2yz?). To
compute the symbolic power, we note that I = (x,y) N (2,2)N(y, z). Then I® = (z,9)2 N (z,2)>N (y,2)? =
(x2y?, 2222, y%22, 2yz). Thus, I? # 13, O

6. FUTURE WORK

Throughout our project, every answer opened several more questions. Because of the time constraints of
the program, however, some of these questions currently remain unanswered. We list our conjectures here
in hopes of resolving them in the future.

So far, we have characterized the Hilbert quasi-polynomials for some “edge ideals”, by which we mean
ideals whose simplicial complex corresponding to its prime decomposition is a graph which only contains
edges (and vertices). In particular, we have characterized the case of edges ideals corresponding to complete
graphs and edge ideals corresponding to complete graphs minus k disconnected edges. However, we have not
fully characterized the Hilbert quasi-polynomials of all edge ideals. In order to do this, we propose looking
at edge ideals whose simplicial complexes correspond to “chain” or “loops” like Figure

FIGURE 5. Chain and Loop Graph for Eight Variables

Conjecture 6.1. If I is an edge ideal whose simplicial complex is a chain of k vertices and k — 1 edges,

then h%(n) is a quasi-polynomial of degree (%]

Here is some evidence for the conjecture.

#Vertices | Primary Decomposition | Quasi-polynomial | Potential Bound
2 (z,y) d+1 (22;11
3 (z,9) N (y, 2) C(11+21 =51
+ -1

Conjecture 6.2. If I is an edge ideal whose simplicial complex is a loop with k vertices and edges, then
h3(n) is a quasi-polynomial of degree f%}
We are also very curious about the periods of SFM ideals whose simplicial complex consists of only edges

and triangles.

Conjecture 6.3. If I is an ideal whose simplicial complex consists only of edges or triangles, then h$(n)
can be a quasi-polynomial of period less than or equal to 6.

Although we mostly focus on Hilbert functions in this research, we are still interested in what the gen-
erators of the powers looks like - there are some approaches to the comparison of the generators of the two
powers.

Conjecture 6.4. Let I C R be a square-free monomial ideal. Then for all minimal generator x in 14,
there exists a minimal generator xP of I such that x2|xP.
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And hopefully, we can figure out the relation between the corresponding Hilbert polynomial and quasi-
polynomial. And finally, we will continuing looking for the bounds of the degree for the Hilbert (quasi-)
polynomials.
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