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Abstract

We model the physical phenomena of diffusion and phase separation. Differential equations
provide a continuum approximation of these processes. The heat equation models diffusion of a
spatial concentration gradient. The Allen-Cahn and Cahn-Hilliard equations model phase sepa-
ration of a binary mixture into its components. Each differential equation is approximated using
the finite difference method. For particle-based models, the software LAMMPS is used to simulate
molecular dynamics. The diffusive system studied was Argon diffusing in Helium gas. For phase
separation, a two-component Leonard-Jones fluid was modeled. The qualitative behavior of the
time evolution of the models is compared. Additionally, the differential equation parameters are
estimated from molecular dynamics data to quantitatively connect the timescales.
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Introduction

This project was motivated by the influence of electrolytes on the phase separation of polymer
solutions. We choose to take a mathematical modeling approach to similar chemical phenomena.
One fundamental question in modeling is when a course grained approximation is appropriate.
With some course grained approximations, there is the additional consideration of how to interpret
results physically. We use numerical techniques to compare an atomistic and continuum model
of chemical diffusion and phase separation. Based on the comparison, we propose a parameter
estimation procedure to interpret the continuum results. Our atomistic model uses Molecular
Dynamics (MD). MD simulates the time evolution of a collection of classical particles. A specific
model is chosen for approximating the interparticle forces. Then, various dynamics can be used
for the according evolution. We conduct equilibrium MD simulations, where the particles follow
Hamiltonian dynamics of pairwise Leonard-Jones interactions. MD simulations were conducted
with the open-source software LAMMPS [11]. Our continuum models are differential equations.
Each differential equation has a physical derivation from continuum mechanical laws. We discuss
their mathematical derivations as gradient flows of energy functionals. We present numerical
algorithms based on the finite difference method to approximate solutions to each differential
equation.

In the physical reality, all dynamics are quantum, and the classical approximation of MD is
itself a coarse graining. MD makes additional approximations through numerical algorithms and
specific model-simplifying assumptions. Still, for our analysis, we use MD simulations as the
physical reference for evaluating the continuum course graining. While it would be interesting to
examine the advantages and disadvantages of a more accurate atomistic model, that is outside the
scope of this project. We suggest procedures to set the continuum timescale and phenomenological
parameters from the MD trajectories. Using this algorithm, we estimate the the differential equa-
tion parameters from the MD simulations, and evaluate the fitted continuum model’s performance.
We model the simplest relevant physical systems, with the goal of demonstrating the estimation
technique and making the continuum model feasible.

One of the strengths of MD is its ability to reveal the effect of manipulating state variables.
Estimating the differential equation parameters at different system states could determine their
temperature, pressure, or concentration dependence. Each model may be applied to 1,2, and 3
dimensional systems. Throughout this paper, we will denote the system dimension by d, when it
is relevant to a derivation or result. We present numerical results primarily in 1 and 2 dimensions.
While the models are equally valid for d = 3, we choose lower dimensions to reduce computational
complexity and help with data visualization. We begin by analyzing atomistic and continuum
models for diffusion before moving on to phase separation. Diffusion is an critical part of phase
separation dynamics and can be accurately described by a simpler model.



Diffusion

For a system of particles under a non-zero concentration gradient, random motion tends to reduce
the concentration gradient over time. This net movement of particles from regions of higher
concentration to lower concentration is called diffusion. For real substances, the dynamics of
diffusion are impacted by many factors. Generally, diffusion is faster at higher temperatures
and lower pressures. Fick’s laws relate diffusion flux to the concentration gradient via the mass
diffusivity, or diffusion coefficient. Fick’s second law will be the basis for our continuum model of
diffusion.

2.1 Heat Equation

When modeling diffusion as a continuum phenomenon, we follow the concentration of solute. This
is the order parameter of the system, and is denoted u(z,t). One continuum diffusion model comes
from the heat equation. The heat equation with periodic boundary conditions is

— =DV zeNt>0

ot

u:tizo_uxi: 1 SZSd (21)
Uzi | y=0 = Yailg,=1 1<i<d
(u(z,0) = uo(x) z € Q,

where D > 0 is the diffusion coefficient, = [0, 1] is the spatial domain, and ug(x) is the initial
condition. For solutions u to the heat equation, the concentration gradient must decrease in time,
since

Vu =V - Vu. (2.2)

2.1.1 Analytical Solution

For the unit cube in d dimensions and periodic boundary conditions, the heat equation (2.1) may
be solved analytically. The solution u can be written as the Fourier series

u(x,t) _ Z o e—47r2\m\2Dt e27rim-ac7 (23>
mezZd
where
C,, = / uo(z) ™™ dx (2.4)
Q

is the m-th Fourier coefficient of the initial condition.
From the analytical solution (2.3), we see that solutions u to the heat equation satisfy the mass
conservation constraint

d
< 1) de = = Cy = 0. 2.
P Qu(x, ) dz P Co=0 (2.5)

All non-constant modes decay exponentially in time, causing u to converge to its uniform average
concentration as t — oo.



2.1.2 Finite Difference Approaches

For a numerical approximation of the differential equation, both temporal and spatial domains
must be discretized. We choose a finite timestep £ > 0 and approximate the solution at times
t =0,k,2k,.... We partition each spatial coordinate into N even pieces. The solution u to the
differential equation is then approximated by the sequence of samples

u' ~u(jh,nk) j €[N, n=0,1,... (2.6)
where the spatial resolution h = % reflects the domain size and sampling rate. In (2.6) we have
used the notation

[N]:={0,...,N —1}. (2.7)

To construct the difference equation corresponding to (2.1), we must also discretize the the
differential operator. The discrete Laplacian is defined by

d
1
h, n n n n
Al = 5 Zuj+€i —2uj +uj ., (2.8)
i=1
where e, ..., eq are the standard basis for R%. Accordingly, we define two difference schemes for
the heat equation. Scheme (S1)
uyth — ug h
J n
= DA™, (S1)

is forward Euler in time and central in space. Scheme (S2)

oy

D h, n n
is trapezoidal in time and central in space:
Since uj approximates the 1-periodic function u, it may be interpreted as samples of a 1-periodic

signal. This justifies writing _
uj = Z ot 2N (2.9)

me[N]¢

where .
o, = Z uy e 2N (2.10)
jeN]?
is the discrete Fourier transform (DFT) of the sequence u}. For the d-dimensional DFT, the
wavenumbers are vectors m € [N]<.

Using properties of the exponential function, we can understand how the discrete Laplacian



operator acts on Fourier space.
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Thus, differentiation in the spatial domain corresponds to multiplication in the Fourier domain.
For second-order differentiation, we have multiplication by the factor

d d
1 my; . 4 ) my;
= 2 (2e0s (277 ) —2) =~ 2 sin ("%)- (2.11)

Stability of the difference equation is defined by the DFT representation (2.9) of u}. We say
the algorithm is stable if
la™t ) < |a™| for all m. (2.12)

ml

For the heat equation forward difference scheme (S1), we have the equivalent equation
attt = o + kDAl = (1 + kAo, (2.13)

in Fourier space. The quantity 1+ kD), is called the amplification factor of the difference scheme.
From the amplification factor, the stability condition (2.12) becomes

|1+ kDA, <1 for all m. (2.14)

Since A, < 0, this is equivalent to
1+ kDA, > —1. (2.15)
We need the minimum value of kD), greater than or equal to 2. Over all N and all m; € [N], the

m;

maximum of sin? (WW) is 1. Therefore, a necessary and sufficient condition for stability is that

2 h?
k < min NeNme[N?p = ———. 2.16
{ % Z?:l sin” (W%) A } 2D Z?:l 1 ( )
The maximum k value for which the scheme is stable is written
h2
= ——. 2.1
kcrlt 2dD ( 7)

The amplification factor is plotted in Figure 2.1 for different values of k, showing stability for
k S kcrit~
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Figure 2.1: The amplification factor for the one-dimensional heat equation forward difference
scheme (S1) is plotted for different values of % 7z near ;";2“ When £ is above the critical value, the
amplification factor dips below -1, showing a hlgh frequency instability for the difference scheme.
For simplicity, D = 1.

For the implicit scheme (S2), we have the equivalent equation

kD
= + T(A a4\ ,am) (2.18)
in Fourier space. Simplification gives
k kD amtl 14 E)
1— = Ap)altt = (1 - — = L 2.19
(1= Gl = (4 g, = T = (219)
Since A, < 0, this shows unconditional stability for £ > 0.
n+1
—1< <1 = |a"1 < o (2.20)
an

Note that each difference scheme also satisfies mass conservation. Using the Fourier space
equation (2.13), we have
al™t =al + kD N\ o =aP,
0 0 0 0

=0

h? Z Wt =aftt = aff = 2 Z uy. (2.21)
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Similarly for scheme (S2),
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Remark 2.1.1. The form of Scheme (S2) given in its definition suggests an iterative process that
involves solving a linear system of N? equations at each timestep. However, we can drastically
improve complexity with the fast Fourier transform algorithm (FFT). The form of Scheme (S2) in
(2.19) show that in Fourier space, the iterative process can be performed in O(n?) with a single
multiplication on each amplitude. Therefore, using the FFT to convert back to the spatial domain
results in O(nlogn) at each timestep [3]. The FFT approach was used in the implementations of
all (semi)-implicit schemes.

2.2 Diffusion Molecular Dynamics

We use the Leonard-Jones model for interpar-
ticle interactions. Two Leonard-Jones particles
1,7 have the interaction potential

1.5

So\12 5 \6
. )" ()] o
0 Tij 2 Te, 0.5
(2.22)

where 7;; is the distance between ¢ and j, 0;; and = 00
€;; are the Leonard-Jones parameters, and r. is a s ]
range cutoff. The strength of interactions is de-
termined by €;;, which is the maximum depth of |
the potential well. The distance scale of interac-
tions is 0y, which is the distance where V;; = 0. L5 s o s 5 5 o
Typically, €; and o;; are physical properties of r/c

the particles. The order 12 term in (2.22) ac-
counts for close range repulsion. It dominates
when r;; < 0. The order 6 term adds attrac-
tive forces for particles at moderate distances.
Together, these effects characterize London Dis-
persion forces. For the full system of N4 par-
ticles, the potential is the sum of each pairwise
interaction. The force on particle i is given by

Figure 2.2: The dimensionless 6-12 Leonard-

Jones potential energy function % is plotted

against dimensionless interparticle radius I.
The parameter o sets the x-intercept and e is

the maximum depth of the potential well.

Fi=> V.V (2.23)
j#i

We use the Leonard-Jones model to simulate the diffusion of Argon in Helium gas. Parameter
values are taken from MD experiments and displayed in Table 2.1.
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V (kcal/mol)

Interaction | € (kcal/mol) | o (\r{A})

He-He 0.0196 2.50 021

Ar-Ar 0.2498 3.40 03 , , ‘

He-Ar 0.0700 2.92 oa i
Table 2.1: The Leonard-Jones parameters Figure 2.3: The interparticle potentials
for Argon and Helium were determined in for He-He, Ar-Ar, and mixed Ar-He in-
experiments by [9] and [7], respectively. teractions are plotted against particle ra-
For the mixed parameters, LAMMPS de- dius. The potentials use the Leonard-
faults to the geometric mean of each par- Jones model (2.22) for the parameter val-
ticles’ parameters. ues given in Table 2.1.

2.2.1 Parameter Estimation

The MD trajectories give the positions of each Argon (and Helium) atom at a sequence of discrete
timesteps. We use a binning process to generate a space discretized approximation of the density
of Argon at each timestep [6]. Let N be the course-graining parameter of this binning. In analogy
to the difference equation, we use
Ur je[N" n=01... N (2.24)

to approximate the density of Argon at point x = jh of timestep n. We fit the data U} to the
numerical approximation of the continuum model using a least squares error scheme. The residuals
are given by

{U} —u}(D) | 0 < n < nax, j € [N]"} (2.25)
where u?(D) solves (S2) for diffusion coefficient D and initial condition U ]Q . Solving this nonlinear
optimization problem gives an estimate D of the diffusion coefficient.

In the implementation of the fitting algorithm, we used optimization routine curve fit from
the Python package scipy [12]. This function takes a procedure parameter f(D). The argument
function f(D) takes a prospective parameter value D and returns the list of residuals. The op-
timization function returns the parameter value D that minimizes the L? cost of the residuals
returned by f (15), using the Levenberg-Marquardt algorithm. Each iteration of the optimization
procedure calls the input function f on the prospective parameter value. To generate the residuals
(2.25), f runs the implicit scheme (S2) for the given diffusion coefficient. Even though the explicit
scheme (S1) is faster, we use the implicit scheme in the estimation procedure to avoid possible
stability issues with exploring the parameter space.



2.3 Results

We show results for two-dimensional simulations of molecular dynamics and continuum diffusion,
although the algorithms are easily extended to three dimensions. We impose periodicity on the
MD domain boundary, matching the differential equation’s boundary conditions. We conducted
three LAMMPS simulations of Argon diffusion in Helium. Selected snapshots of the MD trajectory
are shown in Figure 2.5. The MD simulation box was 50000 A x 50000 A. For simplicity, we use
a dimensionless length scale where the unit square represents this domain. There were 30000
helium atoms and 30000 argon atoms. Each simulation proceeds from a unique pseudo-random
initial condition. The initial conditions were characterized by a uniform distribution of Helium
in the simulation domain [0,1]? and a uniform distribution of Argon in [1/4,3/4]>. The particles
were imbued with initial velocities satisfying the Maxwell-Boltzmann distribution of velocities for
T = 300.00 K. The pressure of the system was .995 atm. The MD timestep was kyp = 5 fs. The
repulsive term of the Leonard-Jones potential necessitates a small timestep for the integrator to
be accurate. The pairwise interaction range cutoff was r, = 20 A. Each MD simulation was run
for 1e6 timesteps.

From each simulation, we use the procedure outlined in Section 2.2.1 to estimate the diffusion
coefficient D of Argon. To reduce computational complexity, we use a larger timestep & = 1000kyp
for the difference equation model and only consider every 1000 MD timesteps. This gives ny.x =
1000 in (2.25). The estimation procedure generates an estimate Dy for each binning precision
N = 20,50,100. The result of solving the diffusion equation for Dsy and N = 50 is shown
alongside the estimated order parameter with binning precision of 50 in Figure 2.5. Table 2.2
shows the error of solving the diffusion equation for each estimated parameter value at the different
spatial precisions.

It is not surprising that the relative error decreases with higher resolution. We expect the
order parameter estimation to better represent the true system for large N. The difference scheme
accuracy (relative to the true solution) increases with N, which could contribute to this observation.
When N is large enough however, the finite number of MD particles makes the estimated order
parameter display the non-continuum effects. Based on these competing effects, we expect there
to be an optimal level of the binning resolution to achieve the greatest prediction accuracy. This
parameter depends on the size of the MD system, the number of particles, and their density.

While the relationship between binning resolution and error was expected, we did not anticipate
its effect on the value of D. The variation in D between N = 20,50, and 100 is significant. We
don’t see any reason for the estimated value to depend on the spatial resolution. It is interesting
that this occurred in each MD run, and more experiments over a higher range of resolutions should
be used to investigate this trend.

Other limitations of our approach that should be addressed in future experiments include:

e We chose to use a continuum idealization of the initial condition when solving the differential
equations. How well does the parameter estimation converge and perform when the MD
initial condition is used?

e In some treatments of MD data as an order parameter, a convolution is used to smooth the
approximation [6]. Would a smoothing step prior to estimation help with the discrepancy
across different binning resolutions?

e Does using the estimated diffusion coefficient have better prediction accuracy than the real
diffusion coefficient for models based on the diffusion equation?



e With larger MD simulations and greater binning resolution, will the estimated diffusion
coefficient approach the literature value?

e We used a linear approximation of the cost function to determine the confidence interval.
With a nonlinear treatment of the confidence bands, would the the difference from literature
be significant?

e Would the accuracy of the parameter estimation be improved with a higher order numerical
scheme for the differential equation?

Cost

0.0 D 1.5 3.0
D

Figure 2.4: The least squares error is plotted for values of D near D when N = 20. The unimodal
shape of the plot suggests that a standard optimization procedure will estimate D accurately.

Dy 95% CI | N =20 Error | N =50 Error | N = 100 Error
N =20 0.9121 | 0.0015 | 0.003223 0.002815 0.004819
N =50 0.7948 | 0.0005 | 0.003354 0.002821 0.004828
N =100 0.8417 | 0.0005 | 0.003292 0.002810 0.004819
Literature | 0.7335 | 0.0087 | 0.003455 0.002856 0.004852

Table 2.2: We estimated diffusion coefficients for each MD run and binning precision. For each
binning precision and estimated diffusion coefficient, we solved the heat equation with the finite
difference method and calculated the difference from the order parameter estimated from MD. The
error is averaged over the sampled time and space points.
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Figure 2.5: The initial condition for MD simulations was a uniform random concentration of Argon
in [1/4,3/4]* and 0 outside. The initial distribution of Helium was uniform in [0, 1]2. The initial
condition for the heat equation was 1 in [1/4, 3/4]? and 0 outside. The order parameters were both
scaled to mean 1/4 for presenting the data. In the figure, the fitting results are shown for a binning
parameter of N = 50. Columns 1-5 display timesteps n = 0, 50, 200, 500, 1000, respectively. On the
top row, MD snapshots are shown. In the second and fourth row, the order parameter estimated
from the MD trajectory is shown. In the third and fifth row, the solution to the heat equation for
the parameter Dy with spatial resolution N = 50 and appropriate initial condition is shown.



Phase Separation

Chemical phase separation occurs in some multi-
component systems when the mixture separates
into regions of the pure components. We con-
sider a two component mixture of fluids. Here,
the order parameter v is the difference in mole
fractions of the components. At high tempera-
ture, the system exists at equilibrium as a ho-
mogeneous phase. When cooled below a crit-
ical temperature, phase separation may begin.
Below this critical temperature, the Ginzburg-
Landau free energy of the system takes a double
well shape. This function ¢ : [-1,1] — R is
graphed in Figure 3.1.

The curvature of ¢ defines the stability prop-
erties of phases. Below the critical temperature,
the order parameter lies in one of three regions
[3], [8]. In the unstable, or spinodal, region,
Y"(v) < 0. The points vZ and v; where ¢ = 0
are called the spinodal points. Inside (vg,v;),
any fluctuations in the order parameter are un-

1

i

i

)

i
] 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
' !

Vg VY v, Vi

Vv
Figure 3.1: The phase energy is represented by
a double well potential. Here we show a general
double well potential. The points v, and v, are
the local minima of 1. v; and v share the orange
supporting tangent.

stable, growing into separation. In the metastable region, phase separation proceeds by nucleation.
Small fluctuations in the order parameter may increase energy, but sufficiently large perturbations
grow in time. The binodal points v, and v, where the supporting tangent lines touches are shown in
Figure 3.1. The metastable region is defined precisely as (v,, v3) U (v§, vp). Outside the metastable
region, v is stable and all fluctuations increase the phase energy.
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‘ } } ‘
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Figure 3.2: Our chosen phase energy function
(3.2). Here, v, = —1, v§ = - v}
Vp = 1.

= \/ig, and

It is common to approximate i as a quar-
tic polynomial [8]. For our differential equation
models, we can restrict our attention to sym-
metric ¢. [3] show that any quartic ¢ reduces
to solving the equation for a free energy function
of the form

(07

G

U(v) (3.1)
For numerical results, we will use the specific

potential

Y(0) = 10~ 17

shown in Figure 3.2. For this v, the spinodal
region is (—\/Lg, \/Lg) and the metastable region is
(—=1,—%)U(3,1). The only stable points are the
pure phases 1 and -1.

(3.2)
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3.1 Gradient Flow Equations

3.1.1 Phase Energy Functional

Using the general Ginzburg-Landau free energy 1, Cahn and Hilliard propose an energy functional
_ M/ V() + 2| Vul da (3.3)
Q

describing phase separation [2]. For a configuration described by u, F'(u) is the total free energy of
the system. The term [ ¢ represents the energy associated with a homogeneous system. Since 1
attains its minimal value at the pure phases, the first term of (3.3) favors separation. The second
term [ %|Vu|2 is entropic. It handles the non-uniformity of the system by associating energy
with the magnitude of the concentration gradient. This makes large concentrations gradients
energetically unstable and introduces the diffusive dynamics that should be present in any fluid.
The parameter v determines the relative scale of diffusive and separation forces. Physically, this
determines the interface distance between pure phases. A larger v corresponds to stronger diffusion
and a wider interface.

A variational approach provides a necessary condition on functions u which minimize F. Setting

f,u, V) = (u) + 2| Vul (3.4)
gives the Euler-Lagrange equation for F' as
d
0 0 f
Z Oz, Ouy, 0 (3.5)
or equivalently
2 -V, -V, f=0. (3.6)
Ou e '
From (3.4), we have
of ou
SO
Ve V. f =7Vu (3.8)
and of
L ) = o(w), (39)
Therefore, the Euler-Lagrange equation is
(u) —yV?u = 0. (3.10)

Any equilibria of the system with energy F' should satisfy (3.10). We can use a gradient flow
to introduce time evolution towards this minimal energy state. Gradient flow equations use the
Fréchet derivative of an energy functional to decrease the system energy over time.

Let F be a Hilbert space with inner product (- ,-)r and induced norm || - ||z. For an energy
functional F' : F — R, the Fréchet derivative at a point u € F is the unique linear operator ‘3—5
satisfying
(2—5 v) = lim dF(u—l—ev) . (3.11)

e—0 de N

13



Using the Riesz Representation theorem, we associate

OF OF

<%,'U> = (a,?))]:. (312)
The gradient flow equation for F' follows as
ou oF
i 1
o~ o (3.13)

where k > 0 is a constant scaling time. From the functional chain rule, we have

2
<0.

]:

d oF Ou oF oF

oF
dr (u) = (%7 a)f = (@» _“%)}' = —K

u

This shows that (3.13) has the desirable physical property of the system’s total energy decaying
in time.

3.1.2 Function Spaces

We will derive two differential equation models as gradient flows of the phase energy functional
(3.3). First, we introduce the function spaces for differentiation. The space

L*(Q,RY) = {f: Q — R

[ 1@ e < oo} (3.14)

of square integrable functions has inner product

(f.9)2 = / f(x) - g(z) da (3.15)

and induced norm .
1l = VT s = ( [l dx>2 | (3.16)

For L? functions f and g, we have a useful identity for the norm of their sum
If + gl = /Q f(z) + g(2)* do
= [ 15+ 21(0) - o0) + gt o (3.17)
Q

= If113+ (f.9)2 + llgll3.

To keep periodic boundary conditions consistent with the molecular dynamics model, we will
consider a periodic subspace

L? .= {u c L*([0,1]%) : u

p

—u lgigd} (3.18)

(EZ:O (Ei:17

of L?. This is a Hilbert space under the L? inner product and norm.
Sobolev spaces generalize L?, introducing additional regularity by requiring derivatives to be
square-integrable. Generally, the L? Sobolev spaces are defined by

H™Q) = {u € L*(Q) : 0u € L*(Q) for all |a| < n} (3.19)

14



for non-negative integers m. H™ () is a Hilbert space with inner product

(u,v)gm = Z (0%, 0%V)q (3.20)

|| <m
and induced norm
lullam = {(u,u)m}>. (3.21)
Specifically considering functions on our spatial domain = [0, 1]¢, we define the periodic
Sobolev spaces
H"=H"([0,1]Y)n L. (3.22)

To ensure uniqueness of solutions, we will further restrict our analysis to zero-average functions
by defining

H;” ={ue H: /Qu(x) dx = 0}. (3.23)

We note that H" and Hgl are Hilbert spaces under the same inner product (3.20). Additionally,
for functions u,v € Hg‘, the inner product becomes

(u,v)gm = Z (0%u, 0%v)s. (3.24)

1<|al<m
We extend these constructions to m < 0 by defining
H™™(Q) = (H ™))" (3.25)

Similarly, extend H," and ng to negative m using their dual spaces. The Riesz Representation
theorem defines the inner product

(u*, ") g-m = (u,v) gm (3.26)
on the dual spaces, where for each u*,v* € H™™(Q), u,v € H™(Q2) are their associates.

3.1.3 Allen-Cahn Derivation

We derive the Allen-Cahn equation as the gradient flow of the phase energy function F' over LIZ).
Begin by computing the linear approximation of F.

F(u+ ev) = M/ Y(u+ ev) + %\Vu + eVo|? dx (3.27)
Q
Using (3.17), the second term of (3.27) may be written

/ |Vu + eVol* dr = || Vul|3 + 2(Vu, eVo)y + [|eVo|3 (3.28)
0
= || Vull3 + 2¢(Vu, Vo), + €| Vo3 (3.29)
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To handle the inner-product term of (3.29) we note the following useful vector relationships

Ju Ov
Vu-Vou = 2 al‘n 8_;1:” (330)
d
0 ov
V- (uVv) = nzl . (“axn) (3.31)
d d
ou v 0*v
_ Ov. 32
0x,, 0%y, i — u82:vn (3:32)
= Vu- Vv +uV3v. (3.33)
We have
(Vu, Vv)g = / Vu- Vv dx
Q
= / V- (vVu) — vV?u dz
. (3.34)
= / vVu - n dr — /(V2u) -v dx (Divergence Theorem)
o0 Q
—0 by (3.35)
= —(V?u,v),.

We already have assumed that u and v are l-periodic. If we additionally require that Vu is
periodic,

d

V . dr = 7t — V 7t -0 d
/mv u-ndz Z{/[m]d_lv(x )‘xi_o [ u(ac >‘xi—0 6} T

=1

(3.35)
+ / ,U<l”t)|:c'*1 [Vu(x,t)‘x_fl : e,} dx}
[071}d71 1 1
=0
allowing us to set the boundary integral in (3.34) to 0.
We can now compute the Fréchet derivative of F. First,
d
aF(u—i—ev - {/w u+ €v) dz + |Jull3 + e(— V2u,v)2+62|]v||§} (3.36)
= d—w(u + ev) dz + (= V2u,v)s + 2¢||v]|3 (3.37)
o ac
:/w’(u~|—ev)-v dx + (—=V?u,v)y + 2¢||v||? (3.38)
Q
where we applied the Liebniz integration rule to bring % inside the integral. Finally,
d 2 / 2
d_F U+ €ev) L/J v dr + (—Vu,v) = (Y'(u) — Vu,v)s. (3.39)
€
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Using the L? association,

OF

<%, v) = (Y (u) — Viu,v)y = 5y = V' (u) — V2u. (3.40)
Therefore, in L2, we have
oF
5u = V' (u) —yVu (3.41)
as the gradient of F. Accordingly, we the L? gradient flow is
ou
T k[YV2u — ' (u))]. (3.42)

Taking x = 1, (3.42) is the Allen-Cahn equation, which we will discuss in Section 3.2.

Remark 3.1.1. If we take ¢ = const, the order parameter satisfies

ou 9
5 = Vu. (3.43)

=D

This describes the case where there is no energy change associated with phase changes. We recover
the heat equation (2.1) in the diffusion regime, as expected.

3.1.4 Cahn-Hilliard Derivation

For the Cahn-Hilliard equation, we will find the gradient of (3.3) over sz ! Explicitly, the inner
product (3.26) becomes

(w0 ) g1 = (u,0) g1 = Z (0%, 0%v)2 = (Vu, Vv),. (3.44)

la|=1

To establish the associate correspondence between H; and Hp_ ! we consider the elliptic problem

— Vu = z € (0,1)
{ d 0.1) (3.45)
Vu . Vu e
where u € HZ} and f € szl. Say u is a weak solution to (3.45) if
(f,0) = (u,0) . (3.46)

The Riesz Representation theorem guarantees the existence and uniqueness of such a u as the
associate of f. Additionally, the boundary conditions of (3.45) along with the integration by parts
identity (3.34) imply

(f,0) = (u,v) i = (Vu, Vv)g = (—=V?u,v), (3.47)

Thus, for u* € Hlj L and its associate u, the L? association
u* = —-Vu (3.48)
holds whenever Vu is periodic.
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Fix u* € H, (). Let w := yV2u* — ¢'(u*), and let v* € I, be arbitrary. Let w* € H, ! be
the linear functional defined by

(w*,-) = (w, ") (3.49)

so that w is the associate of w*. We will assume Vw is periodic to use the association (3.48) and

the integration by parts identity (3.34). Denote the associates of u* and v* as u and v, respectively.

(W, ") -1 = (w, )

:/Vw-Vvdx
Q

= /Qw (=V?v) da (3.34)
= / w- v dr (3.48)
- / VR — )] d

= (YVu" = ¢/ (u"), v%)y
Therefore, the gradient of F' in Hp* Lis given by

F
gu* =w' = -Vi(w) = V’[yViu" — ¢/ (u)]. (3.50)
The corresponding gradient flow
0
0—1: = &V (u) =7V (3.51)

is the Cahn-Hilliard equation, which will be discussed in Section 3.3.
Remark 3.1.2. Given any function u € H, ' satisfying (3.51), we can we can write

P /Q u(z) da. (3.52)

Clearly, u € H; Uand u satisfies (3.51). The restriction of the derivation to zero-average functions
was required for uniqueness of solutions. However, the resulting gradient flow extends to H, L

3.2 Allen-Cahn Equation

The full statement of the boundary value gradient flow of the phase energy functional over Lg is

(0

a—::”yV%—qﬁ(v) reQt>0

Vim0 = Yl l<i<d (3.53)
Vay | o = V|, 4 1<i<d
Lo(,0) = p(a) req,

where v is the phenomenological interfacial boundary parameter, ¢ = v’ is the derivative of the
free energy function, 2 = [0, 1] is the spatial domain, and vy(z) is the initial condition.

3.2.1 Linear Stability Analysis
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The Allen-Cahn equation (3.53) admits three
constant steady state solutions. These are ob-
tained by solving the ODE

0=~V — 6(v) (3.54)

when Vo = 0. Note that (3.54) is identical to
the Euler Lagrange equation (3.10) for the phase
energy functional, which implies that any sta- 15 1 05 0 05 1 15
tionary energy point is an equilibrium of (3.53).
From (3.54), we see that the constant equilibria
are the zeros of ¢. The phase plane in Figure 3.3
shows the stability analysis. The solution v =0
is unstable, while v = —1 and v = 1 are stable
equilibria.

The linearization of (3.53) about the unsta-

Figure 3.3: The RHS of (3.53) is plotted against
v when v is v is spatially constant. The phase
plane shows that 1 and -1 are stable equilibria
while 0 is unstable.

1.00

ble equilibrium v = 0 is
0.75
ov
— =~V 4. 3.55 050
at ry ( ) 0.25
For periodic boundary conditions, (3.55) has so- 000
lution -0.25
U(l’,t) _ Z [;;]m 8(1_47r2'y|m|2)t eQWim-w’ (356) ~0.50
mezd o
where the Fourier coefficients of the 1-periodic o 500 1000 1500 2000

c . . lml/ /v
initial condition are given by "

_ . Figure 3.4: The amplification factor of the solu-
[vol,,, = / vo(x) ™™ da. (3.57) tion to the Allen-Cahn equation linearized about
Q

0 is plotted against |k[/\/7.
The amplification factor is 1 — 472y|m|? and is plotted in Figure 3.4. Flro\r/n_ the plot, we see that

Fourier mode m decays in time if 472y|m|?> > 1. This causes a low frequency instability. The
constant mode will always be unstable. Whether additional modes are unstable depends on the
value of v. That a smaller value of v introduces higher frequency oscillations is consistent with its
physical role in determining the width of phase boundaries.

The linearized Allen-Cahn equation about the stable equilibrium v =1 is

0
a—j — V20 + 2 — 2. (3.58)
For periodic boundary conditions, (3.58) has solution
v(z t) =Y Cp & (3.59)
meZd

where the constants C,,

o {([UO]O —De24+1 m=0 (3.60)

ool el 22 0
are related to the Fourier coefficients defined in (3.57). For the linear solution, the amplitudes of
all non-constant Fourier modes decay exponentially in time. The constant mode approaches the

steady state solution 1. The linearization about the other stable equilibrium similarly exhibits
exponential decay of non-constant Fourier modes. However, the constant coefficient tends to -1.
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3.2.2 Finite Difference Approaches

We use the same discretization of the domains as in 2.1.2 and analogously define

U;?%U(jh,nk), J € [N]dan:()?l?'"

The forward difference scheme (S1) easily extends to the Allen-Cahn equation:

ot

Due to the nonlinearity of ¢, a fully implicit scheme would require solving a nonlinear system
of equations at each timestep. To improve numerical stability while still avoiding the associated
computational costs, we use the semi-implicit method

At _en 1
]Tj = ’YAU;-LJF — o(v}). (54)
The Fourier stability analysis performed in Section 2.1.2 for the heat equation difference schemes
relies on the linearity of the Fourier transform. Hence, it doesn’t work for the nonlinear difference
schemes (S3) and (S4). However, we can analyze the linearizations of (S3) and (S4) about the
stable constant equilibria. We expect the stability of these linear schemes to reflect the stability of
the nonlinear scheme, since solutions v are bounded by -1 and 1. Linearizing the difference scheme
(S3) about the stable equilibrium v = 1 gives

Un+1 —n

jTj — A%]’F +2 — 207, (lin-S3)

Write the solution v;? as
vy = Z ol e*Mw (3.61)
me[N]¢

using the DFT. In conjugate space, (lin-S3) becomes

3.62
amtl = (1 =2k + ky\n) o, m #0. (3.62)

m

{a?n+1:(1—2k)a”m+2k m=0

To satisfy the stability condition (2.12), we need the amplitudes of every Fourier mode to decay

—~

in time. However, when —1 < [vp], < 1 the no value of k is sufficient. In this case, o — 1 as
n — oo. This is related to the Allen-Cahn equation failing to preserve mass in general. Thus, we
must use the modified stability condition

la | < |a|  for all m # 0. (3.63)

From (3.62), we have the amplification factor 1 — 2k + kv, for m # 0. Since the amplification
factor is less than 1, stability follows from

d
12k — 42—3 ; sin? (wm7> > 1. (3.64)
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Using the a-priori bound |sin(x)| < 1,

h2
kcrit :

Again, the analysis for the linearization of (S3) about v = —1 reveals the same stability condition
on k. Since v = +1 are stable equilibria of the Allen-Cahn equation and solutions are bounded
between them, we expect the stability of the linearized scheme to at least determine an lower
bound for the critical k£ of the nonlinear scheme. Numerical experiments support this conclusion.
Figure 3.6 shows a simulation which suggests the critical & value for (S3) is close to (3.65).

1 — L5 — 1 —
Lo 10+ 10

05 05 05

0.0 0.0 0.0
05 05+ 05

- — | — |

-10 = 10 e 10 -
-5 1 - 1

0.0 01 0. 03 04 0. 0.0 0.1 0.2 03 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

m/N m/N m/N

Figure 3.5: The amplification factor for the linear difference scheme (lin-S3) is plotted for different
values of % near “st. The left, middle and right plots have parameter values y = .01h?, h?
and 100h%. When k is above the critical value, the amplification factor dips below -1, showing a
frequency instability for the difference scheme.

We can also perform this stability analysis on the linearization
n+1 n
v =t .
<t - YA 42— 27 (lin-S4)

of the semi-implicit scheme (S4). The equivalent equation in Fourier space is

att = ol + 2k — 2ka”, m=0
L | (3.66)
altt =o' + kyApalitt — 2kal, m #£ 0.
For m # 0, we have
(1 — kyAp)a™ = (1 —2k)an, (3.67)
so amplitudes are decreasing in time if
1—2k
1< — <1 3.68
1 —Fky\, T ( )

Since A\, < 0, this holds whenever 1 — 2k > —1. Thus, the stability condition for the semi-implicit
linearized scheme (lin-S4) is keqy = 1. The superior stability of the nonlinear semi-implicit scheme
is demonstrated in Figure (3.7).
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k= k'crit k> kcrit
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n=0 n=0
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Figure 3.6: The nonlinear difference scheme (S3) was solved in 1D for A = .01,7 = .01 from an
initial state of a sine wave. On the left, £ = .0050 = k. and on the right, £ = .0051 > k., where
ket refers to the stability of the linear scheme (lin-S3). When k is greater than to the critical
value of the linear scheme, the simulation displays numerical instability. However, k = k. seems
to be stable, suggesting that the stability condition for the linear scheme reflects the stability of
the nonlinear scheme.

22



1.00

0.75

0.50

0.25

0.00

VA, L)

—0.25

—0.50

—0.75

—1.00

0.0

0.2

0.4

0.6

0.8 1.0

—0.50

—0.75

—1.00

0.0

0.2

0.4

0.6

0.8 1.0

1.00

0.75

0.50

0.25

0.00

VA, L)

-0.25

—0.50

—0.75

—1.00

n=1000

0.0

Figure 3.7: The nonlinear semi-implicit scheme was solved in 1D with different spatial resolutions
h = .01 and h = .005 on the left and right. Using the same initial condition and 7 as in Figure
3.6, we see that the implicit scheme (S4) has better stability properties than (S3). Additionally,

its stability does not share the dependence on h.
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3.3 Cahn-Hilliard Equation

The full statement of the boundary value gradient flow of the phase energy functional over H, Lis

(0
= MV zENt>0
ot
w = ¢(u) —yV?u
ul, o=l wl, _o=pl, 1<i<d (3.69)
Umi =0 = uxi =1’ wwi J = qui - 1 S 7 S d
L u(7,0) = uo(z) x €,

where 7 is the phenomenological interfacial boundary parameter, M is a mobility coefficient, ¢ = ¢/
is the derivative of the free energy function, Q = [0,1]¢ is the spatial domain, and co(z) is the
initial condition [3].

The periodic boundary conditions ensure that solutions ¢ to the Cahn-Hilliard equation (3.69)
satisfy the mass conservation constraint (2.5). We apply (3.69), the definition of the Laplacian
operator, and linearity of the integral.

d
e c(x,t) dx—/8 (z,1t) (3.70)
_M/V2 w(z,t)d (3.71)
0w
y /[0 ”dz (@ )da (3.72)
T n=1 n
d
0w
—uy /{0 L e (3.73)
n=1 ) n

In (3.70), the Liebniz integration rule lets us move the time derivative inside the integral since
¢ is continuous in xz. Without loss of generality, consider the first term of (3.73) and use the
fundamental theorem of calculus to apply the boundary conditions

w w '
/;)I]d 87(133'1 dxd:/[;)l}d 18—371($1,...,t) dl'g"'dxd (374)
1 5 - x1=0
ow ow
= 1,...,t) — =—(0,...,t)dzy---d 3.75
[ R R N e
= 0. (3.76)

Thus, each term of the sum (3.73) is 0, and mass is constant in time.

3.3.1 Linear Stability Analysis

Like for the Allen-Cahn equation, any equilibrium solution to the Cahn-Hilliard equation satisfies
the  Euler-Lagrange  equation  (3.10) for  the phase energy functional [§].
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Any constant function ¢ = ¢ is an equilibrium
solution of the Cahn-Hilliard equation (3.69).
Linearizing about ¢y gives

0 .
a—j = M[¢/(co)Vie —AVA(VZ)].  (3.77)
For periodic boundary conditions (3.77) has so- o me
lution i
c(x,t) = Z [c/o\]m e~ Aimit g2mime (3.78)
mez?
Ay = =47 M|m|*[¢ (co) + 47%v|m]|?].

(3.79) m

When ¢'(cp) >= 0, A} > 0 for all m. So, every
non-constant Fourier mode except m = 0 decays
in time, causing solutions to the linear equation
to converge to their constant average. When
@' (co) < 0, ¢ is in the unstable region. Just as
with the linearization of the Allen-Cahn equa-
tion about its unstable constant equilibrium,
there is a low frequency instability. Again, the
number of modes which grow in time depends
on the parameter 7. Here, the fastest growing
mode is not be the constant mode, as shown by
thr amplification factor plot in Figure 3.8.

Figure 3.8: The amplification factor —A,
for solutions to the Cahn-Hilliard equation lin-
earized about ¢ is plotted against wavenumber.
When ¢y is in the spinodal region, the linear so-
lutions display a low-frequency instability for all
wavenumbers m with |m| < m.. The fastest
growing wavenumbers have |m| = m,, € (0, m.).

3]

3.3.2 Finite Difference Approaches

We use the same discretization of the domains as in 2.1.2 and analogously define

C}LQC(jh,nkj), JE [N]d,n:(),l,...

The forward difference scheme (S1) easily extends to the Cahn-Hilliard equation:
g = MAMp(c?)) — MyAM(AM). (S5)
k J J
Again, we use a semi-implicit scheme
A Y AM(c})) — MyA" (AT (56)
k J J

to avoid solving a nonlinear system at each timestep.
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Just as with the difference schemes from the heat equation, the discrete mass conservation
condition (2.21) extends from the differential equation to the difference schemes. Writing

m-j
E Oé e27r1 ~

me[N]4
gb(czz) —’}/Ah no__ Z ﬂn 27r1—
me[N]?
¢(C;L> Ah n+1 Z 571 27r1—’
me[N]d
we See
ag™ = af + NfBl = ag

for (S5), and
af™ = af + \dg = of

for (S6).

As with the Allen-Cahn equation, the nonlinearity of the difference schemes for the Cahn-
Hilliard equation prevent a direct Fourier analysis from determining their stability. However, we
can linearize the difference scheme (S5) about a stable constant equilibrium ¢ = ¢y, |¢o] > \/Lg,
giving

Cn+1 _n

J’Tj = M¢/(co)Alc? — MyAr(ARe?). (lin-S5)

Using the standard DFT representation of ¢}/, this gives the equation
a™th = 4+ kM@ (co)Ama? — kM~ o = (1 4+ kM (co)Am — kMyA2 )l (3.80)

in conjugate space. We have the amplification factor 1 + kM¢'(co) Ay — kM~A2,, which is plotted
in Figure 3.9 Since we are considering a stable equilibrium ¢g, ¢’(¢o) > 0. Therefore, the stability
condition (2.12) becomes

1+ kM (co)dm — EMAN, | <1 = 1+ kM (cohn — kM7yA7,) > —1. (3.81)
<0

This holds generally if

h4
k< ket = ) 3.82
< Kot = 2708+ 220 ()] (382)
For the extreme equilibria ¢ = 1 and ¢ = —1, we have a minimal value of k. at
h4
k! (3.83)

it = N[8dy + 4d2h?]’

Figure 3.11 supports the use of (3.83) as an estimate of the stability of the nonlinear difference
scheme (S5). Note that the mass-conservation of the Cahn-Hilliard difference schemes allowed us
to use the standard stability condition (2.12).
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v = .01h? ~v = 1.00A2 ~ = 100.00A2

—— kM/h*=0.22 —— kM /h?=0.075 —— kM/h?=0.0011
L0 —— kM/h?=0.25 1.0 —— kM /h*=0.083 10 —— kM /h*=0.0012
—— kM /h*=0.27 —— kM /h*=0.092 —— kM /h*=0.0014

Figure 3.9: The amplification factor for the linear difference scheme (lin-S5) is plotted for different

values of 24 near f=tM - The left, middle and right plots have parameter values v = .01h%, h?,
and 100h%. When k is above the critical value, the amplification factor dips below -1, showing a

frequency instability for the difference scheme. For simplicity, M = 1.

Linearizing the semi-implicit difference scheme (S6) about a stable constant equilibrium ¢ = ¢

gives
Cﬂ+1 —

]Tj = M/ (co) AMult — MyA" (A", (lin-S6)

In Fourier space, we have the equation

attt = + kM@ (co) Amal — MkyAZ ot (3.84)

m

The amplification factor is given below and plotted in Figure 3.10.

n+1
Qp,

< |14+ kM (o)Al (3.8)

| T+ EM (co)Am
T+ EMAyN2,

n
am

which is a good approximation for small . Since ¢y is a stable equilibrium, we have ¢/(cy) A, < 0,
which gives the stability condition

2 h?
kE<— < . .
= TN ) 200 () (386)
At the extreme equilibria ¢y = £1, we have
h2
ket = VIR (3.87)

It is not surprising that this semi-implicit scheme has stability O(h?) while the other (semi)-
implicit linear schemes (S2) and (lin-S4) are O(1) in h since we handled the derivative of the
approximation of the nonlinear term explicitly. This should align with the nonlinear difference
scheme where explicit treatment of the nonlinear term is essential to avoid solving a nonlinear
system at each step. Figure 3.12 suggests that k. is a good approximation of the stability of the
nonlinear scheme (S6) when ~ is small. When the approximation in (3.85) does not hold, ke is
at least a lower bound.
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v = .01h? ~v = 1.00A2 ~ = 100.00A2

—— kM/h?=0.23 —— kM /1?=0.200 —— kM/h?=0.1250

1.0 —— kM/h?=0.25 10 —— kM /h*=0.250 10 —— kM /h*=0.2500
\ —— kM /h*=0.28 N\ —— kM /h*=0.300 —— kM /h*=0.3750

05 05 \ 051\

0.0 0.0+ o 0.0 \

Figure 3.10: The amplification factor for the linear difference scheme (1in-S6) is plotted for different
values of 2 near £t The left, middle and right plots have parameter values v = .01h%, h?, and
100h%. When k is above the critical value and the small v approximation holds, the amplification

factor dips below -1, showing a high frequency instability for the difference scheme. For simplicity,
M =1.
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k= kcrit k> kcrit
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Figure 3.11: The nonlinear difference scheme (S5) was solved for h = .01,v = .001, M = 1 from an
initial state of a sine wave. On the left, &k = .00000120 = k; and on the right, & = .00000122 >
erit, where ke refers to the stability of the linear scheme (lin-S5). When k is greater than the
critical value of the linear scheme, the simulation displays numerical instability. However, k = kit
seems to be stable up to n = 10000, suggesting that the stability condition for the linear scheme
reflects the stability of the nonlinear scheme.
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k > kcrit
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Figure 3.12: The nonlinear difference scheme (S6) was solved for h = .01,y = le—6, M =1 from an
initial state of a sine wave. On the left, £ = .0000025 = .1k, in the middle, £ = .000025 = ke,
and on the right, & = .000026 > ki, where ke, refers to the stability of the linear scheme (1in-S6).
When £ is greater than to the critical value of the linear scheme, the simulation displays numerical
instability. However, k = k. seems to be stable up to n = 10000, suggesting that the stability
condition for the linear scheme reflects the stability of the nonlinear scheme. While it may look
like each scheme is unstable in interface region from n = 100 on, this is actually a phase separation
effect. That the schemes for k = k. and k = .1k, are the same supports this conclusion. The
reason for separation on the grid precision is the small value of v, which was chosen to make the

stability estimate hold.
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3.4 Phase Separation Molecular Dynamics

As in diffusion, we use the Leonard-Jones model for interparticle interactions. We have the same

interparticle potential
12 6
0'. . O’ .
Vig=dey || 2) - () |- 3.88
ST [(w) (ﬁj) ] (359

For our two-component system, we denote atom types as

A and B. The interactions between particles of the same Interaction | e pn

type are determined by €44,044 and egp,opg. For cross A_ A 301 1.0

interactions, we have e p and o45. Taking B_B 30110
€AA ~ €BB << €4B, 0AA ~ OBB ~ UAB (3.89) A-B 1.0 | 1.0

makes interactions between like particles stronger than op- Table 3.1: Leonard-Jones parameter
posite particles. With a sufficiently high pressure, this causes values for phase separation MD sim-
A and B to separate into pure regions. Choosing e44 = egp ulation.

is consistent with choosing the free energy function v in the differential equation models to be sym-
metric. For our MD simulation, we used the parameter values in Table 3.1, which are consistent

with (3.89).

3.4.1 Parameter Estimation

Estimating the order parameter of the MD simulation has an additional step for the two component
system. We first approximate the mole fractions of each component A7 and B on a grid with the

binning procedure

#{A atoms in bin j}
A = . 3.90
I # {atoms in bin j} (3:90)

Then, the order parameter is the difference between the concentrations:

Ur = A" — BP. (3.91)

We can extend the parameter estimation procedure from Section 2.2.1 to the Allen-Cahn and
Cahn-Hilliard models. For consistency, we added the mobility coefficient to the Allen-Cahn equa-
tion, so the two models are

ov 9
0 MV o) (AC)
0 — MVlof) v (CH)

with appropriate periodic boundary conditions. The main difference from the previous estimation
procedure is the second parameter v. Nevertheless, our previous implementation was able to handle
arbitrarily many parameters, so this is not an issue.

3.5 Results

We will show results for two-dimensional simulations of molecular dynamics and continuum phase
separation, although the algorithms are easily extended to three dimensions. We impose peri-
odicity on the MD domain boundary, matching the differential equation boundary conditions.
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We conducted a LAMMPS simulation of a two-component Leonard-Jones fluid phase separating.
Selected snapshots of the MD trajectory are shown in Figure 3.3.

We used the Leonard-Jones unit system of LAMMPS [11]. All units are based on a distance of
o, an energy of €, and a mass m. The values of the Leonard-Jones parameters are shown in Table
3.1. Unlike for diffusion, we manually set the mixed interaction term to facilitate phase separation.
We set the mass of each particle to 1. The MD simulation box was 300 x 300. There were 35000
A atoms and 35000 B atoms. The simulation proceeds from a pseudo-random initial condition.
The densities and order parameter for the initial condition are given by

za(z,y) = (1 + .5sin(27x))(1 + .5sin(27y))
zp(z,y) = (1 — .5sin(27z))(1 — .5sin(27y)) (3.92)
v(x,y) =xa(z,y) — xp(z,y) = .5sin(2rz) + .5sin(27y).

The particles were imbued with initial velocities satisfying the Maxwell-Boltzmann distribution of
velocities for T = 1. The temperature and pressure stabilized around 1.3 and 1.8, respectively.
The critical cutoff for interparticle interactions was r. = 2.5. The timestep was k,q = .01 and the
MD simulation was run for 4e6 timesteps.

From the simulation, we use the procedure outlined in Section 3.4.1 to estimate the differential
equation parameters M and 7. To reduce computational complexity, we use a larger timestep
k = 4000ky,q for the difference equation model and only consider every 4000 MD timesteps. This
gives Npax = 1000. The estimation procedure generates an estimates My and Ay for each binning
precision N = 20, 50, 100. The result of solving the Allen-Cahn and Cahn-Hilliard equations for
their respective Mz and 50 and spatial resolution N = 50 is shown alongside the estimated order
parameter with binning precision of 50 in Figure 3.13. Table 3.2 shows the error of solving each
differential equation using the pair of estimated parameters at the different spatial resolutions.

We note one distinction between the Allen-Cahn and Cahn-Hilliard models that shows up in
the data. At the final timestep, we see phase separation in both systems. However, the regions
where the initial order parameter was 0 between two like phases behave differently. In the Allen-
Cahn equation, we see the red regions have combined in both the top right and bottom left corner.
However, in the Cahn-Hilliard model, they have combined in the bottom left and separated in
the top right. We attribute this difference to the fact that the Cahn-Hilliard equation preserves
mass, while the Allen-Cahn equation does not. In both models, which place and which phase they
selected came from the randomness of the initial condition. However, the Cahn-Hilliard solution
had to have the red phases combine in one corner and the blue combine in the other.

The future research directions mentioned in Section 2.3 also apply here. Additionally, several
questions unique to the phase separation problem should be addressed.

e In the final timestep MD snapshot of Figure 3.13 we notice patches of B particles in the
large regions of A and vice versa. These are not present in the solution to either differential
equation. Qualitatively, this is the main difference between the MD and continuum results.
There are a couple possible explanations for this difference. One is that the parameter
estimation failed to equate the timescales. The MD simulation is yet to reach its equilibrium
where these small patches will disappear, as they have in the equilibrium of the differential
equations. Conducting longer and larger MD simulations could confirm whether equilibrium
has been reached. Alternatively, this aspect of phase separation dynamics may be beyond
what the continuum model can capture.

e It would be interesting to look at cost metrics other than direct comparison of the order
parameters. For a two component system, the structure factor is S(m,t) = [0(z,t)|?, where
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v(z,t) is the Fourier transform of the order parameter. The structure factor is an important
characterization of phase separation dynamics. In experiments, it is obtained by optical
measurements of scattering [3]. If we were to compare to results of lab experiments, the
structure factor could be an effective conversion.

We would like to explore the use of random perturbations for the initial condition. In
diffusion, an initial condition of small perturbations is not very interesting, since it will
quickly average out. However, spinodal decomposition from random initial fluctuations will
result in phase separation. With the more chaotic dynamics of phase separation, predicting
trajectories from small perturbations is difficult for the continuum models. A different cost
metric could potentially make this analysis more feasible. We would hope that the estimated
parameter values don’t depend on the initial condition chosen, instead being an intrinsic
property of the chemical substances.

Instead of fixing the symmetric ¥ (3.2), we could use the free energy (3.1). Then, we could
estimate the parameters o and 3 in addition to the timestep and interface scale.

There are many more systems to explore. We did not model a physical system, where we
could compare our results to lab experiments. The Cahn-Hilliard and Allen-Cahn equations
have been applied to solid and liquid phase separation. (3.69) was originally developed for
studying phase separation in alloys [2]. To address our motivation in the phase separation of
polymers, we would need a system of more than two components. Polymers are often modeled
with Brownian dynamics and ball-and-spring course graining [6]. However, understanding
the influence of ions on the phase separation dynamics would require additional species in
the MD simulation.

Allen-Cahn My AN N = 20 Error | N =50 Error | N = 100 Error
N =20 0.00002024 | 0.003746 | 0.00079051 0.00043850 0.00024565
N =50 0.00002004 | 0.003866 | 0.00079052 0.00043850 0.00024566
N =100 0.00001907 | 0.003042 | 0.00079058 0.00043853 0.00024564
Cahn-Hilliard | My AN N = 20 Error | N =50 Error | N = 100 Error
N =20 0.000000288 | 0.0009971 | 0.00076418 0.00043045 0.00024190
N =50 0.000000283 | 0.0009104 | 0.00076435 0.00043040 0.00024189
N =100 0.000000289 | 0.0009479 | 0.00076424 0.00043041 0.00024188

Table 3.2: We estimated the mobility coefficient and interfacial distance parameters for the MD
For each binning precision and pair of estimated

order parameter at each binning precision.

parameters, we solved the differential equation with the finite difference scheme and calculated the
difference from the estimated MD order parameter. The L? error is averaged over the sampled

space and time points.
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Figure 3.13: The fitting results are displayed for a course-graining parameter of N = 50. The
columns 1-5 represent timesteps n = 0, 50, 200, 500, and 1000, respectively. The first row shows
raw MD snapshots, and the second and fifth row display the estimated order parameter. In the raw
MD snapshot, A atoms are colored red, and B atoms are colored blue. The Allen-Cahn solution for
its best fit parameters is displayed in rows three and six. The Cahn-Hilliard solution for its best fit
parameters is displayed in rows four and seven. The differential equations used the estimated order
parameter at the initial timestep n = 0 as initial conditions. This initial condition was randomly
sampled from the distribution described in (3.92).
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