
Wall-to-wall heat transfer with unsteady flow perturbations

Nicole Vuong, PI: Dr. Silas Alben

August 9, 2024

Abstract

The efficiency of many real-life appliances relies on its ability to cool effectively. Thus, optimizing
heat transfer in fluids via advection (the movement of a fluid) is a point of interest. In this paper, we
explore the effect of adding unsteady perturbations to a previously derived optimal steady flow, with
a fixed time-averaged power, on the heat transfer in a 2D channel. We also discuss current progress
towards finding optimal unsteady flows that maximize heat transfer in the 2D channel via the genetic
algorithm.

Contents

1 Introduction 2

2 Problem setup 2
2.1 Construction of stream functions . 3

3 Estimating Nu 4
3.1 Checking the estimate of Nu . 6

4 Optimization method 7

5 Preliminary results 8
5.1 Effects of parameters bj and τj on Nu2 . 8
5.2 Genetic algorithm run with a range of τj ’s . 9
5.3 Case study with τj = 0.5 . 10

6 Conclusions and discussion 12

7 Acknowledgements 13

1

1 Introduction

Historically, forced convection of fluid flows has been a common strategy for increasing heat transfer. The
advent of the plate fin heat sink is one such example. The shape of a plate fin heat sink forces convection to
occur, which enhances cooling of the airflow that flows through it [6]. In recent years, Hassanzadeh, Chini,
and Doering studied forced incompressible flows in a 2D channel heated at the bottom and cooled at the
top, in order to find optimal steady flows of a given mean rate of viscous dissipation (Pe2) that maximize
the rate of heat transfer from the walls [2]. In addition to the incompressibility and energy budget (rate of
viscous dissipation) constraints, they imposed a free slip condition on their choices of fluid flows.

In 2023, Alben found optimal steady, horizontally periodic flows for maximizing heat transfer from the
walls of a similar geometry, with the exception of enforcing no slip conditions on the fluid flows instead of free
slip conditions [1]. He found that at lower Pe2 values, the optimal flows took on the shape of convective rolls
while at higher Pe2 values, the optimal flows found had increasingly elongated and asymmetrical branching
near the walls of the channel. His optimization method both optimized for the flow shape and the period of
the flow in the x-direction.

Figure 1: An optimal steady flow for Pe = 1000, from Alben [2023].

We now seek to build upon the work of Alben in [1] by also considering optimal unsteady flows. That is,
can unsteady flows of a given averaged rate of viscous dissipation result in improved heat transfer compared
to steady flows? As a starting point, we first investigate unsteady flows that are largely similar to the optimal
steady flows found by Alben - we consider the optimal steady flows with small unsteady perturbations added
to them. Additionally, we only consider flows with averaged rate of viscous dissipation Pe2 = 106. We
choose this smaller Pe2 value because the behavior of the optimal steady flow found by Alben at Pe2 = 106

is simplest. Thus, numerical simulations working with slightly perturbed versions of the optimal steady flow
with Pe2 = 106 value will not be as computationally expensive.

2 Problem setup

Consider a layer of fluid in the 2D rectangular channel {0 ≤ x ≤ Lx, 0 ≤ y ≤ 1}. (Lx here is the
x-direction period of the optimal steady flow found by Alben for Pe2 = 106. Lx is approximately 0.83.) The
bottom wall y = 0 has temperature T = 1, the top wall y = 1 has temperature T = 0, and the temperature is
periodic in x with period Lx. Also, the initial temperature of the fluid in the domain is the temperature field
associated with the optimal steady stream function ψ0 for Pe = 1000, and the temperature is time-periodic
with period τ .

2

Figure 2: The initial temperature field.

We wish to find optimal unsteady fluid flows (u(x, y, t), v(x, y, t)) that maximize the time- and horizontally-
averaged heat transfer Nu out of the bottom wall, which is given by

Nu =
1

τLx

∫ τ

0

∫ Lx

0

−∂yT
∣∣∣
y=0

dx dt. (1)

Note that the averaged heat transfer out of the bottom wall is the same as the averaged heat transfer into
the top wall.

We solve for the temperature field T (x, y, t) needed to compute (1) via the unsteady advection-diffusion
equation

∂tT + u∂xT + v∂yT − (∂xxT + ∂yyT) = 0. (2)

We also impose the following restrictions the unsteady fluid flows must follow:

1. Incompressibility - that is, ∂xu + ∂yv = 0. To follow convention, we represent unsteady fluid flows
in this paper as stream functions ψ(x, y, t), where (u, v) is set to (∂yψ,−∂xψ) to automatically obey
incompressibility [5].

2. Periodic in x with period Lx.

3. Periodic in time with time period τ , the same time period as that of the temperature field T .

4. No-slip conditions - that is, zero velocity at the top and bottom walls [3].

5. The fluid flow must have Pe = 1000, the same Pe as that of the previously derived optimal steady flow.

Condition 5 above is equivalent to Pe2 = 106, where Pe2 is given by

P̃ower = Pe2 =
1

τLx

∫ τ

0

∫ 1

0

∫ Lx

0

∂xxψ
2 + ∂yyψ

2 − 2∂xxψ∂yyψ + 4∂xyψ
2 dx dy dt. (3)

2.1 Construction of stream functions

The stream functions we consider for this paper are of the form

ψj(x, y, t) =
1√

1 + ϵ2
ψ0(x, y) +

ϵ√
1 + ϵ2

fj(x, y) cos(2πt/τj), (4)

where ψ0 is the previously derived optimal steady stream function. We do this to ease the computational
time of calculating Nu (see Section 3 for a discussion of this), and also to have a starting point for finding

3

optimal unsteady stream functions. fj is a superposition of modes, each being a product of a Fourier mode
in the x-direction and a linear combination of Chebyshev polynomials Yi(y) in the y-direction. In other
words,

fj(x, y) =
∑
i

∑
k

aikYi(y) cos(2πkx/Lx) + bikYi(y) sin(2πkx/Lx). (5)

In Matlab, fj is discretized as a matrix V (see Section 3.1 for a discussion of the domain discretization),
with each mode being a column of V. For this paper, we opt to use 357 modes. Each mode is normalized to
have Pe2 = 2 ∗ 106 and the modes are made to be pairwise orthogonal. Then, the coefficents of the modes
aik, bik are represented by a vector bj , which must be normalized to have norm 1. This ensures that the
discretized version of fj in Matlab created by setting fj ≡ Vbj/∥bj∥ has Pe2 = 2 ∗ 106.

From (3), notice that if fj has Pe2 = 2 ∗ 106, then fj(x, y) cos(2πt/τj) has Pe2 = 106. This is because
the time-average of cos2(2πt/τj) over its period τj is 1/2. Then, substituting (4) into (3) and rearranging
terms, we have that Pe2 of (4) is given by

Pe2 =

(
1

1 + ϵ2

)(
1

τjLx

)∫ τj

0

∫ 1

0

∫ Lx

0

∂xxψ
2
0 + ∂yyψ

2
0 − 2∂xxψ0∂yyψ0 + 4∂xyψ

2
0 dx dy dt (6)

+

(
ϵ2

1 + ϵ2

)(
1

τjLx

)∫ τj

0

∫ 1

0

∫ Lx

0

(
∂xx

(
fj(x, y) cos

(
2πt

τj

)))2

+ . . . dx dy dt (7)

+

(
2ϵ

1 + ϵ2

)(
1

τjLx

)∫ τj

0

∫ 1

0

∫ Lx

0

∂xxψ0∂xx

(
fj(x, y) cos

(
2πt

τj

))
+ . . . dx dy dt, (8)

where (7) is ϵ2

1+ϵ2 times the Pe2 of fj(x, y) cos
(

2πt
τj

)
and the terms of (8) are all proportional to cos

(
2πt
τj

)
.

(8) evaluates to zero because the time-average of cos
(

2πt
τj

)
over its period τj is zero. So, assuming that fj

has Pe2 = 2 ∗ 106, it follows from (6) and (7) that Pe2 of (4) is
(

1
1+ϵ2

)
(106) +

(
ϵ2

1+ϵ2

)
(106) = 106. In other

words, (4) does indeed have the same Pe2 as the optimal steady stream function ψ0.

3 Estimating Nu

Directly solving the advection-diffusion equation for a prescribed stream function ψj is numerically very
time-consuming. So, it is desirable to approximate the time- and horizontally- averaged heat transfer, Nu,
via more time-efficient means. To this end, we employ techniques from perturbation theory. We begin by
expanding ψj and T in powers of ϵ,

ψj(x, y, t) = ψ0(x, y, t) + ϵψ1(x, y, t) + ϵ2ψ2(x, y, t) + . . . (9)

T (x, y, t) = T0(x, y, t) + ϵT1(x, y, t) + ϵ2T2(x, y, t) + . . . , (10)

where we can substitute (10) into (2) to obtain an analogous expansion for Nu given by

Nu = Nu0 + ϵNu1 + ϵ2Nu2 + (11)

Since ψj is explicitly defined in (4), we can find ψ0, ψ1 and ψ2, which will be relevant in future derivations.
Via the second order Taylor series expansions for 1√

1+ϵ2
and ϵ√

1+ϵ2
, we see that

ψj(x, y, t) ≈
(
1− ϵ2

2

)
ψ0(x, y) +

(
ϵ− ϵ3

2

)
fj(x, y) cos

(
2πt

τj

)
(12)

= ψ0(x, y) + ϵfj(x, y) cos

(
2πt

τj

)
− ϵ2

2
ψ0(x, y) + . . . , (13)

implying that ψ0(x, y, t) is simply the optimal steady stream function, ψ1(x, y, t) = fj(x, y) cos
(

2πt
τj

)
, and

ψ2(x, y, t) = −ψ0(x,y)
2 .

4

We now solve (2) at each power of ϵ to obtain Nu0, Nu1, and Nu2. At O(ϵ0) (2) is

∂yψ0∂xT0 − ∂xψ0∂yT0 − ∂xxT0 − ∂yyT0 = 0. (14)

This is precisely the steady advection-diffusion equation with the optimal steady flow ψ0, so Nu0 is simply
the heat transfer associated with the optimal steady flow. At O(ϵ1) equation (2) is

∂tT1 + ∂yψ0∂xT1 − ∂xψ0∂yT1 − ∂xxT1 − ∂yyT1 = −∂yψ1∂xT0 + ∂xψ1∂yT0. (15)

Observe that because ψ1(x, y, t) = fj(x, y) cos
(

2πt
τj

)
, the right hand side of (15) is equal to

− cos

(
2πt

τj

)
(∂yfj(x, y)∂xT0(x, y) + ∂xfj(x, y)∂yT0(x, y)) . (16)

This means we can write T1 as T1A(x, y) cos(2πt/τj) + T1B(x, y) sin(2πt/τj). However, because the cosine
and sine terms average to zero over its period τj , the associated heat transfer Nu1 must also be zero. It is
typical to simply evaluate up to the first-order term in (11) to achieve an approximation of Nu. But, since
Nu1 = 0, we must evaluate (2) at an additional power of ϵ to see if the added unsteady perturbation in (4)
improves the total heat transfer Nu compared to the optimal steady flow ψ0.

At O(ϵ2) equation (2) is

∂tT2 + ∂yψ0∂xT2 − ∂xψ0∂yT2 − ∂xxT2 − ∂yyT2

= −∂yψ1∂xT1 + ∂xψ1∂yT1 − ∂yψ2∂xT0 + ∂xψ2∂yT0. (17)

Plugging in the expressions for ψ1, ψ2, and T1 into the right hand side of (17), we have that the right hand
side of (17) can be rewritten as

1

2
cos

(
4πt

τj

)
(−∂yfj∂xT1A + ∂xfj∂yT1A) +

1

2
sin

(
4πt

τj

)
(−∂yfj∂xT1B + ∂xfj∂yT1B)

− 1

2
∂yfj∂xT1A +

1

2
∂xfj∂yT1A +

1

2
∂yψ0∂xT0 −

1

2
∂xψ0∂yT0. (18)

We now write T2 as T2s(x, y) + T2u(x, y, t) (splitting T2 into a steady and unsteady part) and rewrite (17)
as the following two equations:

∂tT2u + ∂yψ0∂xT2u − ∂xψ0∂yT2u − ∂xxT2u − ∂yyT2u

=
1

2
cos

(
4πt

τj

)
(−∂yfj∂xT1A + ∂xfj∂yT1A) +

1

2
sin

(
4πt

τj

)
(−∂yfj∂xT1B + ∂xfj∂yT1B) (19)

and

∂yψ0∂xT2s − ∂xψ0∂yT2s − ∂xxT2s − ∂yyT2s

= −1

2
∂yfj∂xT1A +

1

2
∂xfj∂yT1A − ∂yψ2∂xT0 + ∂xψ2∂yT0 (20)

Analogous to the T1 case, (19) implies that T2u(x, y, t) = T2u,1(x, y) cos(4πt/τj) + T2u,2(x, y) sin(4πt/τj).
This means that the unsteady part of T2 does not contribute anything to Nu2. It suffices to evaluate for T2s
in (20) to calculate Nu2, given by

Nu2 =
1

τjLx

∫ τj

0

∫ Lx

0

−∂yT2s
∣∣∣
y=0

dxdt. (21)

Notice that the right hand side of (20) requires T1A. T1A can be solved for via the following system of
coupled equations:

2π

τj
T1B + ∂yψ0∂xT1A − ∂xψ0∂yT1A − ∂xxT1A − ∂yyT1A = −∂yfj∂xT0 + ∂xfj∂yT0 (22)

−2π

τj
T1A + ∂yψ0∂xT1B − ∂xψ0∂yT1B − ∂xxT1B − ∂yyT1B = 0. (23)

5

(22) and (23) are obtained by directly substituting the expression for T1 into (15), then regrouping all terms
proportional to cos(2πt/τj) into (22) and all terms proportional to sin(2πt/τj) into (23).

In summary, calculating an approximation ofNu involves solving for T0, T1A, T1B , and T2s, which involves
solving three steady PDEs. This should be much less computationally expensive than directly solving the
unsteady advection-diffusion equation with many time steps.

3.1 Checking the estimate of Nu

From above, we claim that we can estimate Nu as Nu0 + ϵ2Nu2, where Nu2 is the leading order change
in heat transfer due to the unsteady perturbation added to the optimal steady flow in (4). We wish to
check that this approximation is close to the true Nu. To that end, we first fix the stream function ψj ,
which is dictated by setting ϵ, choosing coefficients of fj and setting τj = 0.5. The coefficients of fj are
determined by initializing a vector of coefficients bj , with entries independently sampled from a standard
normal distribution. After, we find Nu0 + ϵ2Nu2: we first compute Nu0 using T0 solved from (14). Then,
we compute T2s via the three steady PDEs derived above, and use T2s to finally compute Nu2. We check
this method of approximation against numerically solving the unsteady advection-diffusion equation using
the Crank-Nicolson scheme (run with t = 10 · τj and the same prescribed stream function ψj as in the
approximation method).

From a test case with ϵ = 0.05 and τj = 0.5, the two different methods described above appear to yield very
similar computations. The temperature field T (x, y, t) acquired by solving the advection-diffusion equation
using Crank-Nicolson is very similar to that of the approximated temperature field T0(x, y) + ϵT1(x, y, t) +
ϵ2T2s(x, y) calculated from the three steady PDEs described above. (The time-averaged values of these two
temperature fields only differ by values in the order of 10−5 at worst.) Most importantly, Nu−Nu0− ϵ2Nu2
is calculated to be −5.8128 · 10−5, which means the estimate Nu0 + ϵ2Nu2 is sufficiently close to Nu. We
expect this estimate to improve as the choice of ϵ is made smaller (that is, decreasing the influence of the
added unsteady perturbation in (4)).

Figure 3: The time-averaged difference between T (x, y, t) and T0(x, y) + ϵT1(x, y, t) + ϵ2T2s(x, y).

For both methods above, we discretize the x-domain uniformly with 129 points. Thus, the spacing
between adjacent points in the x-direction is Lx

128 . In the y-direction however, we discretize with a non-
uniform grid with 129 points. To construct this non-uniform grid, we start with a uniform discretization of
129 points for the y-domain (so the grid spacing is also 1

128). Then, we map each point γ in the uniform
y-discretization to our desired points γ∗ for the non-uniform y-discretization via

γ∗ = γ − 0.997

2π
sin(2πγ). (24)

This mapping ensures that the grid spacing is minimum near the boundaries y = 0 and y = 1, while maximum
near the center y = 1/2. Past results show potential for complex branching behavior near the boundaries

6

of optimal steady flows, so having a finer mesh grid near the boundaries to handle this added complexity is
necessary for accurate computations of the temperature fields [1]. For subsequent trials described in next
sections, we keep this choice of domain discretization constant.

4 Optimization method

To search for a set of locally optimal stream functions, we use the genetic algorithm which is inspired
by natural selection in biological evolution [4]. This entails initializing a population of stream functions
ψj with different choices of coefficients for fj (see Section 2.1 for further details on the construction of the
ψj ’s). In other words, we initialize coefficient vectors b1, ..., bN , where N is the population size, to define
our initial population of ψj ’s. For this paper, the entries of the bj ’s are sampled from the standard normal
distribution, then normalized to each have norm 1. For a fixed population, we choose to keep τj fixed to
maximize computational efficiency. (The matrices involved in solving for T1A and T1B in (22)-(23) can be
kept constant for all members of the population if τj is fixed. This greatly decreases the amount of time
spent to solve for T1A, T1B for each population member, as Matlab’s backslash operator for solving matrices
can be used here with many right hand side vectors at a time.) We choose to set N = 1000 for the initial
population size.

For each population member, we solve for its associated Nu2 using the method detailed in Section 3.
Solving for Nu2 is sufficient to see which population members are locally optimal, as Nu0 is the same across
all the population members. We select the bj ’s that correspond to the Nu2’s in the best performing half,
and duplicate those bj ’s. To create “generation 2”, we perturb these bj ’s by adding a small perturbation
to each entry of each bj . For this paper, the small perturbation added to each coefficient is of the form
(0.1/Ng) times ρ, where ρ is a random number sampled from the standard normal distribution and Ng is the
generation number. The added perturbations are independently sampled from each other. In other words,
a sampled small perturbation is not held constant for all entries of a given bj coefficient vector. Note also
that the population size of “generation 2” is still N = 1000, the population size of “generation 1”.

Figure 4: A schematic of the “duplication” process followed by the “perturbation” process. A member of
the top-performing portion from a generation, the “parent”, is used to create two “daughter” members in
the next generation.

We repeat the process of calculating Nu2 for each population member from “generation 2” and selecting
the bj ’s that correspond to the Nu2’s in the best performing portion. However, this time, we select only
the bj ’s corresponding to the top 25 Nu2 values from “generation 2.” Following the same procedure used
to create “generation 2”, we duplicate each of these top 25 bj ’s and add a small perturbation to each entry
of each bj to create “generation 3.” We then repeat the above steps of calculating Nu2 for each population
member from “generation 3” and picking the top 25 bj ’s to produce “generation 4” consisting of 50 members.
For subsequent generations, the population size of 50 is held. We run this genetic algorithm for a total of
1500 generations and repeat the genetic algorithm for new initial populations with different choices of fixed
τj .

7

The reason we choose to run “generation 1” and “generation 2” of the genetic algorithm with 1000
members is simple: to gain access to top performing outliers. Starting “generation 1” with only 50 members
makes it unlikely to encounter such top performing outliers. Starting “generation 1” with 1000 members
and decreasing the population size to 50 at “generation 3” does not make a difference as the number of
generations run approaches infinity. But, for shorter genetic algorithm algorithm runs of, say, 500 generations,
this “switch” in population size enables improved Nu2 values by the last generation with a near-negligible
increase in computational time.

5 Preliminary results

5.1 Effects of parameters bj and τj on Nu2

Without running any subsequent generations, we ran a simulation with a population comprised of 50000
members. These members were formed by creating an array of 50 τj ’s and 100 randomly sampled bj ’s
vectors (entries independently sampled from a standard normal distribution), then calculating the Nu2 for
all possible combinations. The τj ’s range from 0.01 to 0.5, with finer incrementing at smaller values. Prior
simulations with a fixed bj showed a roughly monotonic relationship between the choice of τj and the top
Nu2 for that given τj , with sharp increase/decrease at small τj values followed by a plateau in the top Nu2
value achieved past τj ≈ 0.5. So, we wanted to focus our investigation on smaller τj values, hence the limited
range of τj values chosen.

Interestingly, of the two parameters bj and τj , the choice of bj appears to have a much stronger influence
on the resulting Nu2 value than the choice of τj . The top graph of Figure 5 shows that there is a “dominant”
bj that yields the best Nu2 regardless of the choice of fixed τj . In this particular simulation, all the τj ’s but
τj = 0.01 share the “best” bj .

Nevertheless, there still appears to a trend in the choice of “favorable” τj ’s. The bottom graph of Figure
5 has scattered dots outside of τj = 0.01, but most of the dots are concentrated near τj = 0.01. For a fixed
bj , a dot not at τj = 0.01 or τj = 0.5 indicates a non-monotonic relationship between τj and the top Nu2
achieved for the given τj . A dot at τj = 0.01, on the other hand, is a necessary condition for a monotonic
(decreasing) relationship between τj and the top Nu2 achieved for each τj (for a fixed bj).

Figure 5: Top row: The index of fj that yields the top Nu2 for a fixed τj . The τj ’s are in increasing order -
that is, τ1 = 0.01 and τ50 = 0.5. Bottom row: The index of τj that yields the top Nu2 for a fixed fj .

When the top Nu2 for each τj is plotted, there is still an exhibited sharp decrease at smaller τj values
followed by a plateau. Additionally, it is pertinent to note that the top Nu2 values achieved are negative.

8

That is, without any optimization strategies run, the addition of the unsteady perturbation term to the
optimal steady stream function does not improve the total averaged heat transfer Nu.

Figure 6: Left: The top Nu2 for each fixed τj . Population size = 1000 means 1000 choices of fixed bj shared
across all τj ’s. Right: The Nu2’s over the τj ’s yielded by the two optimal fj ’s.

5.2 Genetic algorithm run with a range of τj’s

We ran the genetic algorithm with the same choice of τj ’s as described in Section 5.1. For each of the 50
initialized populations (each corresponding to a τj), we opted to run 1500 generations. Note that the initial
coefficient vectors bj were independently sampled across the different τj ’s.

After 1500 generations, there appears to be a small improvement in the topNu2 values achieved compared
to the Nu2 values seen at generation 1 in a separate simulation (see Section 5.1). Nevertheless, the values
are still negative. Additionally, the clear relationship exhibited in Section 5.1 between τj and the top Nu2
(for a fixed bj) is not present here. There does not seem to be a correlation in the τj and top Nu2 achieved.

Figure 7: The top Nu2 achieved for each τj at the last generation run, generation 1500.

Additionally, it is difficult to make out any distinguishing features in the fj ’s corresponding to the top
Nu2’s over the τj ’s, despite the similarity in the Nu2 values across the different τj ’s.

9

Figure 8: Contour plots of the fj corresponding to the top Nu2 for select τj at the last generation run,
generation 1500.

5.3 Case study with τj = 0.5

It would have been preferable to run each the genetic algorithm for each τj above with more generations.
However, due to computational time, we were not able to do so and instead, opted to run a longer genetic
algorithm simulation with 20000 generations for a sample τj = 0.5. Despite the increase in generation ran,
there does not appear to be a significant improvement in the top Nu2 achieved by the final generation. (The
top Nu2 for τj = 0.5 from Section 5.2 after 1500 generations was -1.9717, compared to a top Nu2 of of
-1.9319 here after 20000 generations.) It also appears that this version of the genetic algorithm allows for
the most improvement in the initial generations, followed by continued yet smaller steady improvements as
the generations progress.

10

Figure 9: The progression of the top Nu2 value from each generation.

Additionally, the optimal fj ’s associated with the top 5 Nu2 values at the last generation run look
different from the optimal fj at generation 1500 for τj = 1500 from Section 5.2. This could be because of
the difference in generations run. However, in past simulations the shapes of optimal fj do not change much
from, say, generation 1000 to generation 20000. (The fj values near y = 0 change slightly, accounting for
the small but steady increase in Nu2 over the generations.) So, the difference could simply be a case of an
alternative locally optimal fj found by the genetic algorithm. Also observe that the fj ’s corresponding to
the top 5 Nu2 values (which happen to all be the same) at generation 20000 look indistinguishable from one
another. That is, the genetic algorithm converges to a locally optimal fj .

11

Figure 10: Contour plots of the fj ’s corresponding to the top 5 Nu2 values at the last generation, generation
20000.

6 Conclusions and discussion

In this paper, we build upon the work done by Alben in [1] by investigating heat transfer in a 2D domain
with unsteady fluid flows of a fixed viscous energy dissipation Pe = 1000. These unsteady fluid flows are
formed by adding small unsteady perturbations to the optimal steady flow found by Alben in [1]. To shorten
the computational time of computing the Nu associated with each sample fluid flow, we decompose the
unsteady advection-diffusion equation into three steady PDEs. We then calculate Nu2, the leading order
change in averaged heat transfer due to the added small unsteady perturbation to the optimal steady flow.
Preliminary simulations show that of the two parameters responsible for uniquely determining ψj , bj (the
coefficients of fj) and τj , bj has a much more dominant influence on the resulting Nu2 value. However, for
a fixed choice of bj , there is a roughly monotonic relationship between τj and locally optimal Nu2 for each
τj . Both increasing and decreasing relationships have been observed in simulations, depending on the choice
of bj .

In an attempt to find locally optimal perturbed versions of the optimal steady flow in [1], we use the genetic
algorithm. Genetic algorithm imulations have shown that the locally optimal Nu2 inproves consistently as
the number of generations run increases. However, the optimalNu2 values fail to be nonnegative. This means
that instead of improving the averaged heat transfer Nu, the choices of added small unsteady perturbations
used in this paper actually decrease Nu.

Since the choice of bj has the largest influence on the Nu2 of ψj , a pertinent next step would be to try
more combinations for bj . In this paper the bj ’s are formed by sampling entries from a standard normal
distribution. It is unclear if certain flow modes in (5) drastically worsen or improve Nu2. To examine this,
for each j = 0, 1, . . . , 357, we could set bj = [0, 0, . . . , 1, 0, . . . , 0] (where the j-th entry is 1 and 0 elsewhere),
and calculate Nu2 for ψj formed with each bj and a fixed τj . We could then place more weight on the flow
modes with better Nu2 in hopes of improving Nu2.

The setup of the genetic algorithm can also be reexamined beyond simply increasing the sample size or
the number of generations run. As exhibited in Section 5.3, while the locally optimal Nu2 value consistently
increases, it increases rather slowly (especially at later generations). This is probably because of the choice of

12

“perturbation update” used in this paper to create daughter flows. 0.1/Ng multiplied by a randomly sampled
number from a standard normal distribution, the number added to a flow mode coefficient to perturb it,
becomes very small as the generation number Ng goes to infinity. This means at later generations, adding a
number of this form to a coefficient essentially does not change the coefficient. This also means the overall
ψj barely changes, hence the very slow change in Nu2. Thus, an idea to speed up the current version
of the generation algorithm would be to increase the magnitude of the “perturbation update”. We could
instead add 0.1 multiplied by a randomly sampled number from a standard normal distribution to each flow
mode coefficient. Then, the average magnitude of such random perturbations will not decrease over the
generations, which might enable us to see better Nu2 at earlier generations.

Lastly, it would be interesting to run simulations for different fixed average rate of viscous energy dissi-
pation Pe2. Perhaps at larger Pe2 values, we will be able to see improved Nu values by considering slightly
perturbed versions of optimal steady flows with that given Pe2. The procedure to calculate Nu2 discussed in
Section 3 would need to be modified: the domain discretization would need to be made finer, to account for
the complex branching behavior exhibited by optimal steady flows at higher Pe2 values in [1]. This would
increase the computational time needed to run genetic algorithm simulations.

7 Acknowledgements

I would like to extend my thanks to my principal investigator, Dr. Silas Alben, for the project idea and
the welcome stay in Ann Arbor this summer. I would also like to thank Dr. Xiaojia Wang for her patience
and guidance in discussing computational methods and reviewing Matlab code with me. Lastly, I would like
to thank the U(M) Math REU coordinators for organizing the logistics of this summer’s REU.

References

[1] Silas Alben. “Transition to branching flows in optimal planar convection”. In: Physical Review Fluids
8.7 (2023), p. 074502.

[2] Pedram Hassanzadeh, Gregory P. Chini, and Charles R. Doering. “Wall to wall optimal transport”. In:
Journal of Fluid Mechanics 751 (June 2014), pp. 627–662.

[3] R Huilgol and N Phan-Thien. “7 - Computational Viscoelastic Fluid Dynamics”. In: Fluid Mechanics
of Viscoelasticity. Vol. 6. Rheology Series. Elsevier, 1997, pp. 397–472.

[4] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. “A review on genetic algorithm: past,
present, and future”. In: Multimedia tools and applications 80 (2021), pp. 8091–8126.

[5] Singiresu S. Rao. “Chapter 17 - Basic Equations of Fluid Mechanics”. In: The Finite Element Method in
Engineering (Fifth Edition). Ed. by Singiresu S. Rao. Fifth Edition. Boston: Butterworth-Heinemann,
2011, pp. 549–569.

[6] P Teertstra, MM Yovanovich, and JR Culham. “Analytical forced convection modeling of plate fin heat
sinks”. In: Journal of Electronics Manufacturing 10.04 (2000), pp. 253–261.

13

	Introduction
	Problem setup
	Construction of stream functions

	Estimating Nu
	Checking the estimate of Nu

	Optimization method
	Preliminary results
	Effects of parameters bj and j on Nu2
	Genetic algorithm run with a range of j's
	Case study with j = 0.5

	Conclusions and discussion
	Acknowledgements

