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Abstract

It was shown in [LRV23] that the category Hilbm of Hilbert spaces with injective linear contractions
as morphisms is not finitely concrete; namely, there is no faithful functor U from Hilbm into Set that
preserves directed colimits. In [Hen20],it was shown that if a category K is axiomatizable in a finitary
logic, then there is a faithful functor from K → Set which preserves directed colimits. Therefore, Hilbm

is not axiomatizable in this sense.
Here, we extend this result and prove several related results. First, we show that finite concreteness in

Hilb (the category of Hilbert spaces with all linear contractions as morphism) and Hilbm, and proceed
using the finite concreteness of Hilb. We then analyze the extent to which finite concreteness fails in Hilb
(and Hilbm), and find that all faithful functors U : Hilb → Set are constant up to natural isomorphism.
Further, we find that finite concreteness also fails in Hilbr, the category of Hilbert spaces with linear
isometries as morphisms (Section 5).
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1 Introduction
This project explores the concept of finite concreteness and its connection to axiomatizability of certain
categories. It was proven in [LRV23] proved that the category Hilbm of Hilbert spaces with injective linear
contractions is not finitely concrete, which means there is no functor U from Hilbm into Set that is faithful
and preserves directed colimits. Faithful means that if U : K → Set is a functor, U is “injective” on the
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morphisms of K. The functor U can be thought of as a functor mapping objects in K to an “underlying set’.’
Directed colimit-preserving means that whenever there is a directed system ⟨Xi : i ∈ I⟩ in K with colimit X,
then UX is the colimit of the directed system ⟨UXi : i ∈ I⟩ in Set. Conceptually, this means that colimits in
K are “set-like” in their behavior.

It was shown in [LRV23] that there is no such functor from Hilbm → Set. This means that, on the one
hand, the normal underlying set functor (i.e. the functor mapping a Hilbert space to the set of its elements)
does not have the desired properties of faithfulness and directed-colimit preserving. In the case of Hilbm,
and in general, complete metric spaces, the underlying set of a directed colimit of complete metric spaces will
be the completion of the union of the corresponding underlying sets, not the union itself. Furthermore, the
result on finite concreteness of Hilbm states that directed-colimit-preserving and faithfulness fails regardless
of the choice of underlying set (i.e., for any functor from Hilbm to Set). By results in [Hen20], this implies
that Hilbm is not axiomatizable in any L∞,ω logic (and, in particular, any finitary first-order logic). In
[LRV23], this result is extended to various categories in which Hilbm can be embedded, including the category
CC∗Alg of commutative unital C∗-algebras with unit-preserving ∗-homomorphisms.

In the following, we will prove several extensions of the main result on Hilbm from from [LRV23] regarding
the nonaxiomatizability of categories related to Hilbert spaces.

First, we prove a result establishing a link between Hilbm (the category of Hilbert spaces with injective
linear contractions) and Hilb, which has the same objects but with all linear contractions (Section 3). In
particular, the proof of finite concreteness for Hilbm in [LRV23] (outlined in Section 2.C) relies on the notion
of support of an element of x ∈ UA in a Hilbert space A in Hilbm. Briefly, x is supported on a subspace
A0 ⊆ A iff any two morphisms f, g : A → B (for any other B ∈ Hilbm) that agree on A0 also agree on x. We
define an equivalent concept for Hilb (using morphisms in Hilb, i.e. linear contractions, instead of injective
linear contractions). We then show that the two definitions are equivalent in the sense that any morphism in
Hilbm can be “transformed” into a morphism of Hilb (and vice versa) in a way that preserves the property
in the definition of support. In other words, x ∈ UA (considering A as an object of Hilbm) is supported on a
subspace A0 iff it is also supported on A0 when considering A as an object of Hilb. This result means that
all results on Hilbm that rely on the definition of support (including the main result, Theorem 2.14), reduce
to equivalent results on Hilb. We proceed to extend the result on Hilb with the understanding that they
are also extensions of the results on Hilbm (i.e., those in Section 2.C). This equivalence is useful because,
unlike Hilbm, Hilb contains all of its directed colimits.

Having established that Hilb is not finitely concrete, i.e. there is no faithful and directed-colimit-preserving
functor from Hilb → Set, we prove a stronger version of this result in Section 4. In particular, we prove
that any functor U : Hilb → Set is constant, up to natural isomorphism (in other words, any such functor is
isomorphic to the constant functor which maps every Hilbert space A to U({⃗0})).

2 Background
2.A Categories and Functors
Definition 2.1. A category K consists of two parts:

(i) a collection of objects ob(K)

(ii) for each pair of objects A, B ∈ ob(K), there is a collection of morphisms (maps) from A → B.
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Example 2.2. The following are examples of categories:

(a) Set: The category of sets (for set A, B, morphisms are functions f : A → B)

(b) Grp: The category of groups (morphisms are group homomorphisms)

(c) Ab: The category of abelian groups

A category collapses all data for a certain type of structure (e.g. groups or sets) into one “item.” When
working with categories, we usually care less about the internal structure of each object in a category, and
more about maps between objects (morphisms).

Definition 2.3 ([Ped89]). A Hilbert space is a vector space equipped with an inner product ⟨·, ·⟩ which
induces a norm ∥·∥ (where ∥v⃗∥ =

√
⟨v⃗, v⃗⟩ for which the space is complete, i.e. the space contains all limits of

Cauchy sequences.

A Hilbert space can be thought of as a generalization of normal Euclidean space which allows infinite
dimensions.

Example 2.4. Examples of Hilbert spaces include

(a) Rn, for any n ∈ N.

(b) ℓ2 :=
{

(x0, x1, ....)
∣∣∣ xi ∈ R,

∑
i∈N

|xi|2 < ∞
}

Note also that in [LRV23], Hilbert spaces are defined as complex Hilbert spaces. Here, we mainly consider
real Hilbert spaces.

Definition 2.5. If A, B are Hilbert spaces, a linear contraction f : A → B is a linear map that does not
“lengthen” any vectors, i.e., for all v⃗ ∈ A, ∥fv⃗∥ ≤ ∥v⃗∥.

In this project, we look at various categories that all have Hilbert spaces as objects, but with different
definitions of morphisms.

Example 2.6. The following are examples of categories:

(a) Hilb: the category of Hilbert spaces with linear contractions as morphisms

(b) Hilbm: the category of Hilbert spaces with injective linear contractions as morphisms

(c) Hilbr: the category of Hilbert spaces with linear isometries (norm-preserving maps) as morphisms

So far, we have looked at categories, consisting of objects and maps between them. We can also take
another step out and look at a category as a single item, and consider maps between categories.

Definition 2.7. A functor is a map U : K → L between categories that

(i) maps objects in K to objects in L
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(ii) for objects A, B in K, if f : A → B is a morphism, then U maps f to a morphism Uf : U(A) → U(B).

(iii) preserves identity and composition

Example 2.8. Examples of functors include:

(a) U : Set → Set
X 7→ P(X)

(b) U : Set → Vec
{e1, ..., en} 7→ ⟨e1, ..., en⟩ (the vector space whose basis is {e1, ..., en})

Functors provide a way to “construct” one type of structure from another. In particular, for a functor
U : K → Set that maps A 7→ S, we can call S an “underlying set” of A. In some cases, there is a natural
choice for such a functor. For example, U : Grp → Set maps a group G (equipped with homomorphism) to
the set of its elements.

However, sometimes there are other choices that are more useful. We are interested in looking at ways to
associate an underlying set to a Hilbert space.

Definition 2.9. A functor U : K → L is faithful if it is injective on the morphisms in K, i.e. if A, B are
objects of K and f, g : A → B are morphisms such that Uf = Ug, then f = g.

We can think of a faithful functor as one that maps to an underlying set while remembering data from
the original object. For example, we could map every group in Grp to the empty set. This is not faithful
because every homomorphism maps to the empty function.

2.B Connection to Axiomatizability
Here we will explain the general connection between axiomatizability in various logics (denoted Lκ,λ) and
accessible categories.

Definition 2.10. A logical sentence is a finite string of symbols with connectives ∧, ∨, →↔, ¬, and quantifiers
∀, ∃

There are two parameters we can use to describe a logic:

(1) The maximum index size of a conjunction or disjunction
∧

i∈I ϕi or
∨

i∈I ϕi

(2) The maximum number of variables over which we quantify
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We can formally denote a logic as Lκ,λ, where the number of connectives is strictly less than κ, and the
number of quantified variables is strictly less than λ.

There is a close connection between the existence of faithful, directed colimit-preserving functors from a
category into Set and axiomatizability of that category in Lκ,λ. The following are examples of results along
these lines; see [AR94] for more details.

Theorem 2.11 ([AR94] Theorem 5.35). Accessible categories are precisely the categories equivalent to the
categories of models of basic theories.

Proposition 2.12 ([AR94] Proposition 5.39). Let λ be a regular cardinal and Σ be a λ-ary signature. Then
each class of Σ-structures axiomatizable by a theory in Lλ is closed under

(i) λ-elementary substructures

(ii) λ-directed colimits of λ-elementary embeddings.

Theorem 2.13 ([AR94] Theorem 5.44). A class K of σ-structures is axiomatizable (in L∞ iff there exists
regular cardinal λ such that K is accessible and accessibly embedded.

The results here are specifically concerned with Lκ,ω logics where κ is infinite, in which conjunctions and
disjuntions of fewer than κ formulas are permitted. In [Hen20], it is shown that categories axiomatizable in such
logics are all finitely concrete, and hence, failure of finite concreteness is enough to prove nonaxiomatizability
in these logics.

2.C Main result on Hilbm

The following were shown in [LRV23]:

Theorem 2.14 ([LRV23] Theorem 18). No faithful functor from Hilbm to Set preserves directed colimits.

An outline of the argument follows:

Proof. Suppose a functor U : Hilbm → Set is faithful and preserves directed colimits.

Definition 2.15 ([LRV23] Def. 8). Let A be a Hilbert space, x ∈ UA, and A0 a subspace on A. x is
supported on A0 if whenever f, g : A → B are morphisms (injective linear contractions) with fiA0,A = giA0,A,
then f(x) = g(x), where iA0,A is the inclusion map A0 → A.

It is then shown that finite-dimensional supports are closed under intersections, so that there is a unique
minimal support of each x ∈ UA, using the assumption that U preserves directed colimits.

Then,

Lemma 2.16 ([LRV23] Lemma 14). If A is an infinite-dimensional Hilbert space, x ∈ UA and A0, A1
finite-dimensional subspaces of A such that x is supported on A0 and A1, then x is supported on A0 ∩ A1.

Lemma 2.17 ([LRV23] Lemma 15). If A is a Hilbert space and x ∈ UA, then there is a unique minimal
finite-dimensional subspace A0 of A on which x is supported.

Take a Hilbert space A with dimension λ, which is sufficiently large (in particular, λ > µ0 + 2ℵ0 , with
countable cofinality).

Lemma 2.17 shows that every x ∈ UA has a unique minimal support in A, suppA(x). Using this fact and
a counting argument that shows |UA| is strictly less than λℵ0 , and that a Hilbert space can be partitioned
into at least λℵ0 many lines, it is concluded that there are more lines than elements of UA. Therefore, there
is at least one line A0 ⊆ A that is not equal to suppA(x) for any x ∈ UA–and, in particular, for any x ∈ UA0.
However, every x ∈ UA0 is supported on A0, so suppA(x) must be a proper subspace of A0, i.e. the trivial
space (since A0 is a line).

However, this immediately contradicts the following fact that is due to the faithfulness of U :
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Remark 2.18. For any nonzero subspace A0 of an infinite-dimensional Hilbert space A, there is some
x0 ∈ UA0 such that iA0,A(x0) has nontrivial support in A.

Therefore, no such functor U : Hilbm → Set can be faithful and preserve directed colimits. In other words,
Hilbm is not finitely concrete. By Section 2.B, this means that the category Hilbm is not axiomatizable in
any finitary logic.

3 Equivalence between Hilbm and Hilb
3.A Supports in Hilb
The results in Section 2.C include the main result, Theorem 2.14, for the category Hilbm, whose morphisms
are all injective linear contractions. In practice, it is often easier to work with the category Hilb, whose
morphisms are all linear contractions. Here, we redefine some of the machinery in [LRV23] (in particular, the
definition of support), and prove an equivalence between the results of section 3 for Hilbm and Hilb.

For this section, as in the previous section, suppose U : Hilbm → Set (or U : Hilb → Set) is faithful
and preserves directed colimits. The following is the definition of support for Hilbm, from [LRV23]:

Definition 3.1 ([LRV23] Definition 8). Let A be a Hilbert space, x ∈ UA, A0 a subspace on A. Then x is
supported on A0 if whenever f, g : A → B are morphisms (injective linear contractions) with fiA0,A = giA0,A,
then f(x) = g(x), where iA0,A is the inclusion map A0 → A.

In other words, x is supported on a subspace A0 if whenever two morphisms f, g agree on A0, they also
agree on x.

The equivalent definition for Hilb is the following

Definition 3.2 (Definition 8b). If A is a Hilbert space and x ∈ UA and A0 is a subspace of A, then x
is supported on A0 (in Hilb) if whenever f, g : A → B are morphisms of Hilb (linear contractions) with
fiA0,A = giA0,A, then f(x) = g(x), where iA0,A is the inclusion map A0 → A.

We now prove that these two definitions are equivalent: for a Hilbert space A, any x ∈ UA is either
supported on a subspace A0 by both definitions or neither.

Lemma 3.3. If A is a Hilbert space, x ∈ UA, A0 a subspace on A, then the following are equivalent:

(i) Whenever f, g : A → B are injective linear contractions with fiA0,A = giA0,A, then f(x) = g(x).

(ii) Whenever f, g : A → B are linear contractions with fiA0,A = giA0,A, then f(x) = g(x).

The proof relies on “transforming” morphisms in Hilb (linear contractions) to morphisms in Hilbm

(injective linear contractions), and vice versa.

Proof. ((i) ⇒ (ii)) Suppose (i) holds. Then it is sufficient to show that for any linear contractions f, g : A → B
such that fiA0,A = giA0,A, there are corresponding injective linear contractions f ′, g′ : A → C (for some
Hilbert space C) and f ′iA0,A = g′iA0,A (so that then by (i), f ′(x) = g′(x)). From this, it follows that
f(x) = g(x).

Let f, g : A → B be linear contractions such that fiA0,A = giA0,A and define f ′, g′ as follows:

f ′ : A → A × B

x 7→
√

2
2 (x, f(x))

g′ : A → A × B

x 7→
√

2
2 (x, g(x))
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Since f and g are contractions (i.e. they scale vectors in A by at most 1), f ′ and g′ are as well, since the
norm ∥f(x)∥ is at most

√
2

2
√

2∥x∥2 = ∥x∥ for any x ∈ A, and likewise for g. We can also see that f ′ and g′

are injective by construction, and that they agree on A0 whenever f and g do.
Therefore, f ′, g′ : A → B are injective linear contractions such that f ′iA0,A = g′iA0,A, so by (i),

f ′(x) = g′(x), i.e.
√

2
2 (x, f(x)) =

√
2

2 (x, g(x)), so that f(x) = g(x).
((ii) ⇒ (i)) Immediate.

Thus, the definition of support for Hilbm is equivalent to that of Hilb, so that the following results
(using Definition 3.1 for Hilbm) still hold for Hilb:

Remark 3.4. If A0 is a subspace of a Hilbert space A and x0 ∈ UA0, then iA0,A(x0) is supported on A0.

Proof. Let C := iA0,A(x0). Suppose f, g : A → B are morphisms such that fiC,A = giC,A, so for all
c ∈ C, fiC,A(c) = giC,A(c). In particular, if x = U(x0) for x0 ∈ A, then fi(x0) = gi(x0), and therefore
(Uf)(x) = U(f(x0)) = U(g(x0)) = (Ug)(x), so that x is supported on A0.

Continuing using Hilb, we derive the same results in section 3 as those for Hilbm.

Lemma 3.5. If A is a Hilbert space, 0 ≤ δ ≤ 1, and x ∈ UA, x is supported on A0 (in Hilb) iff whenever
f, g : A → B are linear contractions with norm at most δ with fiA0,A = giA0,A, then f(x) = g(x).

Proof. Similar to the result in Hilbm.

Lemma 3.6 (Analogous to Lemma 2.16). If A is an infinite-dimensional Hilbert space, x ∈ UA and A0, A1
finite-dimensional subspaces of A s.t. x is supported on A0 and A1, then x is supported on A0 ∩ A1.

Proof. Similar to proof of Lemma 2.16

Lemma 3.7 (Analogous to Lemma 2.17). If A is a Hilbert space and x ∈ UA, then there is a unique minimal
finite-dimensional subspace A0 of A on which x is supported.

Proof. Similar to proof of Lemma 2.17

Lemma 3.8 (Analogous to Remark 2.18). For any nonzero subspace A0 of an inifnite-dimensional Hilbert
space A, there is some x0 ∈ UA0 such that iA0,A(x0) has nontrivial support in A.

Proof. Similar to proof of Remark 2.18

The main result is the following:

Theorem 3.9 (Analogous to Theorem 2.14). No faithful functor from U : Hilb → Set preserves directed
colimits.

Proof. Similar to proof of Theorem 2.14

3.B Hilbm does not contain all directed colimits
The result Theorem 3.9 is useful because the category Hilb contains all directed colimits. Note that [LRV23]
mentions that Hilbm is a category with directed colimits; however, consider the following counterexample:

Example 3.10. Let H ∈ Hilbm be a nontrivial Hilbert space and set Hn := H for all n ∈ N. Let the
connecting map fn,n+1 = 1

2 IdH . Suppose K is a colimit of this system, with morphisms fn : H = Hn → K.
Then for any h ∈ H and n ∈ N,

f1(h) = fn ◦ f1,n(h) = fn

( 1
2n−1 h

)
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where each fn is an injective contraction, so then

||f1(h)|| = ||fn(2−(n−1)h)|| = 1
2n−1 h||fn||

Because this holds for all n, the limit goes to 0 as n → ∞, so f1 is the zero map. However, f1 ≡ 0 is not
injective, so K is not a colimit in Hilbm.

On the other hand, Hilb does contain all of its directed colimits. In the proceeding sections, we consider
Hilb, having established, by Lemma 3.3 that the results are equivalently true for Hilbm.

4 All functors U : Hilb → Set are constant
As outlined in Section 2.C, there is no functor U : Hilb → Set that is faithful and preserves directed colimits.
In this section, we extend this to the stronger result that any functor from Hilb to Set that preserves
directed colimits is constant, up to natural isomorphism.

4.A Main result
The main result in this section is the following:

Theorem 4.1 (Main result). Any functor U : Hilb → Set that preserves directed colimits is naturally
isomorphic to the constant functor which takes A 7→ U({⃗0}).

The proof relies on the following intermediate results:

Lemma 4.2. If A0 ⊆ A is a closed subspace and B ⊆ A0, then for all x ∈ UA0, x is supported on B in A0
iff x is supported on B in A.

Proof sketch. For the forward direction, let f, g : A → C agree on B. Since x is supported on B in A0, for
any f0, g0 : A0 → C0 that agree on B, f0 and g0 agree on x. In particular, we can take f0 and g0 to be f and
g composed with the inclusion map from B into A.

For the reverse direction,the idea is similar: Let f0, g0 : A0 → C0 be arbitrary and suppose f0iB,A0 =
g0iB,A0 . Let p : A → A0 be the projection map from A to A0, and take f, g to be f0 and g0 composed with
p.

A corollary of Lemma 4.2 is that for any closed subspace A0 ⊆ A, suppA0(x) = suppA(x).
In the following, let U : Hilb → Set be a functor and let A be a Hilbert space as in Theorem 2.14, i.e. a

λ-dimensional Hilbert space where λ is chosen to be greater than µ0 + 2ℵ0 with countable cofinality. Here, as
in Theorem 2.14, µ0 is chosen such that for any µ > µ0, and U preserves µ-presentable objects.

The proof of the following lemma relies on a similar counting argument as the proof of Theorem 2.14.

Lemma 4.3. No x ∈ UA has suppA(x) = A0 for any one-dimensional A0 ⊆ A.

Proof sketch. Let A be a Hilbert space of dimension λ as in Theorem 18. Following the proof of Theorem 18:
there are more distinct lines in A than there are elements of UA, so there is a line A0 that is not the support
of any x ∈ UA. Therefore, either there are some lines that are the support of elements x of UA and others
that are not, or no line in A is the support of any x ∈ UA. We will prove that it must be the latter.

Suppose there is some line A0 that is not the support of any element of UA, and another line A1 ⊆ A
that is the support of some x ∈ UA. Let f : A → A be the natural rotation between A1 and A0 (this is a
morphism in Hilb).
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A1

A0

f

UA1 x

UA

UA0 (Uf)x

UA

U

U

Uf

Since x is supported on A1 in A, by definition for any g, h : A → C, if giA1,A = hiA1,A then g(x) = h(x).
But then if g0, h0 : A → C0 and g0iA0,A = h0iA0,A, then fg0 and fh0 are maps from A1 → C0 with
g0fiA1,A = h0fiA1,A, so g0f(x) = h0f(x). Therefore, Uf(x) is also supported on A0 in A, a contradiction.

It follows from Lemma 4.3 that for any line A0 in A and x in UA0, suppA0(x) = {⃗0} (the trivial space).
Also, for A as in Theorem 2.14 and for any k ∈ N, there are at least λℵ0 many subspaces Ak of A with

dimension k. This is because each Ak ∈ Ak has a basis {e1, ..., ek} and each element a ∈ Ak is of the form

a =
k∑

i=1
ciei

where each ci ∈ R. There are |R| = 2ℵ0 choices of ci for each i, so the number of elements in Ak is

|Ak| = (2ℵ0)k = 2kℵ0 = 2ℵ0

Note that A =
⋃

Ak. Then we have

λℵ0 = |A|

= |
⋃

Ak|

≤
∑

Ak∈Ak

|Ak|

= |Ak|2ℵ0

Since (as in Theorem 2.14) λℵ0 > 2ℵ0 , then |Ak| is at least λℵ0 . So there are at least λℵ0 many k-dimensional
subspaces of A.

Lemma 4.4. For A with dimension λ and x ∈ UA, the support of x in A is trivial.

Proof. This argument uses a counting argument similar to that of Theorem 2.14. For any k > 0, there are at
least λℵ0 many k-dimensional subspaces of A. However, |UA| ≤ 2ℵ0 < λℵ0 , so there are more k-dimensional
subspaces of A than elements of UA, so not all k-dimensional subspaces can be the support of an element
of UA, and therefore (following a similar argument as in Lemma 4.3 for lines), no k-dimensional subspaces
can be the support of an element of UA. Since this is true simultaneously for all k > 0, the support of any
x ∈ UA in A must be trivial.

From Lemma 4.4, it follows that for general A and x ∈ UA, the support of x in A is trivial.
Lemma 4.4 then implies that U is constant on pairs of morphisms f, g : A → B with the same domain

and codomain:
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Proof. By Lemma 4.4, if A0 ⊆ A is a line and x ∈ UA0, then suppA0{x} = {⃗0}. This means that for all
subspaces A′ of A0 (i.e. A0 and the zero subspace {⃗0}), whenever f and g agree on A′ (i.e. fiA′,A = giA′,A),
Uf(x) = Ug(x). But when x ∈ UA0, x is supported on A0, so we always have Uf(x) = Ug(x) for x ∈ UA0.

If A is an arbitrary Hilbert space, then we can write it as a directed colimit of finite-dimensional Hilbert
spaces A0 ⊆ A1 ⊆ ...., i.e. A is the colimit of ⟨Ai : i ∈ I⟩. Since U preserves directed colimits, UA is the
colimit of ⟨UAi : i ∈ I⟩.

Lemma 4.5. For all A, B ∈ Hilb and morphisms f : A → B, Uf is a bijection from UA → UB.

Proof. Let A, B ∈ Hilb. By the previous remark, for all f, g : A → B, Uf = Ug. In particular, since
U idA = idUA, then for any f : A → A, Uf = idUA.

Note that in Hilb, there is at least one morphism between any two Hilbert spaces (e.g. the zero morphism),
so let g : B → A be any morphism. Then g ◦ f is a morphism from A → A, so that

U(g ◦ f) = idA

= Ug ◦ Uf

so Ug and Uf are both bijections (from UB → UA and UA → UB, respectively).

Now, the proof of Theorem 4.1 follows:

Proof. From Lemma 4.5, for each f : A → B, Uf is a bijection, and each UA in Set has the same cardinality
(in particular, for all A ∈ Hilb, |UA| = |U {⃗0}|. There is a natural transformation α which maps idHilb to
0Hilb. Then, since U is a functor from Hilb → Set, Uα is a natural transformation that maps U idHilb = U
to U{0}. Also, since U maps every morphism in Hilb to a bijection in Set (Lemma 4.5), Uα is a natural
isomorphism. Therefore, U is naturally isomorphic to U {⃗0}.

Hilb Hilb Set
id

0

U◦id=U

U{0}

U
α

Uα

5 Hilbr

Here, we return to the main result (Theorem 2.14) from Section 2.C, and prove the same result for the
category Hilbr:

Definition 5.1. Hilbr is the category whose objects are Hilbert spaces and morphisms are isometries (linear
maps between spaces that preserve norm).

5.A Main result on Hilbr

We begin with the following lemmas regarding the behavior of rotations of Hilbert spaces in Hilbr:

Lemma 5.2. Let A, B, C ⊆ R3 be lines with A ̸= B. Then there is a finite composition of rotations about A
or B, which takes A to C.
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Proof sketch. By induction on the least n ∈ N such that the acute angle between A, B is ≥ 90◦/2n. If n = 0,
then A ⊥ B, so it suffices to take two rotations (since spherical coordinates can represent any point on the
sphere). Now suppose the claim holds for n; we show it for n + 1. There is a rotation f about B such that
the angle between A, f(A) is precisely 90◦/2n (by the intermediate value theorem, since a rotation by 180◦

makes the angle between A, f(A) twice that between A, B). By the induction hypothesis, there is a finite
composition of rotations about A or f(A) taking A to C. Since a rotation about f(A) is an f -conjugate of a
rotation about A, we are done.

Lemma 5.3. Let H be a Hilbert space of dimension ≥ 3, and let A, B ⊆ H be two distinct lines. Then every
linear isometry f : H → H is a finite composition of isometries that fix either A or B.
Proof. Let g : H → H be an invertible such finite composition taking A to f(A), by the preceding lemma
applied to a 3-dimensional subspace containing A, B, f(A). Then g−1 ◦ f fixes A, and f = g ◦ g−1 ◦ f .

We redefine the notion of support in terms of Hilbr:
Definition 5.4 (Analogous to Definition 3.1). If A is a Hilbert space, x ∈ UA, and A0 a subspace on A. x
is supported on A0 in Hilbr if whenever f, g : A → B are isometries with fiA0,A = giA0,A, then f = g, where
iA0,A is the inclusion map A0 → A.

Using this definition and the preliminary results, we can derive the following results, following Section 2.C,
for Hilbr:
Lemma 5.5 (Analogous to Lemma 2.16). Let A be infinite-dimensional and let A0, A1 ⊆ A be lines. Then
if f, g : A → B are isometries, there exists a sequence f = k1, . . . , kn = g : A → B such that for each i,
ki ∼ ki+1 in the sense of Lemma 2.16 (i.e. ki and ki+1 agree on either A0 or A1).
Proof sketch. First, consider the case where at least one of f and g is invertible (WLOG, suppose g is
invertible). By Lemma 5.2, we can write g−1 ◦ f = hn ◦ hn−1 ◦ ... ◦ h1. If n = 1, we have g−1 ◦ f = h1, where
h1 fixes A0 or A1 (i.e. if h1 fixes Ai, hi|Ai = id|Ai). Then we have

(g−1 ◦ f)|Ai
= idAi

⇒ (g ◦ g−1 ◦ f)|Ai = g ◦ h1|Ai = g ◦ id|Ai

⇒ g ◦ h1|Ai = g|Ai

A similar result follows for n = 2, and can be extended to work for any n. Therefore, if g is invertible,
there exists a sequence f = k1, ...kn = g : A → B such that for each i, ki ∼ ki+1.

Now, consider the case where neither f nor g is invertible. Let C := ⟨f(A) ∪ g(A)⟩ ⊆ B, the subspace
generated by f(A) and g(A). Since A is infinite dimensional, dim(A) = dim(C). Without loss of generality,
we can restrict B to C (since C embeds into B via the inclusion isometry), so that there exists an invertible
h : A → B. Then, this case reduces to the previous case.

Now, Lemma 5.5 proves the analogue of Lemma 2.16 for Hilbr when A is infinite-dimensional and A0, A1
are lines. In particular, if x is supported on A0 and A1 in Hilbr, it is also supported on their intersection,
and therefore suppA(x) = {⃗0}.

The main results for Hilbr follow (along the lines of Remark 2.18 and Theorem 2.14):
Lemma 5.6 (Analogous to Remark 2.18). For any one-dimensional subspace A0 of an infinite-dimensional
Hilbert space A, there is some x0 ∈ UA0 such that iA0,A(x0) has nontrivial support in A.
Proof. Follows the proof of Remark 2.18, as the maps f, g : A → B ,which send A to its copies in the left and
right component, respectively, are already isometries. The remaining proof is identical.

Theorem 5.7 (Analogous to Theorem 2.14). No faithful functor from U : Hilbr → Set preserves directed
colimits.
Proof. Follows the proof of Theorem 2.14, replacing Hilbm with Hilbr, and using the preceding lemmas and
definition of support for Hilbr.
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6 Current and Future Work
We now have the results from Section 2.C for both Hilb (and Hilbm) and Hilbr (Section 4). We have also
strengthened this result in the case of Hilb and Hilbr (Theorem 4.1). A natural next step would be to prove
a similar result for Hilbr.

Note that we cannot prove the exact same result; it is not true that all functors from Hilbr to Set are
constant up to natural isomorphism. Consider the following example:

Example 6.1. Let U : Hilbr → Set be defined by

A 7→

{
2 ifdim(A) ≥ 2
1 otherwise

For A, B ∈ ob(Hilbr) with dimension at least 2 or A, B with dimension less than 2, if f : A → B, then
Uf = idUA. If A has dimension less than 2 and B has dimension at least 2, then (WLOG) let F : A → 2
map 0 7→ 0.

This functor is not constant, but it is eventually constant, i.e. constant for large enough dimensional
Hilbert spaces A. Here, we consider whether every functor from Hilbr into Set exhibits this tendency:

Conjecture 6.2. If U : Hilbr → Set is a functor , then there is some κ for which U is constant on Hilbert
spaces of dimension greater than κ.

Evidence for this conjecture comes from the proof strategy in the previous sections, in which key lemmas
are proven for Hilbert spaces of dimension λ, chosen as in theorem 18. However, we have no control over or
indication of the size of λ. For Hilb, the desired result is generalized to all Hilbert spaces by Lemma 4.5;
however, this proof relies on the fact that there exists at least one morphism between any two Hilbert spaces
in Hilb. This is true in Hilbr, because morphisms must preserve norm, there are Hilbert spaces with no
isometries between them.

Therefore, as of now, we can only prove an analogue of Theorem 2.14 for high enough dimensional Hilbert
spaces in Hilbr, i.e. we can prove a version of Conjecture 6.2 with no control over the lower bound κ. A
next step would be to find some restriction on the size of κ.
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