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Abstract

Matrix decompositions, such as Singular Value Decomposition (SVD)
and Dynamic Mode Decomposition (DMD), are fundamental tools in
computational mathematics and data analysis. This paper provides an
overview of their mathematical structure, geometry, and applications
in fields such as principal component analysis, image compression,
noise reduction, and fluid dynamics.

1 Introduction

Matrix decompositions are essential in computational mathematics, provid-
ing solutions to problems such as linear least squares and eigenvalue com-
putations. This paper explores two key decompositions: Singular Value De-
composition (SVD) and Dynamic Mode Decomposition (DMD).

2 Importance of Matrix Decompositions

In computational mathematics, we often have complex matrices to work with.
A classical example from linear algebra is the QR factorization of a matrix
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A. QR expresses a matrix A as the product of an orthogonal matrix Q and
an upper triangular matrix R.

This factorization is often helpful in solving linear least squares problems
and eigenvalue computations.

Figure 1: Matrix structure in QR factorization.

3 Singular Value Decomposition (SVD)

3.1 Definition and Components

Definition: For any matrix A ∈ Rm×n, there exist orthogonal matrices U and
V , as well as diagonal matrix Σ = diag(σ1, . . . , σmin(m,n)) such that:

A = UΣV T

Component matrices:

• U ∈ Rm×m consists of the left singular vectors.

• Σ ∈ Rm×n is a diagonal matrix containing non-negative values (the
singular values).

• V ∈ Rn×n consists of the right singular vectors.

2



3.2 Geometric Interpretation

The SVD can be used to understand the transformation of a unit sphere
in Rn into an ellipsoid. Here, the lengths of the semi-axes of the ellipsoid
represent the singular values of matrix A.

With SVD, we act on vectors some unit sphere in Rn (i.e., all vectors x
have norm=1).

Transformation Process:

• First, we apply V for a rotation.

• Next, we scale along the principal axes by the singular values in Σ.

• Finally, we apply U for another rotation.

Hence, unit sphere transformed by A becomes an ellipsoid by the follow-
ing:

y = UΣV Tx = Ax

Figure 2: Geometric interpretation of SVD transforming a unit sphere into
an ellipsoid.

3.3 Applications of SVD

• Principal Component Analysis (PCA): Reducing dimensionality
by projecting data onto principal components.
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• Image Compression: Retaining significant singular values approxi-
mates the original image with reduced storage.

• Noise Reduction: Smaller singular values associated with noise can
be filtered out.

4 Analysis of a Randomly Generated 10 × 10

Matrix

In this section, we analyze a randomly generated 10× 10 matrix X.

4.1 Matrix X and Singular Value Decomposition

The matrix X is provided below:

X =



0.15818 0.81836 0.24962 0.06544 0.90386 0.11633 0.91511 0.08482 0.32417 0.31303
0.06215 0.93817 0.38706 0.61035 0.45223 0.64622 0.90097 0.29813 0.66904 0.07644
0.70184 0.00033 0.42104 0.70155 0.07069 0.10841 0.21424 0.91713 0.29629 0.79142
0.08648 0.64039 0.64008 0.11162 0.24128 0.98350 0.54706 0.47052 0.92995 0.36538
0.61679 0.00736 0.78755 0.09582 0.73187 0.24834 0.78471 0.26947 0.28196 0.58510
0.17377 0.10642 0.26999 0.59783 0.04049 0.60636 0.19444 0.76297 0.16888 0.18334
0.65140 0.10679 0.84398 0.81223 0.42452 0.81670 0.74689 0.77217 0.74517 0.07691
0.49870 0.36711 0.74047 0.81458 0.54022 0.83005 0.47556 0.02130 0.47713 0.15366
0.28451 0.23961 0.82610 0.08944 0.95383 0.48904 0.58326 0.87999 0.65344 0.82688
0.83056 0.34614 0.18219 0.73128 0.20891 0.76073 0.26055 0.79817 0.96658 0.30096



4.2 Singular Values of X

The singular value decomposition (SVD) of X yields the following singular
values:

{4.9312, 1.7089, 1.4394, 0.9715, 0.8457, 0.6195, 0.4715, 0.3952, 0.2257, 0.0506}.

These values indicate the importance of each singular vector in represent-
ing the structure of X.

4.3 Thresholding for Retained Singular Values

To analyze some matrix A we will learn from X through DMD, we use several
thresholds for retaining singular values. For each threshold, we calculate the
learned matrixA and observe its corresponding structure. For example:
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Threshold = 0.1: Only the largest singular value (4.9312) is retained.
Threshold = 0.5: Two singular values (4.9312, 1.7089) are retained. Thresh-
old = 0.9: Six singular values are retained.

The learned A matrices reflect an approximation of matrix X based on
the retained singular values.

4.4 Example Learned A Matrix for Threshold 0.5

For threshold 0.5 above, the retained singular values are:

{4.9312, 1.7089}.

The learned A matrix is:

A =

[
0.9623 0.2173
0.0224 −0.5593

]
.

This new matrix A learned through DMD reduces computational com-
plexity while retaining essential structural properties of X.

This example demonstrates how randomly generated matrices can be
analyzed using SVD, with thresholding enabling the extraction of lower-
dimensional approximations make computations efficient all the while main-
taining the dynamics of the original matrix A

5 Dynamic Mode Decomposition (DMD)

Definition: For any matrix X ∈ Rm×n that represents n snapshots of a
system’s state at different points in time, DMD decomposes the system into
modes that capture its dynamics. There exists a matrix A ∈ Rm×m which
linearly approximates the evolution of these n snapshots.

DMD can be used to describe a fluid state (such as a velocity or vorticity
field) as a superposition of many computed basis vectors, known as modes.

5.1 Background on DMD

The number of modes required to capture the main behavior of a flow is
typically much smaller than the system state dimension. For instance, a
system with a state dimension on the order of 106 might only need around
10 modes to represent the main dynamics.
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A common example of DMD application is in observing airflow within
a cylinder, assuming laminar flow as a reference. The flow of air creates
vortices or swirling air patterns. Over time, these patterns develop into
regularly observed structures that shed and form off the cylinder in a process
known as vortex shedding. Vortex shedding is valuable for understanding the
strength and behavior of fluid forces.

Vortex shedding
visualized through DMD, illustrating air flow patterns around an object

(e.g. cylinder).

6 DMD Process and Experiment Design

6.1 Defining the System

Consider a system represented by matrix A of rank 5 with randomly chosen
initial state vector x0. x0 is selected at random from a normal distribution,
as so will ensure a close approximation to the happenings in nature. We

generate snapshots x(t) for t = 0 to t = 200 by iterating:

x(t+ 1) = Ax(t)

This general formula captures the system dynamics when using DMD.

6.2 DMD Process

1. Collect the snapshots: Collect the n snapshots of the system state
and form data matrices X, X ′:

X = [x1,x2, . . . ,xn−1], X ′ = [x2,x3, . . . ,xn]

2. Perform Singular Value Decomposition (SVD): Apply SVD on
X:

X = UΣV T

6



3. Choose the number of singular values: Select the number r of
singular values based on an energy threshold.

4. Reduce system state: Reduce the system state by finding a rank
for some Ã such that rank(Ã) is much less than the dimension of the
system. For example, there can be 20,000 genes we observe, which
leads to a matrix X with 4 million entries. The learned matrix from
DMD can be 20, 000 × 20, 000, but it might only need around 8 time
points, resulting in an 8× 8 matrix instead.

Ã = UTAU = UTX ′V Σ−1

Here, U and V remain orthogonal and maintain unitary matrix prop-
erties.

5. Eigenvalue decomposition: Compute the eigenvalues and eigenvec-
tors of matrix A as:

AW = WΛ

where Λ contains the eigenvalues, and the columns of W are the eigen-
vectors.

6. Compute DMD Modes: The DMD modes Φ are given by:

Φ = X ′V Σ−1W

7 Noise Sensitivity Analysis of DMD

We consider a simple 5× 5 matrix A with entries defined as:

A =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 .

We generate a data matrix X from A under the influence of small noise,
η = 0.01, and apply Dynamic Mode Decomposition (DMD) to approximate

A.
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7.1 Key Observations

1. Retained Rank: For a threshold = 0.9, only the largest singular value is
retained (r = 1).

2. Learned Matrix ADMD: The matrix ADMD, derived from DMD, deviates
significantly from A due to noise:

ADMD =


1.0220 0.0230 0.0004 0.0000 0.0000
0.0230 0.0005 0.0000 0.0000 0.0000
0.0004 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

 .

3. Frobenius Norm Error: The Frobenius norm difference between A and
ADMD is what tells us our norm error between original A and A learned

through DMD, calculated as:

∥A− ADMD∥F = 2.8204.

This shows that DMD is sensitive to noise: The learned matrix ADMD

becomes rank deficient, reflecting the dominant singular mode while losing
finer details of A. Even small levels of noise (η = 0.01) can significantly

perturb the reconstruction of A, with a large Frobenius norm error (> 2.8).
So, noisy systems of low rank have an effect on the robustness of

DMD-based approximations.

Currently Studying and Learning

8 Extending DMD to Large Datasets of

Gene Expression Data

In this section, we extend the application of Dynamic Mode Decomposition
(DMD) to now analyze larger-scale datasets, such as gene expression

profiles.
The observed data matrix X can reach dimensions of approximately:

X ∈ R20,000×20,000

representing gene expression across thousands of genes over multiple time
points.
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Challenge:

Directly handling a 20, 000× 20, 000 matrix poses computational difficulties
and inefficiencies.

Solution:

DMD reduces this large matrix to a much smaller representation of a
reduced model state while marvelously capturing the essential dynamics of
the original system. The resulting reduced matrix Ã has significantly lower

dimensions, in this case:

Ã ∈ R8×8

This reduction represents the dominant modes of the system, efficiently
preserving the key information while discarding noise and less

representative dynamics.

Interpretation:

Even though X is initially high-dimensional, the system’s behavior is
governed by the resulting much smaller set of 8 dominant modes learned
through DMD. This reflects the intrinsic low-rank nature of the data,

allowing DMD to construct an accurate reduced-order model.

Mathematical Representation:

Ã = UTAU = UTX ′V Σ−1

where:

• U, V : Left and right singular vectors from SVD.

• Σ: Diagonal matrix of singular values.

• X ′: Time-shifted data matrix.

9



Gene Dataset Reformatting

The raw experimental data were reformatted and represent data matrix X
for DMD analysis:

Figure 3: reformatted data into matrix X

• Input Format: Gene names, time points (or hours), and TPM (tran-
scripts per million) values.

• Reformatted Matrix: Rows represent genes, columns represent time
points, and entries are TPM values.

• Replicates: For consistency, our X matrix is created using only one
replicate at a time considering the raw data has the same experiment
done 2 or 3 times.

Thresholding and Dimensionality Reduction

Thresholds were applied to retain singular values resulting from SVD that
preserve cumulative energy from the system while ignoring noise. The plot
below shows the cumulative energy versus rank of A learned through DMD,

namely Ã:

Plot Description

• X-axis: Rank of Ã.

• Y-axis: Cumulative energy of singular values.
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Figure 4: Cumulative Energy vs. Rank of Ã

• Interpretation: Thresholds like 0.8, 0.9, and 0.95 determine how much
energy and which singular values are preserved in the reduced dynam-
ics. Effectively, we see how many singular values are needed to encap-
sulate the majority of the energy of the system, thus we also see them
as some of our principal components.

The following table summarizes the ranks of Ã obtained under various
threshold values:

Threshold (Thresh) Rank of A
0.1 1

0.2 to 0.7 1
0.8 2
0.9 3
0.95 5
0.97 5
0.99 6
0.999 7

Table 1: Thresholds and corresponding ranks of A.
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Interpretation

• Thresholds such as 0.2 to 0.7 retain only the dominant singular value,
resulting in a rank 1 degenrate matrix.

• Higher thresholds like 0.8 and above retain more singular values, cap-
turing finer details of the dynamics.

• As the threshold approaches 0.999, more energy is preserved, increasing
the rank to 7.

As in the example of lower rank where A is known initially, we must be
keen to distinguish noise, be it experimental, through measurement, or

noise in nature. In most cases, we begin without knowing some matrix A a
data matrix X is constructed through formatting our dataset.

9 Summary and Conclusion

Dynamic Mode Decomposition (DMD) applies large-scale data reduction to
data matrices, such as those of gene expression. It does so by retaining the
dominant modes through Singular Value Decomposition (SVD). while also

identifying the principal components - an effective interpretation of a
separation of our data from noise. Furthermore, Ã is learned through
DMD, and we benefit greatly from the dynamics represented by the

reduced model state of our large original data set. It is an effective and
representative low-rank approximation as a whole.
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