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Abstract

In this paper, we attempt to find the sparsest matrix for any given spectrum of eigenvalues
with specified algebraic and geometric multiplicities. We prove that the Jordan Normal Form
can be used to construct the sparsest representation for any 2×2 or 3×3 spectrum and provide
a partial classification of the 4 × 4 case. We show that the Jordan Normal Form, a tempting
initial answer, is not the sparsest representation for all spectra, and provide a sequence of
n × n matrices that are sparser than their Jordan Normal Form. Finally, we provide methods
to construct sparse matrices for more spectra, and briefly address the case where zero is an
eigenvalue.
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1 Introduction

The eigenvalue spectra of many classes of matrices, such as the adjacency matrices of graphs, and
the matrices of Markov Chains, have been thoroughly studied in the literature. However, there has
been little dedicated study to the eigenvalue spectra of sparse matrices. In this paper, we begin
such an exploration by trying to find the sparsest matrix representation for any given eigenvalue
spectrum. We find that for many of the 2 × 2, 3 × 3, and 4 × 4 cases, the Jordan Normal Form of
a matrix with a given eigenvalue spectrum is the sparsest representation of that spectrum, but that
this is not true in general. We then provide examples of larger matrices that are sparser than their
Jordan-Normal form and methods for constructing sparse matrices given an eigenvalue spectrum.
In order to summarize our results, the following definitions are needed.

Definition 1.1. For any matrix A ∈ Cn×n, we define N(A) = #{zero entries in A}. Similarly, for
any eigenvalue spectrum S, we define

N(S) = max{N(A) | A ∈ Cn×n has spectrum S}

Definition 1.2. A matrix A ∈ Cn×n is jordan-sparse if it has less zero entries than its Jordan
Normal Form.

1.1 Summary of Results and Methods. Note that we will be disregarding eigenvalue spectra
that are diagonalizable or have 0 as one of their eigenvalues. The diagonalizable case is uninteresting,
since the diagonal matrix will be the sparsest matrix representation. Spectra with 0 eigenvalues
appear to also be uninteresting, but this may not be true in general. This is further discussed in
Section 5. Lastly, when referring to the Jordan-Normal Form of an eigenvalue spectrum, we mean
this to be the Jordan-Normal Form of any matrix representation of said spectrum.

Theorem 1.0.1. Let A ∈ Cn×n be non-diagonalizable and ker(A) = {0}. Then N(A) < n(n− 1).

Theorem 1.0.2. Let A ∈ C2×2 or let A ∈ C3×3. Let A be non-diagonalizable and ker(A) = {0}.
Then A is not jordan-sparse.

Theorem 1.0.2 summarizes our classification of 2 × 2 and 3 × 3 matrices. The 4 × 4 case is more
complicated. While most spectra still have the Jordan-Normal form as their sparsest representation,
a few spectra admit jordan-sparse matrices. In Section 4, we look for more jordan-sparse matrices.

Theorem 1.0.3. Let A =

[
0 λ
λ 0

]
and B =

[
0 1
0 0

]
for λ ̸= 0. Then the sequence of matrices

(Gn)n≥1 such that

G1 = A G2 =

[
A B
0 A

]
Gn =



A B
A B

A
. . .

. . . B
A

 for n ≥ 3

contains jordan-sparse matrices for n ≥ 2.

Notice the placement of A on the block-diagonal and B on the super block-diagonal. The matrices
A and B chosen for the Gn sequence are not the only choices that result in a jordan-sparse matrix.
For certain matrices A ∈ Cn×n, a matrix B ∈ Cn×n can be constructed to create a similar sequence
of jordan-sparse matrices.

2 Notation

We will introduce some notation to help us talk about eigenvalue spectra, which don’t have stan-
dardized notation.
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Notation 2.1. A spectrum S is any finite subset of {(a, b, c) : a ∈ C, b, c ∈ N, b ≥ c}. These 3-tuples
are intended to represent the parameters (eigenvalue, algebraic multiplicity, geometric multiplicity).

Notation 2.2. Given a spectrum S, we will let J(S) denote the Jordan Normal Form of S.

Notation 2.3. Let S be a spectrum. |S|a will denote the sum of the algebraic multiplicities of the
eigenvalues of S. |S|g will denote the sum of the geometric multiplicities of the eigenvalues of S.

Notation 2.4. We say a spectrum S is non-diagonalizable if |S|a ̸= |S|g. We also say S is non-zero
if S does not contain zero eigenvalues.

Notation 2.5. For A ∈ Cn×n, we will let J(A) ∈ Cn×n denote the Jordan Normal Form of A.

Notation 2.6. For A ∈ Cn×n, we will let s(A) denote the spectrum of A.

Example 2.7. If A =

[
3 1
0 3

]
, then s(A) = {(3, 2, 1)}. A has eigenvalue 3 with almu(3) = 2 and

gemu(3) = 1.

Notation 2.8. For A ∈ Cn×n, χA(x) will denote the characteristic polynomial of A.

3 Small Matrices

Throughout Sections 3 and 4, we are only considering matrices which are non-diagonalizable and
have trivial kernel. We will begin by proving bounds on the sparseness of certain spectra. We then
examine spectra of smaller matrices, determining if they can have matrix representations which are
sparser than their Jordan Normal Form.

3.1 A Bound on Sparseness

We begin with a bound on on how sparse non-diagonalizable matrices with trivial kernel can be,
and some immediate consequences. This will help us examine small matrices.

Theorem 3.1.1. Let A ∈ Cn×n be non-diagonalizable and ker(A) = {0}. Then N(A) < n(n− 1).

Proof. To begin, assume for contradiction that N(A) > n(n − 1). There are n2 − N(A) non-zero
terms in A. Note

n2 −N(A) < n2 − n(n− 1) = n

A has n columns, so there must be a column j containing only zeroes for 1 ≤ j ≤ n. However,
letting ej denote the jth standard basis vector in Cn, we have ej ∈ ker(A) which is a contradiction.
Thus N(A) ≤ n(n− 1).

Now suppose N(A) = n(n − 1). There are exactly n2 − N(A) = n non-zero terms in A. By the
same argument above, each column of A must contain one non-zero term. Suppose for contradiction
that two columns of A, Aei and Aej , both contain non-zero values ai, aj ∈ C respectively in the kth

coordinate. Then
A(ajei − aiej) = ajAei − aiAej = ajaiek − aiajek = 0

Thus ajei − aiej ∈ ker(A) which is a contradiction. So A is a generalized permutation matrix.
It follows that A can be uniquely decomposed as A = DP for D ∈ Cn×n a diagonal matrix and
P ∈ Cn×n a permutation matrix. We change basis to a permuted standard basis B such that

[P ]B =


C1

C2

. . .

Ck


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where each Ci is a block corresponding a ℓi-cycle for some 1 ≤ ℓi ≤ n [LHW23]. Notice that the
change of basis matrix SE→B is a permutation matrix. It is known that the normalizer of diagonal
matrices in GLn(C) is the set of generalized permutation matrices [Kol85]. So [D]B is a diagonal
matrix. Additionally change of basis preserves eigenvalues, which are exactly the diagonal values in
D. It follows that

D =


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

 =⇒ [D]B =


aσ(1) 0 . . . 0
0 aσ(2) . . . 0
...

...
. . .

...
0 0 . . . aσ(n)


For some σ ∈ Sn. By matrix multiplication, we have that

[A]B =


C ′

1

C ′
2

. . .

C ′
k


where each C ′

i is a block corresponding a generalized ℓi-cycle for the same 1 ≤ ℓi ≤ n as above, with
elements in {a1, a2, . . . , an}. The characteristic polynomial of a block C ′

i is given

χC′
i
(x) = xℓi − (−1)ℓiaj1 · · · ajℓi

where aj1 , . . . , ajℓi are the non-zero elements in C ′
i [GM15]. Because each element in {a1, a2, . . . , an}

is non-zero, each C ′
i has distinct eigenvalues over C and is thus diagonalizable. Thus [A]B and A are

diagonalizable. This contradicts A being non-diagonalizable. It follows that N(A) < n(n− 1).

Corollary 3.1.2. If S is a non-diagonalizable spectrum, then N(S) < n (n− 1) where n = |S|a.

Proof. By definition N(S) = max{N(A)|A ∈ Cn×n and s(A) = S}. Notice that for all A ∈ Cn×n

such that s(A) = S, clearly A is non-diagonalizable. It follows from Theorem 3.1.1 that

N(A) < n(n− 1)

for all A ∈ Cn×n such that s(A) = S. Thus N(S) < n(n− 1).

Proposition 3.1.3. If S is a non-zero spectrum, then N(J(S)) = n2 − 2n + m where n = |S|a,
m = |S|g.

Proof. Let n = |S|a and m = |S|g. We have that J(S) ∈ Cn×n. Additionally J(S) has all non-zero
eigenvalues on the diagonal. The number of ones on the superdiagonal is exactly n−m. Thus

N(J(S)) = n2 − n− (n−m) = n2 − 2n+m

Corollary 3.1.4. Let S be a non-zero spectrum such that |S|a = |S|g + 1, then N(J(S)) = N(S).

Proof. By Proposition 3.1.3 we know N(J(S)) = n2−2n+(n−1) = n(n−1)−1. Then by Corollary
3.1.2 we have

N(J(S)) ≤ N(S) < n(n− 1) =⇒ n(n− 1)− 1 ≤ N(S) < n(n− 1)

Because N(S) ∈ Z, it follows that N(S) = n(n− 1)− 1. Thus N(S) = N(J(S)).

This corollary gives us a set of spectra for which we know the Jordan Normal Form is the sparsest
matrix representation. In particular, for any spectrum such that the sum of algebraic multiplicities
and sum of geometric multiplicities differ by one, the Jordan Normal Form is the sparsest matrix
representation of that spectrum.

4



3.2 The 2× 2 and 3× 3 Cases

We will show any matrix in C2×2 or C3×3 cannot be sparser than it’s Jordan Normal Form.

Theorem 3.2.1. Let A ∈ C2×2 such that A is non-diagonalizable and ker(A) ̸= {0}. Then A is not
jordan-sparse.

Proof. We must have s(A) = {(λ, 2, 1)} for λ ∈ C− {0}. By Theorem 3.1.1 we know N(A) < 2. By
Proposition 3.1.3 we know N(J(A)) = 1. Thus N(A) ≤ N(J(A)), so A is not jordan-sparse.

Corollary 3.2.2. Let S be a non-diagonalizable, non-zero spectrum such that |S|a = 2. Then
N(S) = N(J(S)).

Theorem 3.2.3. Let A ∈ C3×3 such that A is non-diagonalizable and ker(A) ̸= {0}. Then A is not
jordan-sparse.

Proof. We will proceed with cases. Assume that λ1, λ2 ∈ C− {0} and λ1 ̸= λ2.

(i) s(A) = {(λ1, 2, 1), (λ2, 1, 1)}. By Proposition 3.1.3 we know N(J(A)) = 5. By Theorem 3.1.1
we know N(A) < 6. Thus N(A) ≤ N(J(A)), so A is not jordan-sparse.

(ii) s(A) = {(λ1, 3, 2)}. By Proposition 3.1.3 we know N(J(A)) = 5. By Theorem 3.1.1 we know
N(A) < 6. Thus N(A) ≤ N(J(A)), so A is not jordan-sparse.

(iii) s(A) = {(λ1, 3, 1)}. By Proposition 3.1.3 we know N(J(A)) = 4. By Theorem 3.1.1 we
know N(A) < 6. We must prove that there does not exists B ∈ C3×3 such that N(B) = 5,
ker(B) = {0}, and s(B) = S. We will do this by way of contradiction. Once again, we will
proceed with cases.

(a) WLOG assume e1 is a λ1-eigenvector. Notice that e2 and e3 cannot be λ1-eigenvectors.
Thus,

B =

λ1 0 0
0 0 b
0 a c

 or B =

λ1 0 b
0 0 c
0 a 0


for a, b, c ∈ C − {0}. Any other placement of 3 non-zero values will result in B having
non-trivial kernel or too many eigenvectors. In the left case, we get tr(B) = λ1 + c =⇒
c = 2λ1. Knowing this, χB(x) = (x− λ1)(x

2 − 2λ1x− ab) =⇒ ab = −λ2
1. But then

B(λ1e2 − ae3) = aλ1e3 − (abe2 − 2aλ1e3) = λ2
1e2 − aλ1e3 = λ1(λ1e2 − ae3)

which contradicts B having one eigenvector. In the right case, notice tr(B) = λ1 and
thus B does not have the correct spectrum.

(b) e1, e2, and e3 are not eigenvectors. We have a few possibilities.

(1) B =

0 b 0
a 0 c
0 0 d

. Note tr(B) = d =⇒ d = 3λ1. Then χB(x) = (x − 3λ1)(x
2 − ab).

So B does not have the correct spectrum.

(2) B =

0 b c
a 0 0
0 0 d

. Note tr(B) = d =⇒ d = 3λ1. Then χB(x) = (x − 3λ1)(x
2 − ab).

So B does not have the correct spectrum.

(3) B =

0 0 c
a 0 d
0 b 0

. Note tr(B) = 0. B does not have the correct spectrum.

(4) B =

0 0 c
a 0 0
0 b d

. Note χB(x) = x3 − dx2 − abc ̸= (x − λ1)
3. B does not have the

correct spectrum.
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(5) B =

0 b c
0 0 d
a 0 0

. Note tr(B) = 0. B does not have the correct spectrum.

(6) B =

0 b 0
0 0 c
a 0 d

. Note χB(x) = x3 − dx2 − abc ̸= (x − λ1)
3. B does not have the

correct spectrum.

In any case, we find that such a matrix B cannot exist. Thus N(A) ≤ N(J(A)).

For each spectrum we get N(A) ≤ N(J(A)), so any non-diagonalizable A ∈ C3×3 with trivial kernel
is not jordan-sparse.

Corollary 3.2.4. Let S be a non-zero, non-diagonalizable spectrum such that |S|a = 3. Then
N(S) = N(J(S)).

3.3 The 4× 4 Case

In the 4 × 4 case, it is no longer true that the sparsest matrix representation of all spectra is the
Jordan Normal Form. We provide an example of this below, as well as a summary of the sparsest
matrix representation for all spectra where the sum of the algebraic multiplicities is 4.

Eigenvalue Spectrum Sparsest Matrix Reason

{(λ, 4, 3)} JNF Thm 3.1.1
{(λ, 4, 2)} JNF Suspected Code (See Section 6)
{(λ, 4, 1)} JNF Thm 3.3.2

{(λ1, 3, 2), (λ2, 1, 1)} JNF Thm 3.1.1
{(λ1, 3, 2), (λ2, 1, 1)} JNF Thm 3.1.1
{(λ1, 3, 1), (λ2, 1, 1)} Unsure
{(λ1, 2, 2), (λ2, 2, 1)} JNF Thm 3.1.1
{(λ1, 2, 1), (λ2, 2, 1)} Unsure (See Example 3.3.1)

{(λ1, 2, 1), (λ2, 1, 1), (λ3, 1, 1)} JNF Thm 3.1.1

A table with our results from the 4× 4 case. Note that the Jordan Normal Form is the sparsest
matrix representation for all but 3 spectra.

Example 3.3.1. Consider the matrix A ∈ C4×4 below.

A =


λ 1

λ
λ

λ


Clearly N(A) = 11. By a few straightforward computations, we get that χA(x) = (x− λ)2(x+ λ)2.
Additionally,

dim(ker(A− λI4)) = 1 dim(ker(A+ λI4)) = 1

It follows that

J(A) =


λ 1

λ
−λ 1

−λ


Clearly N(J(A)) = 10. We have found a matrix A which is jordan-sparse.
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Theorem 3.3.2. If A ∈ C4×4 and s(A) = (λ, 4, 1) for arbitrary λ ∈ C, then A is not jordan-sparse.

Proof. This proof involved casework similar to Theorem 3.2.3. In total there were 152 cases of
matrices to check. We will provide a small example of some of these cases below.

We want to show there does not exist B ∈ C4×4 such that s(B) = {(λ, 4, 1)} and N(B) > 9. Suppose
B ∈ C4×4 and N(B) = 10 for contradiction. WLOG assume e1 is a λ-eigenvector. Assume the 2nd

and 3rd columns of B have 1 non-zero value, and the 4th column has 3 non-zero values. One such
matrix we have to check is

B =


λ 0 0 c
0 0 0 d
0 a 0 0
0 0 b e


For a, b, c, d, e ∈ C. Notice that χB(x) = (x − λ)

(
x2(x− e)− abd

)
̸= (x − λ)4. It follows that

s(B) ̸= {(λ, 4, 1)}. We must check every case of a basis vector being an eigenvector or not, and
every case of a column having a different number of non-zero elements up to permutation.

Corollary 3.3.3. Suppose n ∈ Z and n ≥ 4. Then ∃B ∈ Cn×n such that B is jordan-sparse.

Proof. Let A be the same matrix from Example 3.3.1, and consider the block diagonal matrix

B =

[
A

In−4

]
Notice that

J(B) =

[
J(A)

In−4

]
From Example 3.3.1 we know

N(B) = n2 − 5− (n− 4) = n2 − n− 1 and N(J(B)) = n2 − 6− (n− 4) = n2 − n− 2

Clearly N(B) > N(J(B)) for all n ≥ 4, and thus B is jordan-sparse.

Equivalently, we have shown that for any n ≥ 4 there exists a spectrum S such that |S|a = n and
J(S) is not the sparsest matrix representation of S.

4 Examples

Before we continue, another reminder that throughout Section 4 we are only considering spectra
which are non-diagonalizable and non-zero. In other words, we are only considering matrices which
are non-diagonalizable and have trivial kernel. We will now explore more examples of jordan-sparse
matrices other than Example 3.3.1.

4.1 A Sequence of Jordan-Sparse Matrices

It is now clear that there exist matrices A ∈ Cn×n such that N(A) > N(J(A)) for n ≥ 4. We
will examine how large the gap N(A)−N(J(A)) can be for particular matrices A by attempting to
further generalize Example 3.3.1.

Definition 4.1.1. Let A =

[
0 λ
λ 0

]
and B =

[
0 1
0 0

]
for λ ̸= 0. We will define the sequence of

matrices (Gn)n≥1 such that

G1 = A G2 =

[
A B
0 A

]
Gn =



A B
A B

A
. . .

. . . B
A

 for n ≥ 3
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Lemma 4.1.2. Consider the sequence of matrices (Gn)n≥1. Then χGn(x) = (x− λ)n(x+ λ)n.

Proof. Notice that for all n ∈ Z≥1, Gn is block upper-triangular with n copies of A along the
block diagonal. It follows that χGn

(x) = χA(x)
n. We know that χA(x) = (x − λ)(x + λ). Thus,

χGn
(x) = (x− λ)n(x+ λ)n.

Lemma 4.1.3. s(Gn) = {(λ, n, 1), (−λ, n, 1)}

Proof. We already know that almu(λ) = n = almu(−λ) from Lemma 4.1.2. It suffices to show that
gemu(λ) = 1 = gemu(−λ). This is equivalent to showing

dim(ker(Gn − λI2n)) = 1 = dim(ker(Gn + λI2n))

for n ≥ 2. Let x =
[
x1 x2 · · · x2n

]⊤
and suppose that (Gn − λI2n)x = 0. Then we have

−λx1 + λx2 + x4

λx1 − λx2

−λx3 + λx4 + x6

λx3 − λx4

...
−λx2n−3 + λx2n−2 + x2n

λx2n−3 − λx2n−2

−λx2n−1 + λx2n−1

λx2n−1 − λx2n


=



0
0
0
0
...
0
0
0
0


Because λ ̸= 0, we must have that xi = xi+1 for all odd i such that 1 ≤ i ≤ 2n. Considering the 1st

coordinate of our vector we must have that x4 = 0. Similarly, considering the 3rd coordinate of our
vector we must have that x6 = 0. By repeating this process, we get that

x4 = 0 =⇒ x6 = 0 =⇒ x8 = 0 =⇒ · · · =⇒ x2n = 0

Thus xi = 0 for all 3 ≤ i ≤ 2n. Because x1 = x2 and there are no restrictions on x1’s value, we have
that x ∈ span(e1 + e2). Clearly if y ∈ span(e1 + e2) then (Gn − λI2n)y = 0. We have shown that

ker(Gn − λI2n) = span(e1 + e2)

It follows that dim(ker(Gn − λI2n)) = 1.

A very similar argument as above works to show dim(ker(Gn + λI2n)) = 1. The only alteration
being xi = −xi+1 for all odd i such that 1 ≤ i ≤ 2n, and thus ker(Gn + λI2n) = span(e1 − e2).

Theorem 4.1.4. Consider the sequence of matrices (Gn)n≥1. Then N(Gn)−N(J(Gn)) = n− 1.

Proof. We know that N(Gn) = (2n)2 − 2n− (n− 1) by counting. It follows from Lemma 4.1.3 and
Proposition 3.1.3 that N(J(Gn)) = (2n)2 − 4n+ 2. Thus

N(Gn)−N(J(Gn)) =
(
(2n)2 − 3n+ 1

)
−

(
(2n)2 − 4n+ 2

)
= n− 1

Corollary 4.1.5. hey :)

(a) For n ∈ Z>1, Gn is jordan-sparse.

(b) limn→∞ N(Gn)−N(J(Gn)) = ∞.

(c) For any A ∈ Cn×n, there exists m ∈ Z such that B =

[
A

Gm

]
is jordan-sparse.
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Proof. hey :)

(a) Immediate from Theorem 4.1.4.

(b) Immediate from Theorem 4.1.4.

(c) If A is jordan-sparse, the statement is trivial. Suppose A is not jordan-sparse, and let
m = N(J(A))−N(A). Notice that

B =

[
A

Gm+2

]
is jordan-sparse.

Corollary 4.1.5(a) tells us that for the spectrum S = {(λ, n, 1), (−λ, n, 1)} with n ≥ 2, the Jordan
Normal Form is not the sparsest matrix representation. Corollary 4.1.5(b) indicates that there
exist matrices which are arbitrarily sparser than their Jordan Normal Form, and that the Jordan
Normal Form isn’t always as accurate of a guess as we previously thought. Finally, Corollary
4.1.5(c) tells us that for any spectrum S, we may extend it to a larger spectrum S ⊂ S′ such that
the Jordan Normal Form of S′ is not the sparsest matrix representation.

Now, we wish to further generalize the (Gn)n≥1 sequence of matrices to obtain more jordan-sparse
matrices with different spectra.

Definition 4.1.6. Let k ∈ Z>1, Pk ∈ Ck×k the standard matrix representation of a k-cycle. Also
let B ∈ Ck×k be a matrix with all zeros except a 1 in the (1, k) entry. We will define the sequence
of matrices (Gk

n)n≥1 such that

Gk
1 = Pk Gk

2 =

[
Pk B
0 Pk

]
Gk

n =



Pk B
Pk B

Pk
. . .

. . . B
Pk

 for n ≥ 3

Notice that (Gn) from Definition 4.1.1 is the same sequence as (G2
n) from Definition 4.1.6.

Theorem 4.1.7. N(Gk
n)−N(J(Gk

n)) = (k − 1)(n− 1)

Proof. Through the same reasoning as Lemma 4.1.2, it’s true that

χGk
n
(x) = χPk

(x)n = (xk − 1)n

Now, we will show that dim(ker(Gk
n − λInk)) = 1 for λ a kth root of unity and n ≥ 2. Let

x =
[
x1 x2 · · · xnk

]⊤
and suppose that (Gk

n − λInk)x = 0. Then we have

−λx1 + xk + x2k

x1 − λx2

x2 − λx3

...
xk−1 − λxk

−λxk+1 + x2k + x3k

xk+1 − λxk+2

xk+2 − λxk+3

...
xnk−1 − λxnk


=



0
0
0
...
0
0
0
0
...
0


9



Notice that we have
x1 = λx2 = λ2x3 = · · · = λk−1xk

The same relation holds for xk+1, · · · , x2k and so on. Considering the 1st coordinate, we get

−λ(λk−1xk) + xk + x2k = 0 =⇒ −xk + xk + x2k = 0 =⇒ x2k = 0

Through the same argument we get x3k = · · · = xnk = 0. It follows that

ker(Gk
n − λInk) = span(e1 + λe2 + · · ·+ λk−1ek)

Thus dim(ker(Gk
n − λInk)) = 1. By counting we get N(Gk

n) = (nk)2 − nk− (n− 1). By Proposition
3.1.3 we know N(J(Gk

n)) = (nk)2 − 2nk + k. It follows that

N(Gk
n)−N(J(Gk

n)) =
(
(nk)2 − nk − (n− 1)

)
−
(
(nk)2 − 2nk + k

)
= nk−n−k+1 = (k−1)(n−1)

This may seem like a better gap at first glance, but in reality the k − 1 factor accounts for the fact
that these Gk

n matrices are growing faster in size than our original Gn construction.

4.2 The Block Diagonal Trick

When constructing the Gn matrices (Section 4.1), we placed specific block matrices on the diagonal
and block super-diagonal. We now generalize this idea, providing conditions under which a matrix
A ∈ Cn×n and some matrix B ∈ Cn×n can be placed on the block diagonal and super-diagonal,
respectively, to create a larger matrix that has the same eigenvalues and corresponding geometric
multiplicities as A. The Block-Diagonal Trick can be used to find jordan-sparse matrices for a variety
of eigenvalue spectra.

Proposition 4.2.1. Supppose A ∈ Cn×n has eigenvalue λ such that gemuA(λ) = 1. There exists
B ∈ Cn×n such that N(B) = n2 − 1,

C =

[
A B

A

]
and gemuC(λ) = gemuA(λ)

Proof. Pick non-zero v ∈ ker(A − λIn). Assume the kth standard coordinate of v is non-zero. We
will place a single 1 somewhere in the kth column of B.

Let x =
[
x1 x2 · · · xn

]⊤
and consider the system of equations given by (A−λIn)x = 0. Because

dim(ker(A− λIn)) = 1, this system of equations has infinitely many solutions. It follows that a row
of (A− λIn)x = 0 contains a redundant equation. Assume the jth row of (A− λIn)x = 0 contains
this redundant equation. We will place a single 1 somewhere in the jth row of B.

Let B ∈ Cn×n be a matrix with all zeroes and a 1 in the (j, k) position. Consider

C =

[
A B

A

]
Clearly C has the same eigenvalues asA, so we can consider ker(C−λI2n). Let y =

[
y1 y2 · · · y2n

]⊤
and consider the system of equations given by (C − λI2n)y = 0. Notice that by construction, the
last n equations of (C − λI2n)y = 0 have no solution. It follows that

ker(C − λI2n) ≃ ker(A− λIn)

and thus gemuC(λ) = gemuA(λ).
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Example 4.2.2. Let

A =

0 2 0
0 0 1
3 7 0


and notice s(A) = {(−2, 1, 1), (−1, 1, 1), (3, 1, 1)}. We will let λ = −1. Note that v = 2e1 − e2 + e3
has all non-zero standard coordinates, so we may place a 1 in any column of B. Additionally,

(A+ I3)x = 0 =⇒

 x1 + 2x2

x2 + x3

3x1 + 7x2 + x3

 =

00
0


Notice that

3x1 + 7x2 + x3 − 3(x1 + 2x2) = x2 + x3

So the 2nd row of (A+ I3)x = 0 is redundant, and we may place a 1 in the 2nd row of B. It follows
that

B =

0 0 0
1 0 0
0 0 0


Letting C =

[
A B

A

]
, through computation we get gemuC(λ) = gemuA(λ).

Lemma 4.2.3. Suppose A ∈ Cn×n such that A = J(A). Then there exists B ∈ Cn×n with zeroes
and |s(A)|a − |s(A)|g many 1’s such that

C =

[
A B

A

]
and gemuA(λ) = gemuC(λ) for every eigenvalue λ of A.

Proof. Let {ei1 , . . . , eik} be the eigenvectors of A. For each index i1, . . . , ik, we will place a 1 in the
corresponding columns of B. Let {j1, . . . , jk} be the indices of rows of A which contain one non-zero
value. We will place a 1 in the corresponding rows of B. Notice that

|{i1, . . . , ik}| = |{j1, . . . , jk}| = |s(A)|a − |s(A)|g

so B will contain |s(A)|a − |s(A)|g many 1’s. Now, assuming that {i1, . . . , ik} and {j1, . . . , jk} are
written in increasing order, we will place 1’s in the (j1, i1), . . . , (jk, ik) positions of B. Consider

C =

[
A B

A

]
Through the same argument as Proposition 4.2.1, it follows that gemuC(λ) = gemuA(λ) for each
eigenvalue λ of A.

We will illustrate Lemma 4.2.3 with an example.

Example 4.2.4. Let

A =


1 1

1 1
1

2 1
2


Notice that e1 and e4 are eigenvectors of A, so we want to place 1’s in the 1st and 4th columns of
B. Additionally the 3rd and 5th rows contain one non-zero value, so we want to place 1’s in the 3rd
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and 5th rows of B. We get that

B =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 1 0


Letting C =

[
A B

A

]
, computation tells us that gemuC(1) = 1 and gemuC(2) = 1 as desired.

Theorem 4.2.5. For any A ∈ Cn×n, there exists B ∈ Cn×n such that

C =

[
A B

A

]
and gemuA(λ) = gemuC(λ) for every eigenvalue λ of A.

Proof. Let B denote the Jordan Basis of A, and SE→B the change of basis matrix. By Lemma 4.2.3,
there exists B ∈ Cn×n such that

M =

[
J(A) B

J(A)

]
satisfies gemuM (λ) = gemuJ(A)(λ) = gemuA(λ) for every eigenvalue λ of A. Now, let

S =

[
SE→B

SE→B

]
Notice that

S−1MS =

[
A B′

A

]
for some B′ ∈ Cn×n. Letting C = S−1MS, we get that gemuC(λ) = gemuA(λ) for every eigenvalue
λ of A.

The main issue with Theorem 4.2.5 is that the matrix B is generally not very sparse.

Example 4.2.6. Let

A =

3 −1 0
1 0 1
1 −1 2

 =⇒ J(A) =

2 1 0
0 2 0
0 0 1


and

B =

0 0 0
1 0 0
0 0 1


Using the same notation as Theorem 4.2.5, M will denote

M =

[
J(A) B

J(A)

]
After changing basis, we get that

S−1MS =

[
A B′

A

]
where B′ =

−2 −1 5
−1 1 1
−1 0 2


The main reason that we began studying the Block Diagonal Trick was with the intention of this
process eventually producing a jordan-sparse matrix. However, both A and B must be quite sparse
to begin with in order for the Block Diagonal Trick to eventually produce a jordan-sparse matrix.
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5 Generalizations and Questions

We still do not know what the sparsest matrix of any given spectrum is. We provide questions
that may guide any future work in pursuit of an answer to this question. In regards to the Block
Diagonal Trick, our conditions for Proposition 4.2.1 seem unnecessarily restrictive. We hope to
extend Proposition 4.2.1 to larger eigenspaces than one-dimensional ones. For any matrix A ∈ Cn×n,
we suspect we can construct a matrix B with all zeroes and at most n 1’s so that the block diagonal
trick works. This construction of B has succeeded for numerous examples we have attempted, but
an exact process for this construction is yet to be formulated. Also of note is that many of our
techniques for constructing sparse matrices involve utilizing block matrices. Below is an example of
a matrix that is not block-diagonal but is jordan-sparse.

Example 5.1.


0 −2 −1 0
−1 0 0 0
0 0 0 −1
0 1 0 0


Little is understood about how to construct such matrices or under what conditions they exist.
Finally, we do not look at matrices for kernel throughout this paper. This is because many of the
very helpful bounds we proved do not apply to matrices with kernel, and all the computer-generated
examples of jordan-sparse matrices with kernel were simply matrices that were already jordan-sparse
but had a 0 row or column added to them, like so:

Example 5.2. A =


0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

. Notice that N(A) = 20 and N(J(A)) = 19.

However, not every such jordan-sparse matrix with kernel looks like the above, and they may warrant
further discussion. We provide an example with no zero rows or columns below.

Example 5.3. Let B =

[
1 1
0 0

]
and consider the block matrix A below.

A =

[
G3

B

]
It follows that N(A) = 54 and N(J(A)) = 53.

6 Appendix A: Brute-Force Algorithm to Find Jordan-Sparse
Matrices

For many eigenvalue spectra in the 4x4 case, a brute force algorithm was used to attempt to find
matrices sparser than their Jordan-Normal form. This algorithm proved to be effective in finding
such matrices, finding numerous jordan-sparse matrices for every spectrum known to have one. A
description of the algorithm as well as a link to the Mathematica code are provided.

We first input the spectrum we want to test into the algorithm by inputting the Jordan-Normal
Form of said spectrum. 

1 1 0 0
0 1 0 0
0 0 −1 1
0 0 0 −1


Example input into algorithm, represents spectrum S = (1, 2, 1), (−1, 2, 1)
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The algorithm generates every possible placement of non-zero values that could result in a jordan-
sparse matrix. 

0 a1,2 a1,3 0
a2,1 0 0 0
0 0 0 a3,4
0 a4,2 0 0


Since this matrix only has 5 non-zero values and the JNF of the spectrum has 6, it could be

sparser. The algorithm generates every such matrix.

We then go through all the generated matrices, replacing the placeholders with pseudo-random non-
zero values that satisfy the characteristic polynomial for the given spectrum, meaning the matrix
must have the desired eigenvalues

.


0 −2 −1 0
−1 0 0 0
0 0 0 −1
0 1 0 0


Placeholders in matrix are replaced with pseudo-random values. Observe that the matrix has

eigenvalues -1,1.

For each matrix, the geometric multiplicity of each eigenvalue is tested, and if the geometric multi-
plicities are correct, the matrix is returned along with any other jordan-sparse matrices.
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