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Abstract. We study the problem of classifying N∞-operads realized by lin-

ear isometries operads and N∞-operad pairs realized by linear isometries and
Steiner operads over complex G-universes for cyclic groups G. We prove that

if gcd(|G|, 6) < 6, then every saturated G-transfer system R is realized by

L(U) for some complex G-universe U . Furthermore, when gcd(|G|, 6) = 1,
we determine all compatible pairs (Rm,Ra) of G-transfer systems realized

by (L(U),K(U)) for some complex G-universe U . We also provide analogous

results for real G-universes.
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1. Introduction

For a G-universe U , the Steiner operad K(U) and linear isometries operad L(U)
capture the additive and multiplicative structures on G-spectra. In [BH1], Blum-
berg and Hill pose the question of which homotopy types ofN∞-operads are realized
by G-equivariant Steiner and linear isometries operads. As explained by Rubin in
[Rub], the data of an N∞-operad can be encoded in a simple fashion using a transfer
system on G:

Definition 1.1. A transfer system R on a group G is a partial order →R on
Sub(G), the set of subgroups of G, that refines subgroup inclusion and satisfies:

• Restriction: If K →R H and L ⩽ H, then K ∩ L→R L.
• Conjugation: R isG-invariant under the conjugation action ofG on Sub(G).

In this language, for a G-universe U , the Steiner operad K(U) and linear isometry
operad L(U) realize the transfer systems Ra and Rm respectively, where:

• Ra is the transfer system with K →Ra H if and only if K ⩽ H ⩽ G and
K is the stabilizer of some vector v ∈ RG

HU .
• Rm is the transfer system with K →Rm

H if and only if K ⩽ H ⩽ G and
IHKR

G
KU = RG

HU , where I and R are induction and restriction.

We explain in Appendix A why these relations are indeed transfer systems. It turns
out that the transfer systems coming from Steiner and linear isometries operads
enjoy certain special properties.

Definition 1.2. Given a transfer system R on G, we say that:

• R is cosaturated if it is generated by arrows of the form H →R G.
• R is saturated if for all subgroups K ⩽ M ⩽ H with K →R H, we also
have K →R M and M →R H.

We show in Appendix A that any transfer system realized by a Steiner (resp.
linear isometries) operad must always be cosaturated (resp. saturated). For abelian
groups G, one can see, as shown in Theorem 4.11 in [Rub], that a cosaturated
transfer system R is realizable by a Steiner operad if and only if it is generated by
arrowsH →R G with G/H cyclic. In particular, for cyclic groups G, all cosaturated
transfer systems can be realized by K(U) for some G-universe U .

The realizability of linear isometries operads is trickier. As discussed in [Rub], it
is not true for all abelian groups G that all saturated transfer systems are realized
by L(U) for some G-universe U . MacBrough proved in [Mac] that this is true
for cyclic groups of order relatively prime to 6 (Theorem 3.5) and certain abelian
groups of rank 2 (Theorem 3.14), but false for abelian groups of higher rank.

Furthermore, one can ask which pairs (Rm,Ra) of saturated and cosatured trans-
fer systems can be realized by a G-universe U using L(U) and K(U) respectively.
A necessary constraint is that the pair (Rm,Ra) must be compatible. In [BH2],
Blumberg and Hill define the notion of compatible pairs; its translation in the
language of transfer systems is included in [Ch] as Definition 4.6:

Definition 1.3. Let Rm and Ra be transfer systems on G. We say (Rm,Ra) is a
compatible pair if for all subgroupsK,L ⩽ H in G, ifK →Rm

H andK∩L→Ra
K,

then L→Ra
H.
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H H

L K L K

K ∩ L K ∩ L

Rm Ra Rm

Ra Rm Ra

The compatibility condition says that every configuration identical to the picture
on the left must be part of a diamond identical to the picture on the right. Note
that we have K ∩ L→Rm

L by restricting K →Rm
H.

Remark 1.1. In Definition 4.6 of [Ch], Chan includes the condition Rm ⊆ Ra.
This is simply a special case of the compatibility axiom with L = K.

In Appendix A, we explain why the transfer system pair realized by Steiner and
linear isometries operads must always be compatible; this is Proposition 6.16 in
[BH2]. Thus, one can ask which compatible pairs (Rm,Ra) with Rm saturated
and Ra cosaturated are realized using (L(U),K(U)).

Unlike in the literature, throughout this report, we shall work with complex
G-universes unless specified otherwise for the sake of simplicity. However, all
the results over C will have appropriate counterparts over R which can be obtained
easily with a slight modification to incorporate the action of Galois; see Remark 3.2.

• In Section 2, we prove some auxillary results on the structure of cosat-
urated/saturated transfer systems and study their relationship with their
fibrant/cofibrant subgroups respectively.
• In Section 3, we push the tight pair argument in [Mac] to prove the realiz-
ability of certain saturated transfer systems for even cyclic groups (in the
real case, odd cyclic groups with order divisible by 3).
• In Section 4, we give a new proof that for odd cyclic G, all saturated transfer
systems are realizable from linear isometries operads. The counterpart in
the real case is Theorem 3.5 in [Mac].
• In Section 5, we present our conjecture for which saturated transfer sytsems
are realizable for even cyclic G. We prove the conjecture when 3 ∤ |G| and
give our progress in the case where 6 | |G|.
• In Section 6, we explain how the condition in the conjecture from Section 5
generalizes to necessary (but not sufficient) local constraints for realizing
saturated transfer systems over any cyclic group G and subfield k of C.
• In Section 7, we prove that for cyclic groups G with order not divisible by
2 and 3 (in the real case, 2, 3, and 5), all compatible pairs are realizable
from Steiner and linear isometries operads.
• In Appendix A, we prove the previously mentioned facts about the transfer
systems realized by Steiner and linear isometries operads; this has been
included with the aim of keeping our report accessible to those without a
background in equivariant stable homotopy theory.
• In Appendix B, we study the set of transfer systems on finite groups using
category theory, partially inspired by the results of Section 2. This will not
be important to the rest of the report.
• In Appendix C, we mention some basic facts about realizable compatible
pairs for G = Fn

p and k = Q, with emphasis on n = 3.
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2. Cosaturated/Saturated Transfer Systems

The dual notions of fibrancy and cofibrancy of subgroups was first introduced
by MacBrough in Definition 2.7 in [Mac]:

Definition 2.1. Let G be a group, R be a transfer system, and L ⩽ G:

• We say that L is R-fibrant if L→R G.
• We say that L is R-cofibrant if M →R L implies M = L.

We shall denote the set of fibrant and cofibrant subgroups of a transfer system
by fib(R) and cof(R) respectively. The following lemmas give equivalent definitions
for fibrancy and cofibrancy and establish some properties of fib(R) and cof(R).

Lemma 2.1. Let G be a group, R be a transfer system, and L ⩽ G. The following
statements are equivalent:

(1) L is R-fibrant.
(2) For all H ⩽ G, we have H ∩ L→R H.

Proof. For (1)⇒ (2), use the restriction axiom of R on L→R G with H ⩽ G. For
(1)⇐ (2), simply choose H = G. □

Corollary 2.1. The set fib(R) is closed under intersection and conjugation.

Proof. If L1 and L2 are R-fibrant, then for all subgroups H ⩽ G, we have the
arrows H ∩ L1 →R H and (H ∩ L1) ∩ L2 →R H ∩ L1. By transitivity, it follows
that H ∩ (L1 ∩ L2) →R H, and since H was arbitrary, L1 ∩ L2 is R-fibrant. The
closure of fib(R) under conjugation follows from the conjugation axiom on R. □

Lemma 2.2. Let G be a group, R be a transfer system, and L ⩽ G. The following
statements are equivalent:

(1) L is R-cofibrant.
(2) For all arrows K →R H, we have L ⩽ H ⇔ L ⩽ K.

Proof. For (1) ⇒ (2), if K →R H and L ⩽ H, then by the restriction axiom of
R, we have K ∩ L →R L, implying that K ∩ L = L and L ⩽ K. Clearly, L ⩽ K
implies L ⩽ H since K ⩽ H. For (2) ⇒ (1), taking H = L, we see that for all
arrows K →R L, we have L ⩽ K, forcing K = L. □

Corollary 2.2. The set cof(R) is closed under compositum and conjugation.

Proof. If L1 and L2 are R-cofibrant, then for all subgroups H ⩽ G, the condition
⟨L1, L2⟩ ⩽ H is equivalent to L1 ⩽ H and L2 ⩽ H. Thus, for all arrows K →R H,
we have ⟨L1, L2⟩ ⩽ H ⇔ ⟨L1, L2⟩ ⩽ K, implying that ⟨L1, L2⟩ is R-cofibrant. The
closure of cof(R) under conjugation follows from the conjugation axiom on R. □
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Remark 2.1. For experts on the empty set, note that any collection of subgroups
of Sub(G) closed under intersection (resp. compositum) must contain G (resp. the
trivial subgroup e). For any transfer system R, one may immediately check that G
is R-fibrant and e is R-cofibrant.

Fibrancy and cofibrancy are important for cosaturated and saturated transfer
systems due to the following two propositions, the latter being Lemma 2.9 in [Mac].

Proposition 2.1. Let R and R′ be transfer systems and R′ be cosaturated. The
inclusions R′ ⊆ R and fib(R′) ⊆ fib(R) are equivalent.

Proof. The forward implication is clear. For the other direction, since R′ is cosatu-
rated, it is the minimal transfer system with all subgroups in fib(R′) being fibrant.
Thus, fib(R′) ⊆ fib(R) implies that R′ ⊆ R. □

Proposition 2.2. Let R and R′ be transfer systems and R′ be saturated. The
inclusions R′ ⊇ R and cof(R′) ⊆ cof(R) are equivalent.

Proof. The forward implication is clear. For the other direction, letH be a subgroup
and K < H be a proper subgroup with K →R H. In particular, H is not R-
cofibrant, so it is also not R′-cofibrant.

Let L be a minimal subgroup of G with L→R′ H; by minimality and transitivity,
we see that L must be R′-cofibrant, and hence R-cofibrant. Since L ⩽ H, we have
L ⩽ K ⩽ H. Since R′ is saturated and L →R′ H, we have K →R′ H. Since we
chose K →R H arbitrarily, it follows that R′ ⊇ R. □

We denote the cosaturated/saturated transfer systems onG byCTS(G)/STS(G)
respectively. We also denote the set of subsets of Sub(G) which are closed under
intersection/compositum and conjugation by Fib(G)/Cof(G) respectively.

Theorem 2.1. The map fib : CTS(G)→ Fib(G) is an inclusion-preserving bijec-
tive correspondence.

Proof. By Proposition 2.1, we know that fib is inclusion-preserving and injective.
It suffices to show that every S ∈ Fib(G) can be realized from CTS(G). Let R
be the relation on Sub(G) with K →R H if and only if there exists L ∈ S with
H ∩ L = K. We claim that R is the required cosaturated transfer system.

• Partial Order Refining Inclusion: Follows by definition.
• Transitivity : If K →R M and M →R H, then there exist L1, L2 ∈ S such
that H ∩L1 =M and M ∩L2 = K. We then have H ∩ (L1 ∩L2) = K, and
since L1 ∩ L2 ∈ S, it follows that K →R H.
• Restriction: If K →R H and M ⩽ H, then there exists L ∈ S such that
H ∩L = K. Intersecting withM yieldsM ∩L = K ∩M , so K ∩M →R M .
• Conjugation: Follows from S being closed under conjugation.

Finally, we check that fib(R) = S. Indeed, for any H ⩽ G, we have H →R G if
and only if there exists L ∈ S such that H = G ∩ L = L, as required. □

Theorem 2.2. The map cof : STS(G)→ Cof(G) is an inclusion-reversing bijec-
tive correspondence.

Proof. By Proposition 2.2, we know that cof is inclusion-reversing and injective. It
suffices to show that every S ∈ Cof(G) can be realized from STS(G). Let R be
the relation on Sub(G) with K →R H if and only if K ⩽ H and for all L ∈ S, we
have L ⩽ H ⇔ L ⩽ K. We claim that R is the required saturated transfer system.
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• Partial Order Refining Inclusion: Follows by definition.
• Transitivity : If K →R M and M →R H, then for all L ∈ S, we have
L ⩽ K ⇔ L ⩽M ⇔ L ⩽ H, so K →R H.
• Restriction: If K →R H and M ⩽ H, then for all L ⩽M , we have L ⩽ H,
and since K →R H, we also have L ⩽ K. It follows that L ⩽ M ⇔ L ⩽
K ∩M and hence K ∩M →R M .
• Conjugation: Follows from S being closed under conjugation.

Finally, we check that cof(R) = S. By Lemma 2.2, we know that cof(R) ⊇ S. If
H is R-cofibrant, let M be the composite of all L ∈ S with L ⩽ H; we have M ∈ S
since S is closed under compositum. By construction, we have M →R H, forcing
M = H and proving that cof(R) ⊆ S, as required. □

In Appendix B, we interpret Theorem 2.1 and Theorem 2.2 through the lens of
category theory. The categorical interpretation will naturally uncover some prop-
erties of cosaturated and saturated transfer systems.

3. Weak Tight Pairs

The notions of subinductors and diagrams are introduced in [Mac]. We recall
that for a subinductor J on a finite group G and a subgroup H ⩽ G, the residue
at H is defined as resJ(H) :=

⋃
K<H JH

K (K̂). The main idea in [Mac] is to use the
following theorem (Theorem 2.12) to realize saturated transfer systems:

Theorem 3.1 (MacBrough). Let G be a finite abelian group, J be a G-subinductor,
and D be an R-stable G-diagram. If R is a saturated transfer system such that for
all R-cofibrant H and for all proper subgroups K < H, we have:

IHK (D(H)) ̸⊆ D(K) ∪ resJ(H)

then R is realized by L(U) for some G-universe U .

Inspired by this condition, one can attempt to realize all saturated transfer
system R on G using an appropriate pair (D,J).

Definition 3.1. Let G be a finite abelian group. A tight pair is a pair (D,J) where
D is an R-stable diagram and J is a sub-inductor, such that

(1) For all K < H ⩽ G, we have IHK (D(K)) ⊈ D(H) ∪ resJ(H).
(2) For all H ⩽ G, D(H) ⊈ resJ(H).

Remark 3.1. Although we only require Axiom (1) is required for Theorem 3.1,
Axiom (2) allows us to use localization: if G and G′ are abelian groups of relatively
prime order with tight pairs (D,J) and (D′, J ′), then the group G×G′ admits the
tight pair (D ⊗D′, J ⊗ J ′). Thus, in order to find tight pairs for cyclic groups G,
we can reduce to the case of cyclic p-groups.

3.1. Single-Valued Subinductors. For every fixed prime p and non-negative in-
teger k, we have the isomorphism Ĉpk

∼= Zp/p
kZp, where Zp denotes the p-adic

integers. Expressing the elements of Zp in base p, we see that the elements of Ĉpk

can be expressed as k-digit strings in base p.

• Let πk : Zp → Ĉpk be the standard projection homomorphism.

• Let sk : Ĉpk → Zp be the set-theoretic section to πk given by adding leading
zeros in base p.
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Definition 3.2. For a cyclic p-group G, the standard single-valued subinductor J
is defined as follows: for K ⩽ H, if Ĥ = Ĉph and K̂ = Ĉpk , then JH

K = πh ◦ sk.

Definition 3.3. Let G be any cyclic group; say G = Cp
α1
1
× · · · × Cp

αl
l
:

• For any H ⩽ G of order
∏
pβi

i and χ ∈ Ĥ, the base pi-part of χ is the

image of χ under the projection Ĥ → Ĉ
p
βi
i

as a βi-digit string in base pi.

• The standard single-valued subinductor J of G is the tensor product of the
standard single-valued subinductors on Cp

αi
i

for 1 ⩽ i ⩽ l.

Thus, for all K ⩽ H ⩽ G, the map JH
K : K̂ → Ĥ adds νp(|H|)− νp(|K|) leading

zeros in the base p part for each prime p; here, the quantity νp(x) denotes the
largest non-negative integer k such that pk | x. One may think of the standard
single-valued subinductor J as coming from compatible set-theoretic section maps
to the standard projections corresponding to the limit Ẑ = lim←−Cn.

Definition 3.4. Let G = Cpk . The finite tree T (G) is the rooted tree of degree p
and height k such that:

• For all 0 ⩽ d ⩽ k, the nodes at depth d denote the elements of Ĥ where
H ⩽ G is the subgroup of order pd.

• For all 0 ⩽ d ⩽ d′ ⩽ k, the depth d ancestor of any depth d′ node is given by
its image under ι∗ : Ĉpd′ → Ĉpd where ι∗ is the dual map to the subgroup
inclusion ι : Cpd → Cpd′ in G.

For any G-universe U , the R-stable diagram corresponding to it is given by
D(H) = RG

HU . We may interpret U as a non-empty subset of leaves in T (G) and
D as the collection of all ancestors of the leaves in U . Through this interpretation:

• The saturated transfer system R realized by L(U) has K →R H if and
only if every K-node in D has all its H-descendants in D.

• A single-valued subinductor J on G is given by a choice of a child for every
non-leaf node in T (G).

We immediately see that changing U upto the action of Aut(T (G)) on T (G) does
not change R. Technically, this may leave us with a non-empty G-semi-universe
that does not contain the trivial representation, but this is unimportant since any
non-empty U can be changed into a universe by translation.

Thus, the single-valued subinductors J are only important upto the automor-
phisms of T (G). However, Aut(T (G)) clearly acts transitively on the set of all
single-valued G-subinductors, so every single-valued subinductor on the cyclic p-
group G is ”isomorphic” to the standard single-valued subinductor.

Furthermore, if G is any cyclic group with any single-valued subinductor J , then
J must be the tensor product of subinductors on the Sylow p-subgroups of G.
Indeed, from Mackey’s formula, we see that the maps JH

K must act independently
on each coordinate. Thus, every single-valued subinductor on G is ”isomorphic” to
the standard single-valued subinductor on G.

3.2. Construction of Tight Pairs. We remind the reader once again that we
shall mainly focus on universes over C, unlike in the literature. For clarity, we
repeat the C-version of the proof in [Mac] for the existence of tight pairs:

Lemma 3.1. Let G = Cpα be a cyclic p-group with p ≥ 3. Then G has a tight pair.
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Proof. Let J be the standard single-valued subinductor. Let D be the G-diagram
such that for all H ⩽ G:

D(H) =

{
{0} if H = e

{0, ph−1} if H = Cph where h > 0

We claim that (D,J) form a tight pair:

• D is R-stable: For all H ⩽ G and proper K < H, we have RH
KD(H) =

{0} ⊆ D(K) since the non-trivial element in D(H) in base p has all non-
leading digits equal to 0.
• Axiom (1): For all H ⩽ G and proper K < H, we have 2ph−1 ∈ IHK (D(K)),
where H = Cph . This element is not in D(H) by construction and it is not
in resJ(H) since the leading digit in base p is non-zero.
• Axiom (2): For all H ⩽ G, we have D(H) ̸⊆ resJ(H). This is trivial for
H = e since resJ(e) = ∅. For non-trivial H, the non-zero element in D(H)
is not in resJ(H) because its leading digit in base p is non-zero.

Thus, G = Cpα has a tight pair. □

Corollary 3.1. Let G be a cyclic group of odd order. Every saturated transfer
system on G can be realized by L(U) for some G-universe U .

Remark 3.2 (Digit-Gluing). All the results in this paper over C have appropriate
analogues over R that can be obtained as follows:

• For each odd prime p, we can write the elements of Zp in weird base p by

using the digits {−p−1
2 , · · · , p−1

2 }.
• We can then consider the equivalence relation on Zp where two numbers
are equivalent if their corresponding digits are equal or opposites.
• We then obtain an equivalence relation on Ĝ for all odd cyclic groups G by
taking the equivalence relation mentioned above in each weird base p part.

The equivalence classes in Ĝ are Galois-invariant. The set of equivalence classes
behave in weird base p like standard base p+1

2 . Thus, for any claim that we make
over C requiring the bound p > N for some N , the analogous bound over R becomes
p+1
2 > N . For instance, the analogue of Lemma 3.1 over R requires the bound

p+1
2 > 2, i.e. p > 3, which is indeed the original result in [Mac].

3.3. Weak Tight Pairs. Next, we try to extend the tight pair approach to even
cyclic groups. However, we need to make a few modifications:

• We cannot include Axiom (2) in general since it is too restrictive on the
diagram D. This comes at the price of localization.
• We relax Axiom (1) for H = C2. In Section 5, we shall show that cer-
tain saturated transfer systems are not realizable over even cyclic groups
(Proposition 5.2). We can reduce the problem to looking at those R with
e→R C2, so Axiom (1) is not necessary for H = C2.

Definition 3.5. Let G be a finite abelian group. A weak tight pair is a pair (D,J)
where D is an R-stable diagram and J is a sub-inductor such that (D,J) satisfy
Axiom (1) for all H ∈ Sub(G)\S for some specified subset S ⊆ Sub(G). An almost
tight pair is a weak tight pair satisfying Axiom (2).

Lemma 3.2. Let G = C2α be a cyclic 2-group with α ⩾ 1. Then, G has an almost
tight pair which fails Axiom (1) for S = {C2}.
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Proof. Take (D,J) where J is the single-valued subinductor and D is the diagram
from Lemma 3.1. The same argument shows R-stability and Axiom (2).

• For all non-trivial H ⩽ G with H ̸= C2 and proper K < H, we have
2h−1 + 2h−2 ∈ IHKD(K), where H = C2h . This element is not in D(H) by
construction and it is not in resJ(H) since the leading digit is non-zero, so
Axiom (1) holds for H larger than C2.
• However, Axiom 1 fails forH = C2 withK = e. Indeed, we have IHKD(K) ⊆
D(H) ∪ resJ(H) since D(H) = Ĥ.

Thus, (D,J) is an almost tight pair which fails Axiom (1) for S = {C2}. □

Lemma 3.3. Let G and G′ be cyclic groups of relatively prime order. Let (D,J)
be an almost tight pair for G failing Axiom (1) for S ⊆ Sub(G). Let (D′, J ′) be a
tight pair for G′. Then, (D ⊗D′, J ⊗ J ′) is an almost tight pair of G ×G′ failing
Axiom (1) at S × Sub(G′).

Proof. The same proof in Lemma 3.3 of [Mac] applies. □

Theorem 3.2. Let G be an even cyclic group and R be a saturated transfer system
with no R-cofibrant subgroups H such that ν2(|H|) = 1. Then, there exists a G-
universe U realizing R.

Proof. The result follows from Lemma 3.1, Lemma 3.2, and Lemma 3.3. □

Remark 3.3. The condition on R in Theorem 3.2 is equivalent to the statement
Cm → C2m for all odd m | |G|. In the notation of Definition 5.1, this means
that the 21-partition on R1

2 has all subgroups below it. Indeed, this comes from
Proposition 5.1; any subgroup that is minimal beyond the partition must be R-
cofibrant, so no such subgroups must exist.

Theorem 3.2 is the limit to how far one can extend the localization approach
with almost tight pairs. Indeed, the group G = C2 does not have tight pairs (D,J)
since Axiom (1) requires D(C2) ⊆ resJ(C2), which violates Axiom (2). For the
remainder of this section, we shall work with weak tight pairs.

Lemma 3.4. Let G = C2α be a cyclic 2-group with α ⩾ 1. Then, G has a weak
tight pair which fails Axiom (1) for S = ∅.

Proof. Take (D,J) where J is the single-valued subinductor and D is the diagram
with D(H) = {0} for all subgroups H ⩽ G. For all K < H, the set IHKD(K)
contains elements with leading digit 1, but D(H) ∪ resJ(H) does not. □

Corollary 3.2. Let G = C2α be a cyclic 2-group. All saturated transfer systems
over G are realizable by G-universes.

As previously mentioned, we shall henceforth relax Axiom (1) for H = C2. We
wish to understand which cyclic groups G have weak tight pairs with S = {C2}.

Example 3.1. Let G = C6 = C2 × C3, let J be the standard single-valued subin-
ductor on G, and let D be the G-diagram below:

D(C2) = {(0, ∗), (1, ∗)} D(C6) = {(0, 0), (1, 0), (0, 1)}
D(e) = {(∗, ∗)} D(C3) = {(∗, 0), (∗, 1)}

The first and second coordinates denote the base 2 and 3 parts respectively, where
∗ denotes the empty string. The pair (D,J) is a weak tight pair with S = {C2}.
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Lemma 3.5. Let G = C2pα where p is an odd prime. Then, G has a weak tight
pair which fails at S = {C2}.

Proof. Let J be the standard single-valued subinductor on G. Let D be defined as
below where 0 < k ⩽ α; the first and second coordinates denote the base 2 and p
parts respectively.

D(C2) = {(0, ∗), (1, ∗)} D(C2pk) = {(0, 0), (1, 0)}
D(C1) = {(∗, ∗)} D(Cpk) = {(∗, 0), (∗, pk−1)}

It is clear that D is R-stable. It suffices to check Axiom (1) for non-trivial H ̸= C2:

• For H = Cpk , Axiom (1) holds due to the same argument in Lemma 3.1.

• For H = C2pk and proper subgroup K < H, IHKD(K) contains (1, pk−1),

unlike D(H) ∪ resJ(H) does not, so IHKD(K) ̸⊆ D(H) ∪ resJ(H).

Thus, (D,J) is a weak tight pair failing at S = {C2}. □

Corollary 3.3. Let G = C2pα for an odd prime p and let R be a saturated transfer
systems with e→R C2. Then, R is realized by some G-universe U .

Lemma 3.6. Let G = C2αp where p is an odd prime. Then G has a weak tight
pair which fails at S = {C2}.

Proof. Let J be the standard single-valued subinductor on G. Let D be defined as
below where 0 < k ⩽ α; the first and second coordinates denote the base 2 and p
parts respectively.

D(Cp) = {(∗, 0), (∗, 1)} D(C2kp) = {(0, 0), (0, 1)}
D(C1) = {(∗, ∗)} D(C2k) = {(0, ∗), (2k−1, ∗)}

The same argument in Lemma 3.5 proves that (D,J) is a weak tight pair failing
precisely at S = {C2}. □

Corollary 3.4. Let G = C2αp for an odd prime p and let R be a saturated transfer
systems with e→R C2. Then, R is realized by some G-universe U .

3.4. Hunting for Weak Tight Pairs. The goal of this subsection is to find weak
tight pairs for cyclic groups whose orders are divisible by 6p for some prime p > 3
which fail Axiom (1) at S = {C2}. The weakest version of this problem is to ask
for weak tight pairs for G = C6p.

Let G = C6p = C2 × C3 × Cp. For all H ⩽ G, we shall express the elements of

Ĥ with three coordinates, representing the base 2, base 3, and base p parts in the
mentioned order. Assume that (D,J) is some weak tight pair for G; we can make
the following simplifications:

• We may change D(C2) to Ĉ2 if necessary; this does not affect R-stability
and is allowed since Axiom (1) is allowed to fail at H = C2.
• Let D′ be the diagram given by D′(H) =

⋃
K⩽H JH

KD(K). Then, (D′, J)

is also a weak tight pair for which Axiom (1) only fails only at S = {C2};
note that D′ is R-stable by Mackey’s formula. Thus, we may replace D by
D′ in order to assume that D is J-stable. In particular, note that for all
K ⩽ H, we have RH

KD(H) = D(K) by Frobenius reciprocity.

• We know that {(∗, 0, ∗)} ⊆ D(C3) ⊊ Ĉ3, where the strict inclusion comes

from Axiom (1) on H = Ĉ3. If D(C3) = {(∗, 0, ∗)}, then we must have

D(C6) = {(0, 0, ∗), (1, 0, ∗)} sinceRC6

C2
D(C6) = Ĉ2 andR

C6

C3
D(C6) = D(C3).
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However, this would imply that IC6

C3
D(C3) ⊆ D(C6), which contradicts Ax-

iom (1) at H = C6. Thus, assume WLOG that D(C3) = {(∗, 0, ∗), (∗, 1, ∗)}.

Lemma 3.7. We have |JC6

C2
D(C2) ∪ JC6

C3
D(C3)| = |D(C6)| = 3.

Proof. First, observe that |JC6

C2
D(C2) ∪ JC6

C3
D(C3)| ⩽ |D(C6)| ⩽ 3. The first in-

equality comes from the J-stability of D and the second inequality comes from
D(C6) ⊊ IC6

C3
D(C3) by Axiom (1) with H = C6 and K = C3.

It suffices to show that |JC6

C2
D(C2) ∪ JC6

C3
D(C3)| = 3. Assume the contrary;

by Frobenius reciprocity, we know that |JC6

C2
D(C2)| ⩾ 2 and |JC6

C3
D(C3)| ⩾ 2, so

JC6

C2
D(C2) = JC6

C3
D(C3) with both JC6

C2
and JC6

C3
being single-valued.

By Frobenius reciprocity, this implies that the map RC6

C2
JC6

C3
: D(C3) → D(C2)

is a bijection. By Mackey’s formula, this is identical to JC2
e RC3

e : D(C3)→ D(C2).
However, this map cannot be a bijection since it factors through D(e), which has
strictly smaller cardinality than D(C2) and D(C3). Thus, we have the required

contradiction, proving that |JC6

C2
D(C2) ∪ JC6

C3
D(C3)| = |D(C6)| = 3. □

Lemma 3.8. There exists some χ ∈ D(C6) such that we have {χ} ⊊ JC6

P RC6

P χ for
both P = C2 and P = C3.

Proof. Assume the contrary. Let χ ∈ D(C6) be arbitrary; pick P ∈ {C2, C3} such
that JC6

P RC6

P χ does not properly contain {χ}. By Lemma 3.7, we have JC6

P RC6

P χ ⊇
{χ}, so we must have JC6

P RC6

P χ = {χ}.
Denote ψ := RC6

P χ. Let K = C6, L = P ×Cp, and H = K ×Cp be subgroups of
G. By Mackey’s formula, the map JH

L : ILPψ → IHKχ is a bijection. Since χ ∈ D(C6)

was arbitrary, IHKD(K) ⊆ JH
L L̂, which contradicts Axiom (1), as required. □

Assume that D(C6) = {(0, 0, ∗), (1, 0, ∗), (0, 1, ∗)}. By Frobenius reciprocity, we

must have JC6

C2
(1, ∗, ∗) = {(1, 0, ∗)} and JC6

C3
(∗, 1, ∗) = {(0, 1, ∗)}. By Lemma 3.8,

we have JC6

C2
(0, ∗, ∗) = {(0, 0, ∗), (0, 1, ∗)} and JC6

C3
(∗, 0, ∗) = {(0, 0, ∗), (1, 0, ∗)}. The

other three possibilites for D(C6) determine J similarly.

4. Linear Isometries Operads over Odd Cyclic Groups

Throughout this section, we shall work with the standard single-valued subin-
ductor J defined in Definition 3.3. Given a G-saturated transfer system R, we shall
algorithmically construct a G-diagram D that corresponds to some G-universe U ,
i.e. a diagram D such that for all K ⩽ H ⩽ G:

• We have D(K) = RH
KD(H), i.e. D corresponds to U = D(G).

• We have D(H) = IHKD(K) if and only if K →R H.

The section reproves (the C-analogue of) the result in [Mac] that all saturated
transfer systems over odd cyclic groups G are realizable by G-universes. The key
idea in the proof is identical to MacBrough’s approach, but the details are rela-
tively simpler. Furthermore, the algorithmic approach will generalize quite well in
Section 5 and Section 7.

4.1. A Naive Approach. We begin with an intuitive first attempt at solving the
realizability problem for linear isometries operads over cyclic groups. Spoiler alert:
it doesn’t work!

Algorithm 1. Let G be a cyclic group.
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• Input: A saturated G-transfer system R.
• Output: A G-diagram D.

We construct D on subgroups H ⩽ G inductively by iterating through Sub(G) in
any order completing its partial order. For the base case, we let D(e) = ê. For
non-trivial subgroups H:

D(H) =

( ⋃
K→RH

IHKD(K)

)
∪

 ⋃
K ̸→RH

JH
KD(K)


where K iterates through the proper subgroups of H.

Remark 4.1. It suffices to iterate through the maximal subgroups K < H by the
transitivity of (sub)-induction and the saturation of R.

Lemma 4.1. The diagram D obtained from Algorithm 1 satisfies RH
KD(H) =

D(K) for all K ⩽ H ⩽ G.

Proof. Clearly, we have RH
KD(H) ⊇ RH

KJ
H
KD(K) = D(K), so it suffices to show

that D is R-stable. Let K,L,H be subgroups of G with K < H and L < H. We
must first show that RH

L J
H
KD(K) ⊆ D(L). We may prove this by induction on |H|

using the Mackey formula axiom for sub-inductors:

RH
L J

H
KD(K) ⊆ JL

K∩LR
K
K∩LD(K) ⊆ JL

K∩LD(K ∩ L) ⊆ D(L)

Next, we must show that if K →R H, then RH
L I

H
KD(K) ⊆ D(L). The same

argument applies after noting that we have K ∩ L→R L by the restriction axiom
on R and using Mackey’s formula for I. □

Corollary 4.1. The diagram D from Algorithm 1 comes from the G-universe U =
D(G). If K →R H, then D(H) = IHKD(K).

Thus, we see that the saturated transfer system RD generated by D contains R.
However, it may contain accidental arrows as the following example shows:

Example 4.1. Let G = C15 and R be the saturated transfer system below:

C5 C15

e C3

D(C5) = {(∗, 0)} D(C15) = {(d, 0) : d ∈ C3}
D(e) = {(∗, ∗)} D(C3) = {(d, ∗) : d ∈ C3}

The G-diagram D generated by Algorithm 1 is given above. To clarify notation,
we have expressed elements in C3i5j using the isomorphism C3i5j

∼= C3i × C5j .
We have also used ∗ to denote the unique element of C1. Although RD contains
e→ C3, it also contains the ”accidental arrow” C5 → C15. Thus, RD ⊋ R.

4.2. Misteaks are Good. The reason behind the failure of Algorithm 1 in the
above example is that D(C5) does not have any ”new” elements when compared to
D(e). We can tackle this problem by modifying our algorithm appropriately.

Definition 4.1. An element in Ĥ is new if it is not contained in JH
K K̂ for any

proper subgroup (equivalently, maximal subgroup) K < H.

Algorithm N. Let G be a cyclic group.
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• Input: A saturated G-transfer system R and a G-diagram N .
• Output: A G-diagram D.

We construct D on subgroups H ⩽ G by induction:

D(H) =

( ⋃
K→RH

IHKD(K)

)
∪

 ⋃
K ̸→RH

JH
KD(K)

 ∪N(H)

where K iterates through the maximal subgroups of H.

Remark 4.2. The idea behind Algorithm N is to modify Algorithm 1 by making
our diagramD necessarily contain N . Typically, N(H) will be a set of new elements

in Ĥ. One may think of Algorithm 1 as a special case of Algorithm N with N(e) = ê
and N(H) = ∅ for non-trivial subgroups H.

Algorithm 2. Let G be a cyclic group.

• Input: A saturated G-transfer system R.
• Output: A G-diagram D.

Let N be the new element G-diagram defined as follows:

N(H) =

{
{(pβ1−1

1 , pβ2−1
2 , . . . , pβl−1

l )} if H is R-cofibrant
∅ otherwise

where Ĥ ∼=
∏
C

p
βi
i

and p−1 = ∗ in all coordinates with βi = 0. Return the diagram

D obtained by executing Algorithm N with R and N .

Lemma 4.2. In the diagram D obtained from Algorithm 2, for all R-cofibrant H
and K < H, we have RH

KN(H) ⊆ D(K).

Proof. We show by induction that for every subgroup L of order
∏
pγi

i , the setD(L)

contains all elements of the form (χ1, . . . , χl) where each χi can be either pγi−1
i (∗

if γi = 0) or 0. First, the claim is true if L is not cofibrant, since D(L) ⊇ ILMD(M)
for any M < L with M →R L using the induction hypothesis on M .

On the other hand, if L is cofibrant, the claim still holds true if any coordinate
is not equal to pγi−1

i since if [L : M ] = pi, then it follows from D(L) ⊇ JL
MD(M)

using the induction hypothesis onM . Finally, the claim is true if all coordinates are
equal to pγi−1

i and L is cofibrant from D(L) ⊇ N(L). Now, the lemma follows from

noting that RH
KN(H) is an element of aforementioned form in K̂ for L = K. □

Corollary 4.2. The diagram D obtained from Algorithm 2 is non-empty and sat-
isfies RH

KD(H) = D(K) for all K ⩽ H ⩽ G. Thus, it comes from the G-universe
U = D(G). Furthermore, if K →R H, then D(H) = IHKD(K).

Proof. Use Lemma 4.2 and the arguments in Lemma 4.1. □

Theorem 4.1. For every odd cyclic G and saturated transfer system R, the dia-
gram D from Algorithm 2 realizes R. Thus, all saturated transfer systems R over
G are realizable by G-universes.

Proof. Let RD be the saturated transfer system realized by D. We know that
RD ⊇ R, and by Proposition 2.2, it suffices to prove that every R-cofibrant H
is also RD-cofibrant. Observe that by construction, D(H) has precisely 1 new
element. On the other hand, for any maximal K < H, we know that D(K) contains
new elements (from the proof of Lemma 4.2), so IHKD(K) contains at least p − 1
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new elements, where p = [H : K], by adding any non-zero leading digit in the
p-coordinate. Thus, IHKD(K) ⊈ D(H), as required. □

Example 4.2. Let G = C15 and R be the saturated transfer system below:

C5 C15

e C3

{(∗, 0), (∗, 1)} {(d, 0) : d ∈ C3} ∪ {(0, 1), (1, 1)}
{(∗, ∗)} {(d, ∗) : d ∈ C3}

The G-diagram D generated by Algorithm 2 is given above. In contrast to Algo-
rithm 1, we see that there no longer an accidental arrow C5 → C15.

Remark 4.3. One can verify that Algorithm 1 in fact works for cyclic p-groups
since forK < H withK ̸→R H, we have |D(H)| = |D(K)| < |IHKD(K)|. In general,
the accidental arrows created in Algorithm 1 are always parallel to necessary arrows,
but since the subgroup lattice for Cpk is a chain, there are no distinct parallel arrows.

Remark 4.4. One can also use the new element ( 1
1−p1

, . . . , 1
1−pl

) to yield a variant

of Algorithm 2. The corresponding version of Lemma 4.2 would be to show that
this new element exists in every subgroup and the same proof applies. We shall
find use for this when constructing algorithms for even cyclic groups.

Remark 4.5. The analogous result over R (rf. Remark 3.2) is that for all cyclic
groups G with order divisible by neither 2 nor 3, all saturated transfer systems R
over G are realizable.

5. Linear Isometries Operads over Even Cyclic Groups

When we move to even cyclic groups, it is no longer true that every saturated
transfer system is realizable. Before we discuss why this is the case, we shall
introduce some new notation regarding saturated transfer systems:

5.1. Decomposing Saturated Transfer Systems. Let G be a cyclic group and
p be a prime with G = Cpα ×G′ where p ∤ |G′|. For each 0 ⩽ k ⩽ α, the subgroups
H ⩽ G with νp(|H|) = k form a sublattice isomorphic to Sub(G′).

Definition 5.1. Let R be a saturated transfer system on G and 0 ⩽ k ⩽ α:

• The pk-layer of R, denoted Rk
p, is the saturated transfer system on the lat-

tice isomorphic to Sub(G′) obtained from R by restricting to the subgroups
H ⩽ G with νp(|H|) = k.
• An arrow K →R H is a p-arrow if and only if [H : K] = p.
• For k > 0, the pk-partition is the imaginary partition on Rk

p separating the
subgroups which do and do not receive p-arrows.

Example 5.1. Let G = C6 and R be the saturated transfer system below:

C2 C6

e C3
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• For the prime p = 2:
– R0

2 is the complete transfer system on Sub(C3) and R1
2 is the empty

transfer system on Sub(C3).
– There are no 2-arrows in the saturated transfer system.
– The 21-partition on R1

2 has no subgroups below it.
• For the prime p = 3:

– R0
3 and R1

3 are both the empty transfer system on Sub(C2).
– The arrow e→R C3 is a 3-arrow from R0

3 to R1
3.

– The 31-partition on R1
3 has C3 below it and C6 above it.

• For the prime p = 5, we have R0
5 = R and there are no 5-arrows.

For any prime p, the data of R can be provided using its pk-layers and the
p-arrows between consecutive layers. However, not every choice of layers and p-
arrows yields a valid saturated transfer system. The following proposition tells us
the required compatibility constraints:

Proposition 5.1. The data of layers Rk
p for 0 ⩽ k ⩽ α and p-arrows between Rk−1

p

and Rk
p (equivalently, pk-partitions) for 0 < k ⩽ α yields a well-defined saturated

transfer system R on G if and only if the following conditions hold for k > 0:

(1) Rk−1
p ⊇ Rk

p, i.e. higher layers are finer.

(2) The set of subgroups on Rk
p receiving p-arrows is downward-closed (which

we refer to as the set of subgroups below the pk-partition).
(3) No arrows on Rk

p cut across the pk-partition, i.e. go from a subgroup below

the pk-partition to a subgroup above the partition.
(4) If K ⩽ H lie below the partition on Rk

p and their index p subgroups are

K ′ ⩽ H ′ on Rk−1
p , then K ′ →Rk−1

p
H ′ if and only if K →Rk

p
H. Thus,

Rk−1
p and Rk

p are identical at least till the pk-partition.

Proof. We can obtain a relation R on Sub(G) by gluing the data of layers and
p-arrows and closing it under the saturation axiom. Since G is abelian, the conju-
gation axiom is trivial. The constraints (1) and (2) come from the restriction axiom
on non-p-arrows and p-arrows respectively.

It remains to check transitivity. We already have transitivity on the layers since
they are saturated transfer systems. It suffices to show that for K ⩽ H on Rk

p with

index p subgroups K ′ ⩽ H ′ on Rk−1
p :

• If K ′ → K and K → H,then H ′ → H.
• If K ′ → H ′ and H ′ → H, then K → H.

These are constraints (3) and (4) respectively. Thus, the given compatibility con-
straints are equivalent to the saturated transfer system axioms on R. □

Lemma 5.1. Let R be a saturated transfer system on G. Let p be a prime and k
be an integer with 0 < k ⩽ νp(|G|). The following are equivalent:

(1) There are no subgroups below the pk-partition on Rk
p.

(2) There are no p-arrows from Rk−1
p to Rk

p.
(3) We have Cpk−1 ̸→R Cpk .

Proof. The equivalence (1)⇔ (2) follows by the definition of the pk-partition. We
also clearly have (2)⇒ (3). The implication (2)⇐ (3) follows from the contrapos-
itive of the restriction axiom since Cpk−1 ̸→R Cpk implies Cpk−1m ̸→R Cpkm for all
divisors m | |G| relatively prime to p. □
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Definition 5.2. We say that the pk-partition onR is trivial if any of the equivalent
conditions in Lemma 5.1 hold.

5.2. Obstruction to Realizability. We present the smallest example of a satu-
rated transfer system over a cyclic group that is not realizable by a G-universe:

Example 5.2. Let G = C6 = C3 × C2 and R be as below:

C2 C6

e C3

{(∗, 0), (∗, 1)} {(d, 0) : d ∈ C3} ∪ {(0, 1), (1, 1)}
{(∗, ∗)} {(d, ∗) : d ∈ C3}

First, note that the diagram from Algorithm 2 does not work since we have an
arrow e → C2 (because the bound p − 1 > 1 does not hold). If we try to take
D(C2) = {(∗, 0)}, then we must use the diagram from Algorithm 1, which creates
the accidental arrow C2 → C6. Thus, R is not realizable by a G-universe.

The following proposition imposes a necessary condition for realizability that
explains why the saturated transfer system in Example 5.2 is not realizable.

Proposition 5.2. Let G be a cyclic group and R be a saturated transfer system.
Let β ⩽ ν2(|G|) be maximal such that for all 0 < k ⩽ β, the 2k-partition on R is

trivial. Then, R is realizable only if R0
2 = · · · = Rβ

2 .

Proof. Assume that R is a saturated transfer system realized by a G-universe U .
We are given that C2k−1 ̸→R C2k for all 0 < k ⩽ β. Start by assuming that
e ̸→ C2; this implies that D(C2) = {0}. For all odd divisors m | |G|, we must have
D(C2m) = J2m

m D(Cm). Since each element in D(Cm) is lifted uniquely with the
same base 2 part to D(C2m), we have R0

2 = R1
2. In general, D(C2k) = {0} for all

0 < k ⩽ β, and the same argument implies that R0
2 = · · · = Rβ

2 . □

Proposition 5.2 is an example of a local obstruction. In general, for any subfield
k ⊆ C and rational integer prime p, we have a local constraint for realizability. In
the case of k = C, the constraint is trivial for p > 2 and Proposition 5.2 for p = 2.
In the case of k = R, the constraint is trivial for p > 3, identical to Proposition 5.2
for p = 3, but stronger for p = 2. We shall expand on this in Section 6.

Conjecture 5.1. Let G be a cyclic group and R be a saturated transfer system.
Then, R is realizable if and only if it is not excluded by Proposition 5.2.

One may think of Conjecture 5.1 as a local-global statement. We shall see in
Section 6 that the more general local-global conjecture is not true for all subfields
k ⊆ C. We shall provide a counterexample for k = Q, and consequently infinitely
many other subfields of C, including all number fields.

Lemma 5.2. Let G be an even cyclic group and R be a saturated transfer system
on G satisfying the necessary condition for realizability in Proposition 5.2. Let
π : G → G′′ be the quotient map with kernel C2β and let R′′ be the saturated
transfer system on G′′ defined as follows:

• For all 0 ⩽ k ⩽ ν2(|G′′|), we have (R′′)k2 = Rβ+k
2 .

• For all 0 < k ⩽ ν2(|G′′|), the 2k-partition on (R′′)k2 identical to the 2β+k-

partition on Rβ+k
2 .
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Equivalently, for all K ′′ ⩽ H ′′ ⩽ G′′, we have K ′′ →R′′ H ′′ if and only if K →R H
where K = π−1(K ′′) and H = π−1(H ′′). Then, R is realizable by a G-universe if
and only if R′′ is realizable by a G′′-universe.

Proof. From the proof in Conjecture 5.1, we know that if the G-universe U realizes
R, then we must have D(C2β ) = 0 in the corresponding diagram D. This means

U = π∗(U ′′) for some G′′-universe U ′′, where π∗ : Ĝ′′ → Ĝ is the dual to π. We can
then see that U ′′ realizes R′′. Conversely, if U ′′ realizes R′′, then the G-universe
U = π∗(U ′′) realizes R. □

Conjecture 5.2. Let G be an even cyclic group and R be a saturated transfer
system with e→R C2. Then, R is realizable.

Lemma 5.3. Conjecture 5.1 and Conjecture 5.2 are equivalent.

Proof. The forward implication is clear since we have β = 0, where the chain of
equality of layers is trivial. For the reverse implication, let R satisfy the necessary
condition in Conjecture 5.1. We can use Lemma 5.2 to reduce to the case where
β = 0. We already know from Theorem 4.1 that the conjecture is true for odd cyclic
G, so we may further assume that 2 | |G|. We thus have the arrow e →R C2, so
Conjecture 5.2 implies realizability. Thus, the two conjectures are equivalent. □

Due to the equivalence of Conjecture 5.1 and Conjecture 5.2, for the remainder
of this section, we may focus our attention towards saturated transfer systems R
on even cyclic groups G with e→R C2.

5.3. The Case G = C2pα′ . We start by looking at the even cyclic group G = C2pα′

with odd prime p. A G-universe U has representations which are 0 and 1 modulo
2. The elements in each class modulo 2 can be identified with elements of Ĉpα′

under projection. Thus, we can specify U using the Cpα′ -universes U ′
0 and U ′

1

corresponding to the 0 mod 2 and 1 mod 2 classes in U respectively. (Technically,
it may be possible for U ′

1 to be the empty semi-universe on G′).
For i = 0, 1, let the Cpα′ -universe U ′

i have corresponding diagram D′
i and realize

the saturated transfer system R′
i. The saturated transfer system R realized by U

is given by the following data:

• R0
2 is realized by U ′

0 ∪ U ′
1 (or D′

0 ∪D′
1).

• R1
2 = R′

0 ∩R′
1.

• The subgroups C2m below the 21-partition on R1
2 are the subgroups for

which D′
0(Cm) = D′

1(Cm), where m denotes any odd divisor of |G|.
In particular, if we take U ′

0 ⊇ U ′
1, then R0

2 and R1
2 will be the saturated transfer

systems realized by U ′
0 and U ′

1 respectively. We shall analyze two natural choices
for such universes U ′

0 and U ′
1:

• We may take U ′
0 and U ′

1 as given by Algorithm 2. In this case, the 21-
partition divides R1

2 at the point where R0
2 and R1

2 are no longer identical.
By Proposition 5.1, this is the largest possible 21-partition.

• We may also take U ′
0 as given by Algorithm 2 and U ′

1 as given by Al-
gorithm 1. By Remark 4.3, U ′

1 indeed realizes R1
2. In this case, the 21-

partition divides R1
2 at the first point where R1

2 does not have an arrow.
By Proposition 5.1, this is the smallest possible 21-partition given the 2-
arrow e→R C2.
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• If the 21-partition is trivial, then we must have R0
2 = R1

2 for realizability.
We may then take U ′

0 as given by Algorithm 2 and U ′
1 to be the empty

semi-universe to realize the corresponding R.
This hints that the above choices are the extremes in a spectrum of algorithms

one may obtain by mixing Algorithm 1 and Algorithm 2 appropriately.

Algorithm ⟨2 | 1⟩k2. Let G = C2α ×G′ where G′ is an odd cyclic group.

• Input: A saturated G′-transfer system R′, a saturated G-transfer system
R, and an integer k with 0 < k ⩽ α. We package this data as (R′,R, k).
• Output: A G′-diagram D′.

If the 2k-partition on Rk
2 has no subgroups below it, then we return the empty

diagram. Otherwise, let NAlg1 and NAlg2 denote the new element G′-diagrams with
respect to Rk

2 corresponding to Algorithm 1 and Algorithm 2 respectively. Let Nk
2

be the new element G′-diagram where for all H ′ ⩽ G′:

Nk
2 (H

′) =

{
NAlg2(H

′) if H is below the 2k-partition on Rk
2

NAlg1(H
′) if H is above the 2k-partition on Rk

2

where H ⩽ G is the subgroup on Rk
2 with [H : H ′] = 2k. Return the G′-diagram D′

obtained by executing Algorithm N with R′ and Nk
2 .

Remark 5.1. Algorithm ⟨2 | 1⟩k2 does not depend fully on R, but only the 2k-
partition on Rk

2 .

Proposition 5.3. With the notation in Algorithm ⟨2 | 1⟩k2 :
(1) For all subgroups K ′ ⩽ H ′ ⩽ G′, the diagram D′ obtained from Algorithm

⟨2 | 1⟩k2 satisfies RH′

K′D′(H ′) = D′(K ′).
(2) The diagram D′ is empty if the 2k-partition is trivial and comes from the

G′-universe U ′ = D′(G′) otherwise.

(3) For all subgroups K ′ ⩽ H ′ ⩽ G′, if K ′ →R′ H ′, then D′(H ′) = IH
′

K′D′(K ′).

Proof. All the statements above follow from ideas in Section 4.

(1) Use the arguments in Lemma 4.1 and Lemma 4.2. Note that it is important
that we apply Algorithm 2 before the partition and Algorithm 2 after since
NAlg2(H

′) ⊇ NAlg1(H
′).

(2) It is easy to see that D′ is empty if and only if the 2k-partition is trivial. It
follows from (1) that D′ comes from U ′ when the partition is non-trivial,
similar to Corollary 4.1.

(3) Follows from (1), similar to Corollary 4.1.

Thus, the proposition is proven. □

Proposition 5.4. Let G = C2αpα′ = C2α × G′ where G′ = Cpα′ and let R be a

saturated transfer system on G with non-trivial 2k-partition. For all saturated G′

transfer systems R′, the diagram D′ from Algorithm ⟨2 | 1⟩k2 realizes R′.

Proof. We know from Proposition 5.3 that if the diagram D′ comes from the uni-
verse U ′, then L(U ′) realizes a saturated transfer system containing R′. By Propo-
sition 2.2, it suffices to show that for every non-trivial R′-cofibrant H ′ ⩽ G′ with
maximal subgroup K ′, we have D′(H ′) ̸= IH

′

K′D′(K ′). Indeed, the new elements
in D′(H ′) come from Nk

2 (H
′), which all have leading digit 1 in their base p part.
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On the other hand, IH
′

K′D′(K ′) has elements with leading digits other than 0 and 1
since p− 1 > 1. Thus, L(U ′) = R′. □

Algorithm E1. Let G = C2pα′ = C2 ×G′ where G′ = Cpα′ .

• Input: A saturated G-transfer system R with e→R C2.
• Output: A G-universe U .

We define the G-universe U using G′-universes U ′
0 and U ′

1 corresponding to the
elements in U which are 0 mod 2 and 1 mod 2 respectively.

• Let U ′
0 be the G′-universe corresponding to the G′-diagram obtained from

Algorithm 2 with input R0
2.

• Let U ′
1 be the G′-universe corresponding to the G′-diagram obtained from

Algorithm ⟨2 | 1⟩k2 with input (R1
2,R, 1).

Theorem 5.1. For all saturated transfer systems R on G = C2pα′ with e→R C2,
the universe U from Algorithm E1 realizes R. Thus, all saturated transfer systems
on G not excluded by Proposition 5.2 are realizable by G-universes.

Proof. We know from Theorem 4.1 that U ′
0 realizes R0

2. First, we show that the
saturated transfer system realized by U has the correct 2k-layers:

• The 20-layer is R0
2: It suffices to make sure that the projection of U to Ĉpα′

is equal to U ′
0, or equivalently, U ′

0 ⊇ U ′
1. This follows from NAlg2 ⊇ N1

2

(which in turn follows from NAlg2 ⊇ NAlg1).
• The 21-layer is R1

2: The 2
1-layer is the intersection of the saturated transfer

systems realized by U ′
0 and U ′

1. The former realizes R0
2, and by Proposi-

tion 5.4, the latter realizes R1
2 since the 21-partition on R is non-trivial. By

(1) in Proposition 5.1, it follows that the 21-layer is equal to R0
2∩R1

2 = R1
2.

We are left to prove that the 21-partition is correct. Let the G′-diagrams corre-
sponding to U ′

0 and U ′
1 be equal to D′

0 and D′
1 respectively. Draw the 21-partition

of R1
2 on Sub(G′):

• For all H ′ ⩽ G′ below the 21-partition, we have D′
0(H

′) = D′
1(H

′) since
both diagrams are obtained using Algorithm 2 until the partition.
• For all H ′ ⩽ G′ above the 21-partition, we have D′

0(H
′) ⊋ D′

1(H
′). We

already have inclusion, and by R-stability, it suffices to prove inequality
for H ′ which are minimal above the partition. By (3) in Proposition 5.1,
all such H ′ are R1

2-cofibrant. The new elements in D′
0(H

′) and D′
1(H

′)
are NAlg2(H

′) and NAlg1(H
′) respectively. We indeed have NAlg2(H

′) ⊋
NAlg1(H

′) for all non-trivial R1
2-cofibrant H

′.

Since the subgroups H below the 21-partition on the saturated transfer system of
U are precisely those subgroups with D′

0(H
′) = D′

1(H
′) (where [H : H ′] = 2), we

have the correct 21-partition. □

5.4. The Case G = C2αpα′ . We extend Algorithm E1 to G = C2αpα′ = C2α×G′ by

specifying a G-universe U in terms of the G′-universes U ′
0, . . . , U

′
2α−1 corresponding

to the elements of U which are 0, . . . , (2α − 1) mod 2α respectively. In addition to
mixing algorithms, we will also need to mix layers.

Definition 5.3. Let G = C2α ×G′ where G′ is an odd cyclic group and let R be a
saturated transfer system on G. For 0 ⩽ i < j ⩽ α, the saturated transfer system
R′ = ⟨Ri

2 | R
j
2⟩ on G′ is defined as follows: for subgroups K ′ ⩽ H ′ ⩽ G′:
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• If both K ′ and H ′ are below the 2j-partition on Sub(G′), then K ′ →R′ H ′

if and only if the corresponding arrow exists in Ri
2.

• If both K ′ and H ′ are above the 2j-partition on Sub(G′), then K ′ →R′ H ′

if and only if the corresponding arrow exists in Rj
2.

• If K ′ is below the 2j-partition and H ′ is above the 2j-partition, then we
have K ′ ̸→R′ H ′.

Simply put, R′ = ⟨Ri
2 | R

j
2⟩ is obtained from Rj

2 by replacing the part below the
2j-partition with the same part in Ri

2.

Proposition 5.5. With notation as in Definition 5.3, ⟨Ri
2 | R

j
2⟩ is a saturated

transfer system on G′.

Proof. First, we exhibit the restriction axiom:

• When we restrict an arrow below (resp. above) the 2j-partition to a poten-
tial arrow below (resp, above) the 2j-partition, the restriction axiom follows

from the same axiom for Ri
2 (resp. Rj

2).
• When we restrict an arrow above the 2j-partition to a potential arrow below
the 2j-partition, the restriction axiom follows from the same axiom for Rj

2

combined with Rj
2 ⊆ Ri

2 (which comes from (1) in Proposition 5.1).

Since there are no arrows which cut across the 2j-partition in ⟨Ri
2 | R

j
2⟩, the

transitivity and saturation axioms follow from the same axioms for Ri
2 and Rj

2.
Finally, the conjugation axiom is trivial for abelian groups. □

Remark 5.2. Constraint (4) in Proposition 5.1 is equivalent to saying that for all

0 < k ⩽ α, we have ⟨Rk−1
2 | Rk

2⟩ = Rk
2 .

Algorithm E2. Let G = C2αpα′ = C2α ×G′ where G′ = Cpα′ .

• Input: A saturated G-transfer system R with e→ C2.
• Output: A G-universe U .

We define the G-universe U using G′-universes U ′
i for 0 ⩽ i < 2α. The elements

of U ′
i correspond to the elements of U which are i mod 2α. Construct the diagram

D′
i corresponding to U ′

i as given below:

Value of i Algorithm Input

0 Algorithm 2 R0
2

1 Algorithm ⟨2 | 1⟩k2 (R1
2,R, 1)

2j−1 Algorithm ⟨2 | 1⟩k2 (⟨R0
2 | R

j
2⟩,R, j)

2j−1 < i < 2j − 1 Return Input D′
i−2j−1

2j − 1 Algorithm ⟨2 | 1⟩k2 (Rj
2,R, 1)

where j runs over all integers satisfying 2 ⩽ j ⩽ α.

Remark 5.3. Technically, the case i = 1 follows from j = 1. We simultaneously
have i = 2j−1 and i = 2j−1; both give the right answer, the former by Remark 5.2.

Theorem 5.2. For all saturated transfer systems R on G = C2αpα′ with e→R C2,
the universe U from Algorithm E2 realizes R. Thus, all saturated transfer systems
on G not excluded by Proposition 5.2 are realizable by G-universes.

Proof. The idea is to generalize the argument in the proof of Theorem 5.1. We first
show that for all 0 < j ⩽ α and 2j−1 ⩽ i ⩽ 2j − 1, we have D′

i ⊆ D′
i−2j−1 . By
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construction, we have equality for 2j−1 < i < 2j − 1, so it suffices to deal with the
two extreme cases:

• i = 2j−1: We have ⟨R0
2 | R

j
2⟩ ⊆ R0

2 by (1) in Remark 5.2. Furthermore, we

also have N j
2 ⊆ N2. It follows that D

′
2j−1 ⊆ D0.

• i = 2j − 1: We may assume j > 1 since we have already dealt with i = 1 in
the previous case. Since Rj

2 ⊆ R
j−1
2 , it follows that D′

2j−1 ⊆ D
′
2j−1−1.

Now, for all 0 ⩽ j ⩽ α, the G′-universes corresponding to the residue classes
0, . . . , (2j − 1) mod 2j in the projection of U to Ĉ2jpα′ are precisely U ′

0, . . . , U
′
2j−1.

Thus, we must show that the intersection of the saturated transfer systems realized
by these G′-universes is precisely Rj

2. We prove by induction; the base case j = 0
follows from Theorem 4.1. For j > 0:

• By the induction hypothesis, the intersection of the saturated transfer sys-
tems realized by U ′

0, . . . , U
′
2j−1−1 is Rj−1

2 .

• Since the G′-universes U ′
2j−1+1, . . . , U

′
2j−2 are simply copies of previous G′-

universes, they do not affect our calculation.
• By Proposition 5.3, U ′

2j−1 is the empty G′-semi-universe if the 2j-partition
is trivial, in which case it realizes the complete transfer system on G′.
Otherwise, it realizes ⟨R0

2 | R
j
2⟩ by Proposition 5.4.

• By Proposition 5.4, U ′
2j−1 realizes Rj

2. Note that we are using e→ C2. We

indeed get Rj−1
2 ∩ ⟨R0

2 | R
j
2⟩ ∩ R

j
2 = Rj

2 (or Rj−1
2 ∩Rj

2 = Rj
2) as required.

It remains to prove that for all 0 < j ⩽ α, the 2j-partitions are realized correctly.
A subgroup H ′ ⩽ G′ lies below the 2j-partition in the saturated transfer system
realized by U (technically, the subgroup C2j × H ′ ⩽ G) if and only if for all
2j−1 ⩽ i ⩽ (2j − 1), we have D′

i(H
′) = D′

i−2j−1(H ′). We must prove that these are

precisely the subgroups below the 2j-partition on Rj
2:

• For 2j−1 < i < (2j −1), we have D′
i(H

′) = D′
i−2j−1(H ′) for every subgroup

H ′ ⩽ G′ since D′
i = D′

i−2j−1 by construction.

• For i = 2j−1, if the 2j-partition is trivial, D′
2j−1(H ′) = ∅ ⊊ D′

0(H
′) for

all H ′ ⩽ G′. For a non-trivial partition, we have D′
2j−1(H ′) = D′

0(H
′)

for H ′ below the partition since the layers R0
2 and ⟨R0

2 | R
j
2⟩ are identical

below the partition and we are applying Algorithm 2 till the partition. We
have D′

2j−1(H ′) ⊊ D′
0(H

′) for all H ′ which are minimal after the partition
(and hence, all H ′ after the partition) since NAlg2(H

′) ⊋ NAlg1(H
′) for all

non-trivial Rj
2-cofibrant H

′.
• For i = 2j − 1, we assume j > 1 since for j = 1, we coincide with i = 2j−1.
Both D′

2j−1 and D′
2j−1−1 are obtained using Algorithm ⟨2 | 1⟩k2 with R

and k = 1. Since Rj−1
2 and Rj

2 are identical till the 2j-partition, we have
D′

2j−1(H
′) = D2j−1−1(H

′) for all H ′ below the 2j-partition, and perhaps

some subgroups H ′ above the 2j-partition.

Thus, for 2j−1 < i ⩽ (2j − 1), we have D′
i(H

′) = D′
i−2j−1(H ′) for all H ′ below

the 2j-partition, and for i = 2j−1, we have equality if and only if H ′ is below the
2j-partition. It follows that the 2j-partition is realized correctly. In conclusion, all
the layers and partitions in the saturated transfer system realized by U match with
R, proving that U realizes R. □
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Remark 5.4. The task of precisely realizing Rj
2 is delegated to U ′

2j−1 and the task

of precisely realizing the 2j-partition on Rj
2 is delegated to U ′

2j−1 . For j = 1, we can
(and must) do this with the same G′-universe because we have the compatibility
condition ⟨R0

2 | R1
2⟩ = R1

2 from Remark 5.2.

5.5. The General Case. We shall now generalize Algorithm E2 for general even
cyclic groups. Let G = C2α ×G′ where G′ is an odd cyclic group. Previously, when
G′ was a cyclic p-group, the properties we used about Algorithm 2 and Algorithm
1 in the proof of Algorithm E2 to realize a given saturated transfer system R on G
were the following:

• Both Algorithm 2 and Algorithm 1 realize all saturated transfer systems
on G′ (by Theorem 4.1 and Remark 4.3 respectively).
• For any R-cofibrant H with ν2(|H|) = k > 0, if [H : H ′] = 2k and H ′ is
non-trivial, then we have NAlg3(H

′) ⊋ NAlg2(H
′).

However, for a general odd cyclic group G′, Algorithm 1 no longer realizes all
saturated transfer systems on G′, as shown in Example 4.1. We can try using a
new pair of Algorithm N type algorithms that satisfy both the properties above for
as many odd cyclic groups G′ as possible. We shall use a modified version of the
new element we eluded to in Remark 4.4 combined with the one in Algorithm 2 to
construct a new algorithm to realize saturated transfer systems on G′:

Algorithm 3. Let G′ be an odd cyclic group.

• Input: A saturated G′-transfer system R′.
• Output: A G′-diagram D′.

Let N be the new element G′-diagram defined as follows:

N(H) =

{
{(pβ1−1

1 , pβ2−1
2 , . . . , pβl−1

l ), (p1−2
1−p1

, . . . , pl−2
1−pl

)} if H ′ is R-cofibrant
∅ otherwise

where Ĥ ′ ∼=
∏
C

p
βi
i

and p−1 = ∗ in all coordinates with βi = 0. Return the diagram

D′ obtained by executing Algorithm N with R′ and N .

Lemma 5.4. In the diagram D′ obtained from Algorithm 3, for all R′-cofibrant H ′

and K ′ < H ′, we have RH′

K′N(H ′) ⊆ D(K ′).

Proof. Use the argument in Lemma 4.2 to show that for all L′ ⩽ G′ of order
∏
pγi

i ,
the set D′(L′) contains all elements of the form (χ1, . . . , χl) where each χi can be

either pγi−1
i (∗ if γi = 0) or 0. The exact same induction argument shows that

L′ also contains (p1−2
1−p1

, . . . , pl−2
1−pl

), the element with all base pi parts equal to the

repunit of the digit pi − 2. The lemma follows from these facts. □

Corollary 5.1. The diagram D′ obtained from Algorithm 3 is non-empty and sat-
isfies RH′

K′D′(H ′) = D′(K ′) for all K ′ ⩽ H ′ ⩽ G′. Thus, it comes from the G′-

universe U ′ = D′(G′). Furthermore, if K ′ →R′ H ′, then D′(H ′) = IH
′

K′D(K ′).

Proof. Repeat the argument in Corollary 4.2. □

Corollary 5.2. For every odd cyclic G′ and saturated transfer system R′, the
diagram D′ from Algorithm 3 realizes R′. Thus, all saturated transfer systems R′

over G′ are realizable by G′-universes.
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Proof. Repeat the argument in Proposition 5.4 with the observation that none of
the new elements in NAlg3 have leading digit pi − 1 in their base pi part for all
primes pi | |G′|. □

Algorithm ⟨3 | 2⟩k2. Let G = C2α ×G′ where G′ is an odd cyclic group.

• Input: A saturated G′-transfer system R′, a saturated G-transfer system
R, and an integer k with 0 < k ⩽ α. We package this data as (R′,R, k).
• Output: A G′-diagram D′.

If the 2k-partition on Rk
2 has no subgroups below it, then we return the empty

diagram. Otherwise, let NAlg2 and NAlg3 denote the new element G′-diagrams with
respect to Rk

2 corresponding to Algorithm 2 and Algorithm 3 respectively. Let Nk
2

be the new element G′-diagram where for all H ′ ⩽ G′:

Nk
2 (H

′) =

{
NAlg3(H

′) if H is below the 2k-partition on Rk
2

NAlg2(H
′) if H is above the 2k-partition on Rk

2

where H ⩽ G is the subgroup on Rk
2 with [H : H ′] = 2k. Return the G′-diagram D′

obtained by executing Algorithm N with R′ and Nk
2 .

Proposition 5.6. With the notation in Algorithm ⟨3 | 2⟩k2 :
(1) For all subgroups K ′ ⩽ H ′ ⩽ G′, the diagram D′ obtained from Algorithm

⟨3 | 2⟩k2 satisfies RH′

K′D′(H ′) = D′(K ′).
(2) The diagram D′ is empty if the 2k-partition is trivial and comes from the

G′-universe U ′ = D′(G′) otherwise.

(3) For all subgroups K ′ ⩽ H ′ ⩽ G′, if K ′ →R′ H ′, then D′(H ′) = IH
′

K′D′(K ′).

Proof. Repeat the argument in Proposition 5.6. □

Proposition 5.7. Let G = C2α ×G′ where G′ is an odd cyclic group and let R be
a saturated transfer system on G with non-trivial 2k-partition. For all saturated G′

transfer systems R′, the diagram D′ from Algorithm ⟨3 | 2⟩k2 realizes R′.

Proof. Repeat the argument in Proposition 5.4. □

Lemma 5.5. Let G = C2α × G′ where G′ is an odd cyclic group and let R be a
saturated transfer system on G. Let H ⩽ G be R-subgroup with ν2(|H|) = k > 0.
Let the subgroup H ′ < H with [H : H ′] = 2k is non-trivial. We have NAlg3(H

′) ⊋
NAlg2(H

′) if and only if H ′ ̸= C3.

Proof. With H ′ < H ⩽ G defined as above, we have NAlg3(H
′) ⊋ NAlg2(H

′) if and

only (pβ1−1
1 , pβ2−1

2 , . . . , pβl−1
l ) ̸= (p1−2

1−p1
, . . . , pl−2

1−pl
) in Ĥ ′.

• We have strict inclusion if p | |H ′| for some p > 3; the leading digits in the
base p parts of the two new elements are 1 and p− 2, which are unequal.
• We have strict inclusion if ν3(|H ′|) > 1; the last digit in the base 3 parts of
the two new elements are 0 and 1, which are unequal.

If we are not in either of the above cases, then H ′ = C3. In this case, both the new
elements are given by 1 in the base 3 part and ∗ in the base p part for every other
prime p | |G′|, so we have NAlg3(H

′) = NAlg2(H
′). □

Algorithm E3. Let G = C2αpα′ = C2α ×G′ where G′ = Cpα′ .

• Input: A saturated G-transfer system R with e→ C2.
• Output: A G-universe U .
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We define the G-universe U using G′-universes U ′
i for 0 ⩽ i < 2α. The elements

of U ′
i correspond to the elements of U which are i mod 2α. Construct the diagram

D′
i corresponding to U ′

i as given below:

Value of i Algorithm Input

0 Algorithm 3 R0
2

1 Algorithm ⟨3 | 2⟩k2 (R1
2,R, 1)

2j−1 Algorithm ⟨3 | 2⟩k2 (⟨R0
2 | R

j
2⟩,R, j)

2j−1 < i < 2j − 1 Return Input D′
i−2j−1

2j − 1 Algorithm ⟨3 | 2⟩k2 (Rj
2,R, 1)

where j runs over all integers satisfying 2 ⩽ j ⩽ α.

Theorem 5.3. Let G = C2α×G′ with G′ an odd cyclic group. Let R be a saturated
transfer system on G with e →R C2. The universe U from Algorithm E3 realizes
R if and only if at least one of the following hold true:

(1) The order of G (equivalently, G′) is not divisible by 3.
(2) For all 0 < k ⩽ α, the subgroup H ′ = C3 is below the 2k-partition on Rk

2 ,
i.e. we have C2k−1·3 →R C2k·3.

(3) The subgroup H = C3 is not R-cofibrant, i.e. e→R C3.

Proof. The same argument from Theorem 5.2 applies with the exception of show-
ing that D′

2j−1 realizes the 2j-partition accurately. For a non-trivial 2j-partition

and H ′ ⩽ G′ minimal above the 2j-partition, we need D′
2j−1(H ′) ⊊ D′

0(H
′). By

Lemma 5.5, this is true for H ′ ̸= C3.
Furthermore, if H ′ = C3, we have D′

2j−1(C3) = {0, 1} ⊆ Ĉ3, so we still have

strict inclusion if D′
0(C3) = Ĉ3. Since D′

0 realises R0
2 by construction, we have

D′
0(C3) = Ĉ3 if and only if e →R C3. Thus, Algorithm ⟨3 | 2⟩k2 realizes R if and

only if one of the given conditions hold. □

Corollary 5.3. For all cyclic groups G with order not divisible by 3, all saturated
transfer systems on G are realizable by linear isometries operads of G-universes.

Remark 5.5. We cannot make Algorithm ⟨3 | 2⟩k2 work for a larger class of cyclic
groups by replacing Algorithm 3 and Algorithm 2 with a different pair of algorithms.
The obstruction at C3 exists because N(C3) must contain at least 1 element for the
smaller algorithm, hence at least 2 elements for the bigger algorithm, but φ(3) = 2.

Remark 5.6. The analogous results over R (rf. Remark 3.2) are as follows. Let
G be a cyclic group with order divisible by 3.

• The necessary condition Proposition 5.2 with 2 replaced by 3 is required
for R to be realizable.

• For all cyclic groups G with order divisible by neither 2 nor 5, all saturated
transfer systems over G satisfying the necessary condition are realizable.

• Furthermore, for all odd cyclic groups G, if R is a G-saturated transfer
system with e→R C5, then R is realizable.

6. Local Obstructions

Yet to complete
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7. Compatible Pairs for Cyclic Groups

Throughout this report, we shall use the term compatible pairs to refer to pairs
(Rm,Ra) satisfying the compatibility axiom in Definition 1.3 such that Rm and
Ra are saturated and cosaturated respectively. Indeed, by Appendix A, any
pair of transfer systems realized by (L(U),K(U)) must have this form.

Lemma 7.1. Let G be an abelian group, U be a G-universe with corresponding
diagram D, and Ra be the cosaturated transfer system realized by K(U). For any
H ⩽ G, the subgroups K ⩽ H with K →Ra

H are precisely those of the form
∩χ∈S kerχ for some S ⊆ D(H).

Proof. Pick a basis for U such that each basis element spans a 1-dimensional G-
subrepresentation. Any vector v ∈ RG

HU can be written as a non-trivial linear
combination of basis elements. Let S ⊆ D(H) be the set of χ ∈ D(H) for which v
has a non-zero component on a basis element which spans a copy of χ. We can see
that Stab(v) = ∩χ∈S kerχ. Since any subset S ⊆ D(H) can be obtained by some
appropriate choice of v ∈ RG

HU , the lemma follows. □

7.1. Cyclic p-groups. We start with the simple case of G = Cpα . It is almost
true that all compatible pairs are realizable, but there is a tiny caveat.

Example 7.1. Let G = C2 and consider the compatible pair (Rm,Ra) with Rm

empty and Ra complete. The former forces U = {0} but the latter forces U = Ĉ2,
so the pair is not realizable.

Proposition 7.1. Let G = C2α and let (Rm,Ra) be a compatible pair on G. Let
β be minimal such that K = C2β is Ra-fibrant. If β < α and H = C2β+1 is
Rm-cofibrant, then (Rm,Ra) is not realizable.

Proof. Assume for the sake of contradiction that some G-universe U realizes the
given compatible pair. Let the corresponding diagram be D. By the minimality
of K, no proper subgroup of K has an arrow to K in Ra. By Lemma 7.1, we
must have D(K) = {0}. Since H is Rm-cofibrant, we must have D(H) = {0}. By
Lemma 7.1, this would imply that K ̸→Ra H. However, this is a contradiction
since K →Ra H holds by the restriction axiom. □

We shall construct an algorithm which realizes all compatible pairs not excluded
by Proposition 7.1. The idea is to use Algorithm N with a new element diagram
tailored to realize the required cosaturated transfer system.

Algorithm P1. Let G = Cpα be a cyclic p-group.

• Input: A G-compatible pair (Rm,Ra).
• Output: A G-diagram D.

Define the new element G-diagram N by:

N(H) =


{∗} if H = e

{pβ−1} if H is Rm-cofibrant and K →Ra
H

∅ otherwise

where H = Cpβ and K = Cpβ−1 . Return the diagram D obtained by executing
Algorithm N with Rm and N .
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Theorem 7.1. Let G = Cpα and (Rm,Ra) be any compatible pair. The pair is
realized by Algorithm P1 if and only if it is not excluded by Proposition 7.1.

Proof. The diagram D satisfies RH
KD(H) = D(K) by Frobenius reciprocity on J ,

so it comes from a G-universe U . Let (L(U),K(U)) realize the compatible pair
(R′

m,R′
a), we wish to show this is equal to (Rm,Ra).

First, we show that R′
a = Ra; our strategy will be to prove for all subgroups H

that (− →Ra H) = (− →R′
a
H) by induction. The base case H = e is trivial. For

non-trivial H, let K be the maximal subgroup of H. For any cosaturated R′′
a and

proper subgroup M < K, the statements M →R′′
a
K, M →R′′

a
H, and M →R′′

a
G

are equivalent. Indeed, this follows from the construction of R′′
a from its fibrant

subgroups in the proof of Theorem 2.1. Taking R′′
a = Ra,R′

a, by the induction
hypothesis, it suffices to check that K →Ra

H if and only if K →R′
a
H.

If K →Ra
H, then we have pβ−1 ∈ D(H) whether or not H is Rm-cofibrant; in

the former case, because pβ−1 ∈ N(H), and in the latter case, since pβ−1 ∈ IHK (0).
By Lemma 7.1, we get K →R′

a
H. On the other hand, if K ̸→Ra

H, then D(H)
has no new elements and the only representation in D(H) vanishing on K must be
0, which has kernel H. Thus, K ̸→R′

a
H, proving that R′

a = Ra.
Next, we show by induction that R′

m = Rm. By construction, we already know
thatRm ⊆ R′

m, so by Proposition 2.2, it suffices to show that everyRm-cofibrantH
is also R′

m-cofibrant. Let L be the minimal Ra-fibrant subgroup; by the definition
of N , for all H ⩽ L, we have D(H) = {0}, so any such H is R′

m-cofibrant.
If H > L is Rm-cofibrant with order pα and maximal subgroup K, then D(H) =

JH
KD(K)∪{pβ−1} has exactly 1 new element. We know IHKD(K) has (p−1)|D(K)|

new elements, and this is greater than 1 (and H is R′
m-cofibrant) unless p = 2 and

D(K) = {0}. Since L →Ra
K, this forces L = K, leading us to the conditions of

Proposition 7.1. Thus, Algorithm P1 works away from the compatible pairs ruled
out by Proposition 7.1. □

7.2. Partial Subinductors. In general, it is difficult to use the standard subin-
ductor J to realize a compatible pair (Rm,Ra) because Ra imposes restrictions on
the representations we may use. We shall get around this difficulty by instead using
partial subinductors:

Definition 7.1. Let D be an R-stable G-diagram. A partial subinductor J with
respect to the diagram D consists of the data of a join-semilattice homomorphisms
JHK : P(D(K))→ P(D(H)) for each K ⩽ H ⩽ G satisfying:

• Transitivity : For all K ⩽M ⩽ H, we have JHMJMK = JHK .
• Identity : For all K ⩽ H, we have 0H ∈ JHK(0K).
• Frobenius Reciprocity : For all K ⩽ H, we have RH

KJHK = idP(D(K)).

• Mackey’s Formula: For allK,L ⩽ H and all S ⊆ D(K), we have RH
L JHKS ⊆

JLK∩LR
K
K∩LS.

Thus, a subinductor on G is a partial subinductor with D equal to the complete
diagram on G. Given a cyclic group G with order divisible by neither 2 nor 3 and
a cosaturated transfer system Ra, we shall use the following partial subinductor:

Definition 7.2. Let Ra be a cosaturated transfer system:

• The G-diagramD corresponding toRa is defined as follows: for anyH ⩽ G,
we have D(H) = {χ : kerχ→Ra

H}.
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• The partial subinductor J corresponding to Ra (with respect to D) is de-
fined as follows: for any K ⩽ H ⩽ G and ψ ∈ D(K), the set JHKψ contains
all χ ∈ IHKχ ∩D(H) such that for all primes p | |H|, all the new digits in
the base p part of χ (the leading νp(|H|)− νp(|K|) digits) are 0’s and 1’s.

Example 7.2. Let G = C36 = C22×C32 andRa be the cosaturated transfer system
on G with fibrant subgroups e, C2, C3, C6, C9, C12, C36. For the partial subinductor
J corresponding to Ra:

• If K = C6 and H = C36, then JHK((0, 0)) = {(00, 00), (00, 10), (10, 10)}
(equivalently, JHK(0) = {0, 12, 30}). Note that we do not include (10, 00)
because its kernel is C2 × C32 = C18, which is not fibrant.

• If K = C9 and H = C36, then (∗, 21) ∈ D(K) since its kernel is e. We have
JHK((∗, 21)) = {(10, 21), (01, 21), (11, 21)}. Note that we do not include
(00, 21) because its kernel is C22 = C4, which is not fibrant.

• If K = e and H = C4, then JHK((∗, ∗)) = {(00, ∗), (10, ∗), (01, ∗), (11, ∗)}
since all subgroups L ⩽ H satisfy L→Ra

H.

Lemma 7.2. The diagram D corresponding to Ra is R-stable.

Proof. For any K ⩽ H, let χ ∈ D(H) be arbitrary and let L = kerχ. By the
construction of D, we have L →Ra H. By restriction, we have P →Ra K, where
P = K ∩ L. Define ψ = RH

Kψ; we also know that kerψ = P , so ψ ∈ D(K). Thus,
the diagram D is R-stable. □

We are yet to prove that J is indeed a partial subinductor. In order to do so, we
shall first need the following important lemma:

Lemma 7.3. Let Ra be a cosaturated transfer system with corresponding diagram
D and partial subinductor J. Let K ⩽ H be any subgroups and ψ ∈ D(K) be any
element; say kerψ = P . Let L ⩽ H be any subgroup with L→Ra H and K∩L = P .
Then, there exists some χ ∈ JHKψ with kerχ = L.

Proof. We construct the required χ explicitly by specifying the new digits in its
base p part for each prime p | |H|.

• If the base p part of ψ is zero (possibly empty), we have νp(|P |) = νp(|H|).
In this case, we add the digits 11 · · · 1100 · · · 00 where the number of 0’s is
equal to νp(|L|)−νp(|P |) and the number of 1’s is equal to νp(|H|)−νp(|L|).

• If the base p part of ψ is non-zero, we add any combination of 0’s and 1’s.
For instance, we may just add all νp(|H|)− νp(|K|) digits as 0’s.

We need to make sure that νp(| kerχ|) = νp(|L|). In the first case, the number of
trailing 0’s in χ is equal to νp(|L|)−νp(|P |)+νp(|K|) = νp(|L|). In the second case,
the number of trailing 0’s in χ is equal to νp(|P |) = min(νp(|K|), νp(|L|)) = νp(|L|);
note that νp(|P |) < νp(|L|) since the base p part of ψ is non-zero. □

Proposition 7.2. The J corresponding to Ra is a partial subinductor.

Proof. We must verify the following details about our construction:

• Frobenius Reciprocity : Let K ⩽ H. For all ψ ∈ D(K) with kerψ = P ,
we must find some χ ∈ D(H) with kerχ = L satisfying K ∩ L = P . By
Lemma 7.3, it suffices to find L ⩽ H with L →Ra

H and K ∩ L = P . By
the construction in Theorem 2.1, there exists some M ⩽ G with M →Ra

G
and M ∩K = P , we may choose L =M ∩H by the restriction axiom.
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• Identity : For K ⩽ H, we have 0K ∈ D(K) and 0H ∈ D(H) since every
subgroup has an Ra-arrow to itself. It is also clear that 0H ∈ JHK0K since
every new digit in each base p part is 0.
• Transitivity : Let K ⩽ M ⩽ H and ψ ∈ D(K). Clearly, JHMJMK ψ ⊆ JHKψ.
For the reverse inclusion, we must show RH

MJHKψ ⊆ JMK χ. If χ ∈ JHKψ, then
kerχ→Ra

H implies that kerRH
Mχ→Ra

M by the restriction axiom. The
condition that all new digits are 0’s and 1’s also holds.
• Mackey’s Formula: For K,L ⩽ H and ψ ∈ D(H), any ρ ∈ RH

L JHKψ satisfies
the following properties:

– By Mackey’s formula for I, we have ρ ∈ ILK∩LR
K
K∩Lψ

– By Lemma 7.2, we have ρ ∈ RH
L D(H) ⊆ D(L)

– For any p | |L|, if νp(|L|) > νp(|K ∩ L|), then νp(|K ∩ L|) = νp(|K|).
Any element in JHKψ has its first νp(|H|) − νp(|K|) digits in the base
p part as 0’s and 1’s, so same holds for the first νp(|L|)− νp(|K ∩ L|)
digits in the base p part of ρ.

Combining these three facts, we see that ρ ∈ JLK∩LR
K
K∩Lχ.

Thus, J is a partial subinductor with respect to D. □

Lemma 7.4. Let (Rm,Ra) be a compatible pair. Let D and J be the diagram and
partial subinductor corresponding to Ra. If K →Rm

H, then D(H) = IHKD(K).

Proof. We already know that D(H) ⊆ IHKD(K) by R-stability. For the reverse
inclusion, assume that ψ ∈ D(K) and χ ∈ IHKψ. If kerψ = P and kerχ = L,
then we have K ∩ L = P . We know that K →Rm

H and K ∩ L →Ra
K. By

compatibility, it follows that L→Ra
H, so χ ∈ D(H). □

7.3. Obstruction to Realizability. When G was a cyclic p-group for p > 2, we
saw that all compatible pairs on G are realizable using Steiner and linear isometries
operads. However, this is not true for general cyclic groups G, even if the prime
divisors of |G| are taken arbtirarily large.

Example 7.3. Consider the following compatible pair on G = Cpq = Cp × Cq:

Cq Cpq Cq Cpq

e Cp e Cp

Ra

Rm Ra

Assume for the sake of contradiction that (Rm,Ra) can be realized by some universe
U with corresponding diagram D. Starting with D(e) = {(∗, ∗)}:

• Since e→Rm
Cp, we have D(Cp) = {(d, ∗) : d ∈ Cp}.

• Since e ̸→Ra
Cq, all χ ∈ D(Cq) have kerχ = Cq, so D(Cq) = {(∗, 0)}.

• From above, we must have D(Cpq) = {(d, 0) : d ∈ Cp}.
However, this leads us to a contradiction since the given choice of D would also
yield an arrow Cq →Rm

Cpq, which is not actually present in Rm.

The obstruction we are facing is similar to what went wrong in Example 4.1, but
this time, our hands were tied on our choice for D(Cq) because of the cosaturated
transfer system Ra. This obstruction generalizes as follows:
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Proposition 7.3. Let G be a cyclic group and (Rm,Ra) be a compatible pair. Let
L be the minimal Ra-fibrant subgroup of G; such a subgroup exists since fib(Ra) is
closed under intersections. Let p be any prime and β = νp(|L|):

(1) For all 0 < k ⩽ β, the pk-partition in Rm is trivial.
(2) Furthermore, if (Rm,Ra) is realizable, then (Rm)0p = · · · = (Rm)βp .

Proof. For (1), assume for the sake of contradiction that we have Cpk−1 →Rm Cpk

for some 0 < k ⩽ β. By Remark 1.1, we also have Cpk−1 →Ra
Cpk . By the

construction in Theorem 2.1, we know that Cpk−1 = Cpk ∩M for some Ra-fibrant
M . However, this is a contradiction since Cpk ⩽ L ⩽M .

For (2), let U be a G-universe with (L(U),K(U)) realizing the pair (Rm,Ra).
Let the G-diagram corresponding to U be D. For all 0 ⩽ k ⩽ β, no proper subgroup
of Cpk has an Ra-arrow to Cpk by the argument above, so D(Cpk) = {0}. By the

same argument in Proposition 5.2, we must have (Rm)0p = · · · = (Rm)βp . □

Lemma 7.5. Let G be a cyclic group and (Rm,Ra) be a G-compatible pair satisfy-
ing the necessary condition for realizability in Proposition 7.3. Let L be the minimal
Ra-fibrant subgroup of G. Let π : G → G′′ be the quotient map with kernel L and
let (R′′

m,R′′
a) be the G′′-compatible pair defined such that for all K ′′ ⩽ H ′′ ⩽ G′′

with K = π−1(K ′′) and H = π−1(H ′′):

• K ′′ →R′′
m
H ′′ if and only if K →Rm H.

• K ′′ →R′′
a
H ′′ if and only if K →Ra H.

The G-compatible pair (Rm,Ra) is realizable by a G-universe if and only if the
G′′-compatible pair (R′′

m,R′′
a) is realizable by a G′′-universe.

Proof. We use the same argument in Lemma 5.2. If a G-universe U realizes the
pair (Rm,Ra) and has corresponding diagram D, then D(L) = {0}. Then, we
have U = π∗(U ′′) for some G′′-universe U ′′; the pair (R′′

m,R′′
a) is realized by U ′′.

Conversely, if U ′′ realizes (R′′
m,R′′

a), then U = π∗(U ′′) realizes (Rm,Ra). □

Using Lemma 7.5, it suffices to consider compatible pairs on cyclic groups where
the trivial subgroup e is Ra-fibrant. Since L = e, the necessary condition in Propo-
sition 7.3 is trivial. Furthermore, this allows us to use Algorithm N-type algorithms
using diagrams N consisting of representations with trivial kernel.

7.4. Cyclic Groups away from 2 and 3. Let G be a cyclic group with |G|
divisible by neither 2 nor 3. We shall prove that all compatible pairs over G
satisfying the necessary condition in Proposition 7.3 are realizable. As mentioned
above, we may assume that e is Ra-fibrant.

Algorithm P2. Let G be a cyclic group with order divisible by neither 2 nor 3.

• Input: A G-compatible pair (Rm,Ra) with e→Ra G.
• Output: A G-diagram D.

Let N be the G-diagram given by:

N(H) =

{
{( 2

1−p1
, · · · , 2

1−pl
)} if H is Rm-cofibrant

∅ otherwise

Return the G-diagram D obtained by executing Algorithm N with input Rm after
replacing the subinductor J with the partial subinductor J corresponding to Ra.
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Theorem 7.2. The diagram D obtained from Algorithm P2 comes from a G-
universe U and the pair (Rm,Ra) is realized by (L(U),K(U)).

Proof. First, we shall prove inductively that for all H ⩽ G, the subgroups of H
which are kernels of elements in D(H) are precisely the subgroups L ⩽ H with
L →Ra

H. This will simultaenously prove that Algorithm P2 is well-defined since
D(H) ⊆ D(H) and that the diagram D realizes Ra. The base case is trivial. For
any non-trivial subgroup H, let K < H be any maximal subgroup:

• If K ̸→Rm H, then we clearly have JHKD(K) ⊆ JHKD(K) ⊆ D(H). Else,
if K →Rm

H, then we have IHKD(K) ⊆ IHKD(K) = D(H) by Lemma 7.4.
Finally, we also have N(H) ⊆ D(H) since all elements in N(H) have kernel
equal to e, which satisfies e→Ra

H by restriction. Thus, D(H) ⊆ D(H).
• On the other hand, let L ⩽ H with L →Ra H. If P = K ∩ L, we have
P →Ra K by the restriction axiom. By the induction hypothesis, there
exists ψ ∈ D(K) with kerψ = P . Thus, by Lemma 7.3, there exists some
χ ∈ JHKD(K) ⊆ D(H) such that kerχ = L.

Next, we prove that the diagram D corresponds to a universe U by using the
same idea outlined in Remark 4.4. For any subgroup H ⩽ G, it suffices to show
that ( 2

1−p1
, . . . , 2

1−pl
) ∈ D(H). We may do so by induction.

• The claim is trivially true for Rm-cofibrant H since the set N(H) contains
the required element and N(H) ⊆ D(H).
• For non-cofibrant H, we have some maximal K < H with K →Rm H. By
the induction hypothesis, the required element lies in IHKD(K) ⊆ D(H).

We have already shown that K(U) realizes Ra, so it remains to show that L(U)
realizes Rm. Assume that L(U) realizes R′

m. It is clear that R′
m ⊇ Rm by con-

struction. For the reverse inclusion, by Proposition 2.2, it suffices to prove that
every Rm-cofibrant subgroup is R′

m-cofibrant.
Indeed, assume for the sake of contradiction that H is Rm-cofibrant and there

exists maximal K < H with K →R′
m
H. The element ( 2

1−p1
, . . . , 2

1−pl
) ∈ D(H)

has all digits equal to 2 in each base p part. Consider the prime p = [H : K]; since
D(H) = IHKD(K), changing the leading digit of the aforementioned element in the
base p part to 3 should still give an element in D(H). Note that 3 is a digit since
p > 3. However, this element does not come from N(H) and it cannot come from
J since none of its leading digits are 0 or 1, yielding the required contradiction. □

Remark 7.1. The analogous result over R (rf. Remark 3.2) is that for all cyclic
groupsG with order divisible by none of 2, 3, and 5, allG-compatible pairs satisfying
the necessary condition in Proposition 7.3 are realizable.

7.5. Odd Cyclic Groups with Order Divisible by 3. We can slightly modify
Algorithm P2 in order to realize certain compatible pairs for cyclic groups with
order not divisible by 2 but divisible by 3. We denote the primes dividing |G| by
p0, p1, . . . , pl where p0 = 3.

Algorithm P3. Let G be an odd cyclic group with order divisible by 3.

• Input: A G-compatible pair (Rm,Ra) with e→Ra
G.

• Output: A G-diagram D.
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Let N be the G-diagram given by:

N(H) =

{
{( 2

1−p0
, 2
1−p1

, · · · , 2
1−pl

), ( 1
1−p0

, 3
1−p1

, · · · , 3
1−pl

)} if H is Rm-cofibrant

∅ otherwise

Return the G-diagram D obtained by executing Algorithm N with input Rm after
replacing the subinductor J with the partial subinductor J corresponding to Ra.

Theorem 7.3. The diagram D obtained from Algorithm P3 comes from a G-
universe U . The universe U realizes (Rm,Ra) if and only if e→Rm

C3.

Proof. The proof in Theorem 7.2 applies with obvious modifications regarding
N(H) until the step where we are left to show that every Rm-cofibrant H is also
R′

m-cofibrant. First, H cannot receive a p-arrow for p ̸= 3 since changing the lead-
ing digit in the base p-part of ( 2

1−p0
, 2
1−p1

, · · · , 2
1−pl

) ∈ D(H) to 4 gives an element

that is not in N(H) and that does not come from J. Note that 4 is a valid digit in
base p since p > 4.

Now, assume thatH receives a 3-arrow. If we change the leading digit in the base
3-part of ( 1

1−p0
, 3
1−p1

, · · · , 3
1−pl

) to 2, then the element χ formed cannot come from

J since none of its leading digits are 0 or 1; it must thus come from N(H). Since
the leading digit in the base 3 part is 2, we must have χ = ( 2

1−p0
, 2
1−p1

, · · · , 2
1−pl

).

• Comparing base 3-parts forces ν3(|H|) = 1.
• Comparing base p-parts for p ̸= 3 forces νp(|H|) = 0.

Thus, we must have H = C3. This would be a contradiction if e→Rm
C3. Other-

wise, Rm is indeed not realized since D(C3) = Ĉ3. □

Remark 7.2. The analogous result over R (rf. Remark 3.2) is that for all cyclic
groups G with order divisible by none of 2, 3, and 7, all G-compatible pairs with
e →Ra

G and e →Rm
C5 are realizable. We must exclude the prime 7 since the

argument in Theorem 7.3 uses the bound p > 4 for primes p ̸= 3, and after digit-
gluing, this turns into the bound p > 7 for primes p ̸= 5.

7.6. Examples. Consider the group G = C15; we prove that all compatible pairs
satisfying Proposition 7.3 are realizable.

• By Lemma 7.5, we may assume that e is Ra-fibrant.
• By Theorem 7.3, it suffices to consider the examples with e ̸→Rm

C3.

C5 C15 C5 C15 C5 C15

e C3 e C3 e C3

The above three diagrams include all possibilities for Rm. In the first two cases, Ra

has all 4 possibilities: each of C3 and C5 can either be Ra-fibrant or not. In the last
case, Ra must be the complete cosaturated transfer system by the compatibility
axioms. We shall exhaust all 9 cases. Throughout our examples, we denote the
representations in Ĉ15 as elements in Ĉ3 × Ĉ5.

Case 1 : Let Rm be the empty saturated transfer system. Construct the G-
universe U as follows. Start with U = {(0, 0), (1, 1)}:

• Include (0, 1) in U if and only if C3 is Ra-fibrant.
• Include (1, 0) in U if and only if C5 is Ra-fibrant.



32 DAVID CHENG, CARL GUO, HARAN MOULI

Then, U realizes (Rm,Ra).
Case 2 : Let Rm be the saturated transfer system with e →Rm C5 only. Con-

struct theG-universe U as follows. Start with U = {(0, 0), (1, 1), (1, 2), (1, 3), (1, 4)}:
• Include (0, 1) in U if and only if C3 is Ra-fibrant.
• Include (1, 0) in U if and only if C5 is Ra-fibrant.

Then, U realizes (Rm,Ra).
Case 3 : LetRm be the saturated transfer system with the arrows e→Rm C5 and

C3 →Rm C15. We must have Ra being the complete cosaturated transfer system.

We may choose U = {(0, d), (1, d) : d ∈ Ĉ5}.

Appendix A. Preliminaries

We prove the claims from Section 1 about the transfer systems coming from
Steiner and linear isometries operads. Let G be a finite group and U be a G-
universe. We shall use K and H to denote subgroups of G. Define the relations:

• K →Ra
H iff K is the maximal subgroup of H fixing some vector in RG

HU .
• K →Rm

H iff K ⩽ H ⩽ G and IHKR
G
KU = RG

HU .

Lemma A.1. Let R′
a be the relation K →R′

a
H iff K is the maximal subgroup of

H fixing some subspace in RG
HU . Then, Ra = R′

a.

Proof. First, we have Ra ⊆ R′
a since the fixing subgroup of a vector is the same

as the subspace spanned by it. For the reverse direction, it suffices to show that if
W is a subspace in RG

HU with K as its maximal fixing subgroup in H, then some
vector v ∈W also has maximal fixing subgroup K in H.

For any subgroupM of H properly containing K, the subspace ofW fixed byM
is a proper subspace. There are finitely many choices for M , so the corresponding
subspaces cannot cover W ; any vector v ∈W not covered by the proper subspaces
has maximal fixing subgroup K in H. □

Proposition A.1. Ra is a cosaturated transfer system.

Proof. We verify the necessary conditions:

• Transitivity : If K →Ra
M and M →Ra

H, then we have subspaces W1

and W2 of U with fixing subgroups L1 and L2 in G such that L1 ∩M = K
and L2 ∩H =M . The fixing subspace of W1 +W2 is L1 ∩L2 and we have
(L1 ∩ L2) = K. Transitivity follows by Lemma A.1.

• Restriction and Cosaturation: The arrows in the relation are precisely the
restrictions of the arrows to G.

• Conjugation: Apply conjugation on U .

Thus, Ra is a cosaturated transfer system. □

Proposition A.2. Rm is a saturated transfer system.

Proof. We verify the necessary conditions:

• Transitivity : If K →Rm
M and M →Rm

H, then K →Rm
H since:

IHKR
G
KU = IHMI

M
K RG

KU = IHMR
G
MU = RG

HU

where the first equality holds true by the transitivity of induction.
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• Restriction: If K →Rm
H and L ⩽ H, then K ∩ L→Rm

L since:

ILK∩LR
G
K∩LU = ILK∩LR

K
K∩LR

G
KU ↪−→ RH

L I
H
KR

G
KU = RH

LR
G
HU = RG

LU

where the inclusion holds true by Mackey’s formula. The reverse inclusion
ILK∩LR

G
K∩LU ⊇ RG

LU holds true by Frobenius reciprocity.
• Saturation: If K →Rm

H and K ⩽ M ⩽ H, then we have K →Rm
M by

restriction. We also have M →Rm
H since:

IHMR
G
MU ↪−→ IHMI

M
K RM

KR
G
MU = IHKR

G
KU = RG

HU

where the inclusion holds true by Frobenius reciprocity. The reverse inclu-
sion IHMR

G
MU ⊇ RG

HU also holds true by Frobenius reciprocity.
• Conjugation: Apply conjugation on U .

Thus, Rm is a saturated transfer system. □

Proposition A.3. (Rm,Ra) is a compatible pair.

Proof. Yet to complete □

Appendix B. Categorical Properties of Transfer Systems

For any finite group G, let TS(G) be the set of transfer systems on G. The sets
TS(G), CTS(G), STS(G), Fib(G), Cof(G) are partially ordered under inclusion.
Consequently, we may interpret them as categories with objects as elements and
morphisms as inclusions. The categories CTS(G) and STS(G) are full subcate-
gories of TS(G). The main results of Section 2 can be summarized as:

• Theorem 2.1: fib : CTS(G)→ Fib(G) is an equivalence of categories.
• Theorem 2.2: cof : STS(G)→ Cof(G)op is an equivalence of categories.

B.1. Products/Coproducts. In a poset, all limits (reps. colimits) are products
(resp. coproducts). The products and coproducts are given by meet and join
respectively. We begin by analyzing the initial and final objects in these categories,
which correspond to the empty coproduct and product.

• Initial Object: The common initial object in TS(G), CTS(G), STS(G)
is the empty transfer system Rinitial with K →R H if and only if K =
H. We have fib(Rinitial) = {G} being the initial object in Fib(G) and
cof(Rinitial) = Sub(G) being the final object in Cof(G).

• Final Object: The common final object in TS(G), CTS(G), STS(G) is
the complet transfer system Rfinal with K →R H for all K ⩽ H. We have
fib(Rfinal) = Sub(G) being the final object in Fib(G) and cof(Rfinal) = {G}
being the initial object in Cof(G).

Lemma B.1. The product in TS(G) and STS(G) is given by intersection.

Proof. Let R1 and R2 be transfer systems on G. We must show that R1 ∩ R2 is
also a transfer system on G. One may easily check that the transitivity, restriction,
and conjugation axioms for R1 ∩ R2 follow from the same axioms for R1 and
R2. Furthermore, if R1 and R2 are both saturated, then one may also verify that
R1 ∩R2 is saturated. □
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Remark B.1. The product in CTS(G) is not intersection.

C2 C6 C2 C6 C2 C6

e C3 e C3 e C3

Consider the three transfer systems above for G = C6. The first and second are
cosaturated; the former is generated by e → C6 and the latter is generated by
C3 → C6. However, the last transfer system is the intersection of the first two, but
it is not cosaturated (it is non-empty despite having no proper fibrant subgroups).

Recall that the transfer system generated by a set of arrows is the product
(intersection) of all transfer systems containing the given set of arrows; this is
well-defined since TS(G) has products and a final object.

Definition B.1. For a set {Ri} of transfer systems over G, the sum is defined as
the transfer system generated by ∪Ri.

Lemma B.2. The coproduct in TS(G) and CTS(G) is given by summation.

Proof. It is clear from construction that the coproduct in TS(G) is sum. It suffices
to verify that the sum of cosaturated transfer systems is cosaturated. Indeed, since
cosaturated transfer systems are generated by arrows to G, so are their sums, which
are consequently cosaturated. □

Remark B.2. The coproduct in STS(G) is not summation.

C2 C6 C2 C6 C2 C6

e C3 e C3 e C3

Consider the three transfer systems above for G = C6. The first and second are
saturated. Their summation is given by the last transfer system, which has the
extra arrow e→ C6 by the transitivity axiom. However, the last transfer system is
not saturated since e→ C6 and C3 ̸→ C6.

Although the product in TS(G) is not the product in CTS(G), we do know that
CTS(G) has products since every join-semilattice with a unique minimal element
is a lattice. By Theorem 2.1, we may interpret the product in CTS(G) as the
product in Fib ∗G.

Dually, although the coproduct in TS(G) is not the coproduct in STS(G), we
do know that STS(G) has coproducts since every meet-semilattie with a unique
maximal element is a lattice. By Theorem 2.2, we may interpret the coproduct in
STS(G) as the product in Cof(G).

Lemma B.3. The products in Fib(G) and Cof(G) are given by intersection.

Proof. For any collection of subsets {Si} of Sub(G) which are closed under inter-
section (resp. compositum) and conjugation, one may easily verify that

⋂
{Si} also

has the same property. □
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B.2. Cosaturation/Saturation Functors. We saw earlier that the product in
CTS(G) does not match the product in TS(G). Dually, the coproduct in STS(G)
does not match the coproduct in TS(G). We can fix this using the cosaturation
and saturation functors respectively.

Definition B.2. Let ιC : CTS(G) → TS(G) and ιS : STS(G) → TS(G) denote
obvious forgetful functors.

• The cosaturation functor sC : TS(G) → CTS(G) is the following section
to ιC : for any transfer system R, the cosaturated transfer system sC(R) is
the coproduct of all cosaturated transfer systems contained in R.
• The saturation functor sS : TS(G) → STS(G) is the following section to
ιS : for any transfer system R, the saturated transfer system sS(R) is the
product of all saturated transfer systems containing R.

Proposition B.1. With the notation above, (ιC , sC) and (sS , ιS) are adjoint pairs.

Proof. Immediate from definition. □

Lemma B.4. The product in CTS(G) is the cosaturation of the product in TS(G).
Dually, the coproduct in STS(G) is the saturation of the coproduct in TS(G).

Proof. Follows from Proposition B.1 □

Remark B.3. Recall that left adjoints commute with colimits and right adjoints
commute with limits. Thus, Proposition B.1 explains why the coproduct inCTS(G)
matches the coproduct in TS(G) and why the product in STS(G) matches the
product in TS(G).

Lemma B.5. Let R be a transfer system on G. We have:

• fib(sC(R)) = fib(R)
• cof(sS(R)) = cof(R)

Proof. For the former, use Proposition 2.1 and Theorem 2.1. For the latter, use
Proposition 2.2, and Theorem 2.2. □

Using Lemma B.5, Theorem 2.1, and Theorem 2.2, we have the following de-
scription of the cosaturation and saturation functors in terms of other functors:

• The functor sC is obtained by composing fib : TS(G) → Fib(G) with
fib−1 : Fib(G)→ CTS(G).

• The functor sS is obtained by composing cof : TS(G) → Cof(G)op with
cof−1 : Cof(G)op → STS(G).

We shall now describe the cosaturation and saturation functors more explicitly.

Theorem B.1. Let R be a transfer system on G. We have K →sC(R) H if and
only if there exists L ⩽ G with L→R G and K = H ∩ L.

Proof. This follows from the description of sC(R) in Lemma B.5 and the explicit
construction of fib−1 : Fib(G)→ CTS(G) in Theorem 2.1. □

Theorem B.2. Let R be a transfer system on G. We have K →sS(R) H if and
only if P →R H for some P ⩽ K ⩽ H.

Proof. Consider the relation R′ with K →R′ H if and only if P →R H for some
P ⩽ K ⩽ H. By the saturation axiom on sS(R), it is clear that R′ ⊆ sS(R), so it
suffices to prove that R′ is a saturated transfer system.
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• Transitivity : Let K →R′ M and M →R′ H. By construction, there exists
some K ′ ⩽ K with K ′ →R M and some M ′ ⩽M with M ′ →R H. By the
restriction axiom, since K ′ →R M and M ′ ⩽ M , we have K ′ ∩M ′ →R
M ′. We also have M ′ →R H, so by transitivity, K ′ ∩M ′ →R H. Since
K ′ ∩M ′ ⩽ K ⩽ H, it follows by construction that K →R′ H.

K ′ ∩M ′

K ′ M ′

K M H

R

R R

R′ R′

• Restriction: Let K →R′ H and L ⩽ H. By construction, there exists
some K ′ ⩽ K with K ′ →R H. By the restriction axiom on R, we have
K ′ ∩ L→R L. Since K ′ ∩ L ⩽ K ∩ L ⩽ L, we have K ∩ L→R′ L.
• Conjugation: Follows from R being conjugation invariant.
• Saturation: Follows from construction since the arrows in R′ are precisely
obtained by saturating arrows in R.

Thus, we have R′ = sS(R), as required. □

Alter. Let H ⩽ G be any subgroup and let M be a minimal subgroup satisfying
the property M →R H. By transitivity, M is R-cofibrant. Furthermore, we know
that from Lemma 2.2 that every R-cofibrant subgroup of H must be contained in
M . Thus, M is the compositum of all R-cofibrant subgroups contained in H, i.e.
the unique maximal R-cofibrant subgroup of H.

Now, R′ is precisely the relation given by K →R′ H if and only if M ⩽ K,
or equivalently, for all R-cofibrant L ⩽ H, we have L ⩽ K. It follows that R′ =
sS(R) from the description of sS(R) in Lemma B.5 and the explicit construction
of cof−1 : Cof(G)op → STS(G) in Theorem 2.2. □

B.3. Restriction. Let φ : G→ G′ be a homomorphism of finite groups.

Definition B.3. The restriction functor Res(φ) : TS(G′)→ TS(G) is defined by
Res(φ) : R′ 7→ R, where R is the G-transfer system generated by the set of arrows
{φ−1(K ′)→R φ−1(H ′) : K ′ →R′ H ′}.

Note that Res(φ) is a functor since larger R′ yield larger R. We shall provide
an explicit description for Res(φ). First, we shall require some helpful lemmas. Let
N ⊴G be the normal subgroup kerφ:

Lemma B.6. For K ⩽ H ⩽ G, the following are equivalent:

(1) K ∩N = H ∩N .
(2) [φ(H) : φ(K)] = [H : K].
(3) H ∩KN = K.

Proof. We prove that (1)⇒ (2)⇒ (3)⇒ (1):

• (1)⇒ (2): We have |φ(K)| = [K : K ∩N ] and |φ(H)| = [H : H ∩N ]. The
ratio of these equations gives [φ(H) : φ(K)] = [H : K].
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• (2)⇒ (3): Using the fact that [HN : KN ] = [H : K], we get:

|K| = |H| · |KN |
|HN |

=
|HKN | · |H ∩KN |

|HN |
= |H ∩KN |

It is clear that K ⩽ H ∩KN , so we must have equality.
• (3)⇒ (1): We have K ∩N = (H ∩KN) ∩N = H ∩ (KN ∩N) = H ∩N .

Thus, the given statements are equivalent. □

Lemma B.7. For K,L ⩽ G, we have φ(KN ∩ L) = φ(K) ∩ φ(L).

Proof. Since φ(KN ∩ L) ⊆ φ(KN) ⊆ φ(K) and φ(KN ∩ L) ⊆ φ(L), we have
the inclusion φ(KN ∩ L) ⊆ φ(K) ∩ φ(L). For the reverse inclusion, assume that
g′ = φ(ℓ) and g′ ∈ φ(K). It follows that φ−1(g′) ⊆ KN , and in particular, ℓ ∈ KN .
Thus, g′ ∈ φ(KN ∩ L) and φ(KN ∩ L) ⊇ φ(K) ∩ φ(L). □

Theorem B.3. Let R′ be a G′-transfer system and R be the relation on Sub(G)
given by K →R H if and only if K ⩽ H, K ∩N = H ∩N , and φ(K)→R′ φ(H).
We have R = Res(φ)(R′).

Before we prove the above theorem, we give an equivalent description of the
above relation R that we shall find insightful:

Lemma B.8. Let R be the relation above; we have K →R H if and only if it comes
from restricting φ−1(K ′)→R φ−1(H ′) where K ′ = φ(K) and H ′ = φ(H).

Proof. (⇒) Assume that K →R H; this means that K ⩽ H, K ∩ N = H ∩ N ,
and K ′ →R′ H ′. We know that φ−1(K ′) = KN and φ−1(H ′) = HN , and since
KN ⩽ HN , KN ∩ N = HN ∩ N = N , and K ′ →R′ H ′, we also get the arrow
KN →R HN . Finally, K →R H is obtained from restricting KN →R HN by
Lemma B.6 since H ∩KN = K.

(⇐) Let L ⩽ HN be any subgroup; we wish to show that KN ∩ L→R L. It is
clear that KN ∩ L ⩽ L and (KN ∩ L) ∩ N = L ∩ N , so it remains to show that
φ(KN ∩L)→R′ φ(L). By Lemma B.7, we know that φ(KN ∩L) = φ(K) ∩ φ(L),
and the arrow φ(K) ∩ φ(L)→R′ φ(L) comes from restricting K ′ → H ′. □

Proof of Theorem B.3. It is clear that the relationR contains the generating arrows
of Res(φ)(R′). Furthermore, by Lemma B.8, we also have R ⊆ Res(φ)(R′). It
suffices to show that R is a transfer system:

• Transitivity : Follows from transitivity in R′.
• Restriction: Follows from Lemma B.8.
• Conjugation: Follows from conjugation in R′ and normality of N .

We conclude that R = Res(φ)(R′). □

Definition B.4. Let FinGrp denote the category of finite groups. Let TS denote
the 2-category with objects asTS(G) for finite groupsG and morphisms as functors.
The functor Res : FinGrpop → TS is defined as follows:

• On objects, Res(G) = TS(G).
• On morphisms, Res(φ) is the restriction functor.

We are yet to prove that Res satisfies functoriality, i.e. for finite groups G,G′, G′′

with maps φ : G → G′ and ψ : G′ → G′′, we need Res(φ) ◦ Res(ψ) = Res(ψ ◦ φ).
One may prove this using Theorem B.3 with the condition K ∩N = H ∩N being
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rewritten as (2) in Lemma B.6. We shall prove this more directly with the following
useful proposition about the interaction between restriction and generation:

Proposition B.2. Let S = {K ′ →R′ H ′} be a G′-conjugation invariant set of
arrows that generate R′. Then, the arrows in φ−1(S) = {φ−1(K ′) →R φ−1(H ′)}
generate the transfer system R = Res(φ)(R′).

Proof. Since S is G′-conjugation invariant, we can build R′ using transitivity and
restriction alone. It suffices to show that the same can be done in R so that we get
the preimage of all the arrows in R′.

• Transitivity : Let K ′ →R′ M ′ andM ′ →R′ H ′. We can introduce the arrow
K ′ →R′ H ′ in R′. Correspondingly, we can obtain φ−1(K ′) →R φ−1(H ′)
by combining φ−1(K ′)→R φ−1(M ′) and φ−1(M ′)→R φ−1(H ′).
• Restriction: Let K ′ →R′ H ′ and L′ ⩽ H ′. We can introduce the arrow
K ′ ∩ L′ →R′ L′ in R′. Correspondingly, we can obtain φ−1(K ′ ∩ L′) →R
φ−1(L′) by restricting φ−1(K ′) →R φ−1(H ′) with φ−1(L′) ⩽ φ−1(H ′).
Note that φ−1(K ′ ∩ L′) = φ−1(K ′) ∩ φ−1(L′).

Thus, R = Res(φ)(R′) is generated by φ−1(S). □

Remark B.4. Proposition B.2 would not hold if we drop the conjugation-invariance
hypothesis. For example, let G = C2×C2, let G

′ = G⋊Aut(G), and let φ : G→ G′

be the obvious inclusion map. Denote the index 2 subgroups of G by A,B,C. These
subgroups are conjugate in G′ but not in G. The G′-transfer system R′ with arrows
e→R′ A, e→R′ B, e→R′ C is generated by e→R′ A. However, R = Res(φ)(R′)
has the same arrows and is not generated by e→R A.

Corollary B.1. The map Res : FinGrpop → TS is a functor.

Proof. Let φ : G → G′ and ψ : G′ → G′′ be group homomorphisms. Let R′′

be a G′′-transfer system, let R′ = Res(ψ)(R′′), and let R = Res(φ)(R′). By
definition, R′ is generated by {ψ−1(K ′′) →R′ ψ−1(H ′′) : K ′′ →R′′ H ′′}. Next, by
Proposition B.2, R is generated by {φ−1(ψ−1(K ′′))→R φ−1(ψ−1(H ′′)) : K ′′ →R′′

H ′′}. Thus, R = Res(ψ ◦ φ)(R′′), as required. □

B.4. Induction and Coinduction. The functor Res(φ) behaves quite well with
limits and colimits in TS(G) and TS(G′):

Lemma B.9. The functor Res(φ) commutes with non-empty products. Further-
more, it sends the final object in TS(G′) to the final object in TS(G) if and only if
φ is injective, i.e. N = 1.

Proof. Let R′
1 and R′

2 be G′-transfer systems with restrictions R1 and R2. Let
R′ = R′

1 ∩R′
2 and R = R1 ∩R2. By Theorem B.3:

K →R H ⇔

{
K →R1

H

K →R2
H

⇔


K ⩽ H

K ∩N = H ∩N
φ(K)→R′

1
φ(H)

φ(K)→R′
2
φ(H)

⇔


K ⩽ H

K ∩N = H ∩N
φ(K)→R′ φ(H)

Thus, Res(φ) commutes with non-empty products. Now, let R = Res(φ)(R′
final).

For subgroups K ⩽ H ⩽ G, we have K →R H if and only if K ∩N = H ∩N . This
holds true for all K ⩽ H if and only if N = 1. □
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Lemma B.10. The functor Res(φ) commutes with coproducts.

Proof. It follows from Proposition B.2 that the restriction of the sum of two transfer
systems is identical to the sum of the restrictions. Finally, let R = Res(φ)(R′

initial),
we have K →R H if and only if K ⩽ H, K∩N = H ∩N , and φ(K)→R′

initial
φ(H).

The second condition gives [φ(H) : φ(K)] = [H : K] by Lemma B.6 and the third
condition gives φ(K) = φ(H). Thus, K = H, proving that R = Rinitial. □

Definition B.5. Let φ : G→ G′ be a homomorphism of finite groups:

• The coinduction functor Coind(φ) : TS(G) → TS(G′) is the right adjoint
functor to Res(φ) : TS(G′)→ TS(G).

• The induction functor Ind(φ) : TS(G)→ TS(G′) is the left adjoint functor
to Res(φ) : TS(G′)→ TS(G).

Proposition B.3. The functor Coind(φ) exists for all φ : G → G′. The functor
Ind(φ) exists if and only if φ is injective.

Proof. By Lemma B.10 and Lemma B.9, the proposition can be rewritten as saying
that Res(φ) is right (resp. left) adjoint if and only if it commutes with products
(resp. coproducts). Necessity is clear since products and coproducts are limits and
colimits respectively.

To prove sufficience, assume that Res(φ) commutes with coproducts. For all
G-transfer systems R, define Coind(φ)(R) to be the coproduct of all G′-transfer
systems R′ satisfying Res(φ)(R′) ⊆ R. The functoriality of Coind(φ) follows from
the functoriality of Res(φ). We must show that:

HomTS(G)(Res(φ)(R′),R) = HomTS(G′)(R′,Coind(φ)(R′))

This is equivalent to saying that Res(φ)(R′) ⊆ R if and only if R′ ⊆ Coind(φ)(R′).
The forward implication follows by construction, and by functoriality, the reverse
implication holds if Res(φ)Coind(φ)(R) ⊆ R. Indeed, this follows immediately
from Res(φ) commuting with coproducts and the definition of Coind(φ). The
construction of Ind(φ) is dual. □

By Corollary B.1 and adjointness, we can package coinduction into a functor
Coind : FinGrp→ TS such that (Res,Coind) are adjoint. Similarly, if we denote
the subcategory of FinGrp consisting of all injections by InjFinGrp, then we can
restrict Res to a functor Res : InjFinGrpop → TS and package induction into a
functor Ind : InjFinGrp→ TS such that (Ind,Res) are adjoint.

Theorem B.4. Let R be a G-transfer system. Let R′ be the relation on Sub(G′)
with K ′ →R′ H ′ if and only if K ′ ⩽ H ′ and φ−1(g′K ′(g′)−1)→R φ−1(g′H ′(g′)−1)
for all g′ ∈ G′. Then, R′ = Coind(φ)(R).

Proof. We start by proving that R′ is a G′-transfer system:

• Transitivity : Follows from transitivity in R.
• Restriction: If K ′ →R′ H ′ and L′ ⩽ H ′, we require K ′ ∩ L′ →R′ L′. The

inclusion of subgroups is clear. Since φ−1((K ′)g
′
) →R φ−1((H ′)g

′
), the

restriction axiom on R gives φ−1((K ′)g
′
) ∩ φ−1((L′)g

′
) →R φ−1((L′)g

′
).

Since φ−1((K ′)g
′
)∩φ−1((L′)g

′
) = φ−1((K ′∩L′)g

′
), we get K ′∩L′ →R′ L′.

• Conjugation: Follows from construction.

Next, we show that R′ is equal to Coind(φ)(R):
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• R′ ⊆ Coind(φ)(R): By adjointness, this is equivalent to Res(φ)(R′) ⊆ R.
By Proposition B.2, it suffices to show that for all K ′ →R′ H ′ in our
generating set, we have φ−1(K ′)→R φ−1(H ′), which follows from g′ = 1.
• R′ ⊇ Coind(φ)(R): By adjointness, this is equivalent to saying that every
G′-transfer system R′

1 with Res(φ)(R′
1) ⊆ R satisfies R′

1 ⊆ R′. Indeed, if

K ′ →R′
1
H ′, by the conjugation axiom for R′

1, we have (K ′)g
′ →R′

1
(H ′)g

′

for all g′ ∈ G′. By definition, φ−1((K ′)g
′
)→Res(φ)(R′

1)
φ−1((H ′)g

′
), so the

same arrow also exists in R. Thus, K ′ →R′ H ′.

We conclude that R′ = Coind(φ)(R). □

Theorem B.5. Let φ : G → G′ be an injective homomorphism and let R be a
G-transfer system. Let R′ be the G′-transfer system generated by the arrows in R
in the sense of the embedding φ : Sub(G)→ Sub(G′). Then, R′ = Ind(φ)(R).

Proof. R′ is generated by the arrows necessary to make R ⊆ Res(φ)(R′) true, so
by adjointness, we have R′ = Ind(φ)(R). □

B.5. Restriction in CTS and STS. Yet to complete

Lemma B.11. If R′ is a cosaturated transfer system, then R = Res(φ)(R′) is also
a cosaturated transfer system.

Proof. By Proposition B.2, R is generated by arrows φ−1(L′)→ G, where L′ ranges
through the R′-cofibrant subgroups of G′. Thus, R is cosaturated. □

Lemma B.12. If R′ is a saturated transfer system, then R = Res(φ)(R′) is also
a saturated transfer system.

Proof. We use Theorem B.3. If K ⩽ M ⩽ H and K →R H, then we have
K ∩ N = H ∩ N and φ(K) →R′ φ(H). We then also have M ∩ N = H ∩ N and
φ(M)→R′ φ(H), the latter from saturation in R′. Thus, it follows thatM →R H,
proving that R is saturated. □

Consequently, the functor Res(φ) : TS(G′) → TS(G) can be restricted to the
functors Res(φ) : CTS(G′) → CTS(G) and Res(φ) : STS(G′) → STS(G). We
may then ask for an explicit description for the restriction functors on Fib(G) and
Cof(G) after transfer of structure using fib and cof.

Appendix C. Compatible Pairs for Vector Spaces

Yet to complete
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