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Abstract. We consider the Special Euclidean group on the plane SE(2) endowed with

a left-invariant sub-Riemannian structure. In this article, we classify the geodesics over

SE(2) according to their reduced dynamics. As a consequence, we characterize all glob-

ally minimizing geodesics, or metric lines, and periodic geodesics over SE(2). In ad-

dition, we study the symplectic reductions of T ∗ SE(2) by the action groups R2
and

SE(2). We show that there exists a symplectomorphism between the two reductions

T ∗ SE(2) //µR2
and T ∗ SE(2) //µ SE(2) for µ ̸= 0 and µ := (µθ, µ).
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1. Introduction

The distance minimizing properties of geodesics over many settings is an extensively

studied topic and active area of research. It is a common fact that geodesics over the

Euclidean space are lines, and that for any segment of the geodesic, it minimizes the

distance between the two endpoints. In general this fact fails to hold true. For example,

Myer’s Theorem ([15, Theorem 12.24]) states that if (M, g) is a complete and connected

Riemannian manifold of dimension d whose Ricci curvature satisfies Ric(v, v) ≥ (d −
1)/r2 for all unit vectors v and some positive constant r. Then any geodesic of length

greater than πr is not globally minimizing.

A method of studying the minimization properties of geodesics is to study the variation

fields of geodesics connecting two points. This theory leads us to classical tools such as

Jacobi fields and conjugate points, and the extremely important fact that geodesics do not

minimize past conjugate points. For the formal definition of these two objects, see [11,

sub-Chapter 1.6] or [15, Chapter 10] .

Similar to Riemannian geometry, one can formalize the definition of geodesics to the

sub-Riemannian geometry setting. For the formal definition of a sub-Riemannian geo-

desic, see [1, sub-sub-Chapter 4.7.2] or [20, sub-Chapter 1.4]. We are especially interested

in sub-Riemannian geodesics that minimize globally. This leads to the following defini-

tion.

Definition 1.1. LetM be a sub-Riemannian manifold, distM (·, ·) be the sub-Riemannian
distance onM , and | · | : R → [0,∞) be the absolute value. We say that a curve γ : R → M
is a metric line if it is a globally minimizing geodesic, i.e.,

|a− b| = distM (γ(a), γ(b)) for all compact intervals [a, b] ⊂ R.

An alternative term for “metric lines” are “globally minimizing geodesics”, “isometric

embeddings of the real line”, or “infinite-geodesics.”

The Special Euclidean group on the plane SE(2) is a Lie Group consisting of the space

of rotations and translations. It has a semidirect group structure given by SE(2) =
SO(2)⋉R2

, where SO(2) is the Special Orthogonal group on the plane. For a discus-

sion of the left invariant sub-Riemannian structure over SE(2), see sub-Section 3.1. In

[19], I. Moiseev and Y. Sachkov used optimal synthesis to study the length-minimizing

times of the sub-Riemannian geodesics over SE(2). Through their work, a family of met-

ric lines was provided. One of the primary goals of this paper is to classify the metric lines

on SE(2) through the Hamilton-Jacobi theory and give an alternative proof of I. Moiseev

and Y. Sachkov’s result.

The symplectic reduction of the sub-Riemannian geodesic flow by SE(2) is a common

tool in studying the geodesics over SE(2), where the semidirect group structure of SE(2)
plays a main role, consult [16, Chapter 1] and [18] for the general theory of symplectic

reductions and [17] for the theory in the case of semidirect products. However, we will

use an alternative method; the group SE(2) has the structure of a metabelian Carnot

group , i.e., the commutator group [SE(2),SE(2)] ≃ R2
is abelian. Thus, we will consider

the action of R2
and perform the symplectic reduction of the sub-Riemannian geodesic

flow by R2
, where the reduced space T ∗ SE(2) //µR2

is equivalent to T ∗ SO(2) as a
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symplectic manifold, refer to [7] for a detailed discussion of symplectic reductions in the

case of metabelian groups.

This symplectic reduction gives us a bijection between sub-Riemannian geodesics in

SE(2) and curves αµ in T ∗ SO(2). Let T ∗ SO(2) be given the coordinate system (pθ, θ),
we define the curves in αµ by the equation

(1) αµ := {(pθ, θ) ∈ T ∗ SO(2) | 1 = p2θ +R2 cos2(θ − δ)},
where µ = (R, δ) is in (R2)∗ ≃ R2

.

In sub-sub-Section 3.2.2, we provide a prescription to build a curve in SE(2) given the

curveαµ, theBackgroundTheorem gives the prescription to sub-Riemannian geodesics

in SE(2) parameterized by arc-length, Conversely, the BackgroundTheorem states that

every arc-length parameterized geodesic in SE(2) can be achieved by the prescription

applied to some curve αµ.

We will follow the approach of A. Bravo-Doddoli and R. Montgomery in [6, 8] to use

the metableian structure of SE(2) to give a classification of the metric lines. In sub-sub-

Section 3.2.1 we compute the reduced Hamiltonian Hµ and classify the sub-Riemannian

geodesics in SE(2) according to its reduced dynamics. Through this method, we can

classify sub-Riemannian geodesics on SE(2) as only one of the following types: lines,

θ-periodic and heteroclinic geodesics, refer to sub-sub-Section 3.2.1 for their formal defi-

nitions.

Our first main theorem gives a precise classification of metric lines over SE(2).

Theorem A. The metric lines in the SE(2) are precisely the geodesics of the type line and
heteroclinic.

The proof to Theorem A consists of two parts; proving that the geodesics of the type

heteroclinic and line are metric lines and showing that the geodesics of the type θ-periodic

are not globally minimizing.

Our method to prove the first part is to find a calibration function, refer to [2, sub-

Chapter 9.47] for the general Hamilton-Jacobi theory, for calibration functions see [12,

sub-Chapter 2.8] and to [8] for the theory in the context of the sub-Riemannian geodesics.

The second part is proven in Proposition 5.2, which states that geodesics of type periodic

do not minimize pass its θ-period.

The second main theorem classifies the periodic geodesics over SE(2).

Theorem B. A geodesic of the type θ-periodic is periodic if and only if R = 0, where R
defines the curve αµ from equation (1).

The proof of Theorem B lies in deriving formulas for a geodesic’s θ period, then calcu-

lating the sub-Riemannian distance spanned by the x and y coordinates over this period.

Following a simple calculation and contradiction argument, we prove that the only peri-

odic geodesics over SE(2) are those of which R = 0 according to its reduced dynamics.

It is well known that a generic co-adjoint orbit has dimension two and is equivalent to

T ∗ SE(2) //µ SE(2) as a symplectic manifold. The dimension of the spaceT ∗ SE(2) //µR2

is also two. The last main theorem shows that these spaces are equivalent.

TheoremC. Let us identify (R2)∗ and se(2)∗ withR2 and so(2)×R2, respectively. If µ is a
nonzero element in R2 and µ = (µθ, µ) is in se(2)∗, then there exists a symplectomorphism
from T ∗ SE(2) //µ SE(2) to T ∗ SE(2) //µR2.

Although, when we consider the action of the whole group SE(2) we obtain three

integrals of motion, one more than when we consider the action of the subgroup R2
. The
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dimension of the co-isotropic group SE(2)µ is one less than the one of R2
µ. In this way

the dimension of the reduced spaces are the same.

If µ = 0, the statement is not true. Though T ∗ SE(2) //µR2
will still be isomorphic to

T ∗ SO(2), T ∗ SE(2) //µ SE(2) becomes a single point.

1.1. Organization of the paper. The contents of this article is split into two parts: Part

1: Metric Lines and Part 2: Symplectic Reduction. In Section 2 we introduce the basic

concepts in sub-Riemannian geometry, Lie groups, and sub-Riemannian geodesics. In

Section 3 we apply this discussion on the setting of SE(2) as well as finish the proof

to Theorem B. In order to finish the proof to Theorem A, we introduce the theory of

Hamilton-Jacobi and calibration functions in Section 4 and complete the proof in Section

5.

We dedicate Part 2 into proving Theorem C. In sub-Sections 6.1 and 6.2, we introduce

concepts in the adjoint action on SE(2) and symplectic geometry. In Section 7 we split the

proof to Theorem C into four parts. In Proposition 7.1 we discuss the momentum maps

of the action groups R2
and SE(2) on T ∗ SE(2). In Propositions 7.2 and 7.3, we calculate

the symplectic reductions of of these actions before finishing the proof in sub-Section 7.1.
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Part 1. Metric Lines

2. Preliminaries

2.1. Sub-Riemannian Geometry.

Definition 2.1. A sub-Riemannian geometry on a manifold M consists of a distribution,
i.e. a sub-bundle D ⊂ TM , equipped with a fiber inner-product ⟨·, ·⟩.

For further reading on sub-Riemannian geometry, see [1, Chapter 3] and [21, Chapter

1]. D is also called the horizontal distribution, we say an object on M is horizontal if

it is tangent to D.

Let γ be a smooth horizontal curve, we define the length of γ by

ℓ(γ) =

∫
∥γ̇∥dt,

where ∥γ̇∥ =
√
⟨γ̇(t), γ̇(t)⟩ is computed by the inner product on the horizontal tangent

spaceDγ(t) and integrated over the domain of the curve. We define the sub-Riemmanian
distance between the two points A and B in M as

d(A,B) = inf ℓ(γ)

where the infimum is taken over all smooth horizontal curves connecting A and B. If

there are no curves connecting A and B, we say the distance is infinite.
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We say that a distribution D ⊂ TM is involutive if for any two horizontal vector

fields X and Y , their vector field bracket [X,Y ] := XY − Y X is also horizontal. Then

the Frobenius theorem [5, Theorem 8.3] tells us that the set of horizontal paths through

a fixed point A sweeps out a smooth immersed sub-manifold whose dimension equals to

the rank of the distribution. Let N ⊂ M be an immersed submanifold of M , we say that

N is an integral manifold of D if TpN = Dp for all p ∈ N . We say D is integrable if

at each point of M there exists an integral manifold of D.

On the other hand, we say that a distribution D is bracket-generating if for any point

q onM and any elementX in TqM , X can be generated by the Lie brackets of elements in

Dq . Chow’s theorem ([20, Theorem 2.2]) states that if a distribution D ⊂ TM is bracket-

generating, then the set of points that can be horizontally connected to a point A in M
is the component of M containing A.

Therefore, if M is connected and the distribution is bracket-generating, any two points

on M can be horizontally connected. For such a manifold, we can discuss minimizing

curves.

Definition 2.2. We say that a smooth horizontal path is a minimizing geodesic if it
realizes the distance between two points.

2.2. Lie groups. A Lie group consists of a group G with a smooth manifold structure

such that the multiplication and inverse maps are smooth. For a detailed discussion on

Lie Groups, see [3, 9, 23] or [14, Chapter 7].

Let us denote by g the tangent space of the identity element. This vector space has the

structure of a Lie algebra defined as follows: Let V be a real vector space, we define the

Lie Bracket as the bilinear map V × V → V such that it is antisymmetric and satisfies

the Jacobi identity. That is, for all X,Y, Z ∈ V , it satisfies

• [X,Y ] = −[Y,X], and

• [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

For instance, on the space of n by n matrices, it follows that the commutator bracket

[A,B] = AB −BA for matrices A,B satisfies the definition of the Lie bracket.

Let γ : R → G be an integral curve of a vector field X ∈ g, that is

γ̇(t0) = Xγ(t0)

for all t0 ∈ R. We denote the set of all such γ’s the one parameter subgroup generated
by X . By general theory, there is a one-to-one correspondence between one parameter

subgroups of G and TeG (see [14, Chapter 20]).

2.3. Hamilton equations. Every manifold M possesses a contravariant tensor called

the cometric, which is a section of the bundle S2(TM) ⊂ TM ⊗ TM , where S2(TM)
denotes the space of symmetric bilinear forms on T ∗M . In turn, this cometric defines a

fiber-bilinear form ((·, ·)) : T ∗M ⊗ T ∗M → R, for further discussion on cometrics, see

[20, Page 7]. We define the Hamiltonian function H : T ∗M → R by

H(q, p) =
1

2
(p, p)q,

where p ∈ T ∗M and q ∈ M .

2.3.1. Sub-Riemannian geodesic flow. On the cotangent bundle T ∗M , we can define a a

natural 1-form p, called the tautological 1-form, (consult [2, Section 37] or [14, Chapter

22] for the formal definition of the tautological 1-form). If we consider the canonical
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coordinates {p1, ..., pn, x1, ..., xn} on the cotangent bundle T ∗M , then it is given by the

expression

p = px1dx1 + · · ·+ pxndxn.

Let X be a vector field, we say that PX : T ∗M → R is the momentum function
associated to X if PX(p, x) = p(X(q)), where p is the tautological one-form. On a sub-

Riemannian manifold, let PXi
be the associated momentum functions for an orthonormal

frame {Xi} over the manifold. Then the sub-Riemannian geodesic flow is governed by

the Hamiltonian H = 1
2

∑
P 2
Xi

([20, Proposition 1.5.5]).

In terms of canonical coordinates {p1, ..., pn, x1, ..., xn} over M , the geodesic flow is

governed by the Hamilton equations

(2) ẋi(t) =
∂H

∂pi
(x(t), p(t)) and ṗi(t) = −∂H

∂xi
(x(t), p(t)).

for i = 1, ..., n. For an alternative derivation of the Hamilto equations, see [16, sub-

Chapter 2.2]. Next, we discuss how a manifold can be endowed with a Poisson structure.

Definition 2.3. Let P be a smooth manifold. A Poisson bracket on a manifold P is a
bilinear operation {·, ·} : C∞(P )× C∞(P ) → R such that:

• (C∞(P ), {·, ·}) is a Lie algebra.
• {·, ·} is a derivation in each factor, i.e., for all F , G and H ∈ C∞(P )

{FG,H} = {F,H}G+ F{G,H}.

We say that a smooth manifold P is a Poisson manifold if P possesses a Poisson bracket.

In terms of canonical coordinates on T ∗M , the Poisson bracket of two functions f, g
is given by

{f, g} =

n∑
i=1

∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi
.

In sub-Section 6.2, we expand further on our discussion of Poisson structures through

the frame of symplectic geometry. With the Poisson Bracket defined, we have that the

Hamiltonian equations (2) are equivalent as writing

df

dt
= {f,H}.

for all f ∈ C∞(T ∗M) (see [20]sub-Section 1.7.

3. The Euclidean group as a sub-Riemannian manifold and the sub-Riemannian

geodesic flow

3.1. SE(2) as a Lie group. The special Euclidean group is a three-dimensional Lie group.

By definition, it is the semidirect product SE(2) := SO(2)⋉R2
, where SO(2) is the group

of rotations in R2
and is diffeomorphic to the one-dimensional circle S1.

Let (θ, x, y) ∈ (0, 2π)×R2
be the coordinates over SE(2), then a point g in SE(2) has

a matrix representation given by

g =

(
Rθ x
0 1

)
, where Rθ =

(
cosθ − sin θ
sin θ cos θ

)
and x =

(
x
y

)
.
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If Rθ, Rθ′ are rotational two by two matrices and x,y are column vectors in R2
, then

multiplication over SE(2) is given by(
Rθ′ x
0 1

)(
Rθ y
0 1

)
=

(
Rθ′+θ x+Rθ′y
0 1

)
.

The Lie algebra se(2) is spanned by the vectors {Eθ, Eu, Ev} given by

Eθ =

0 −1 0
1 0 0
0 0 0

 , Eu =

0 0 1
0 0 0
0 0 0

 , and Ev =

0 0 0
0 0 1
0 0 0

 ;

with the Lie bracket relations

(3) [Eθ, Eu] = Ev, [Eθ, Ev] = −Eu, and [Eu, Ev] = 0.

By equation (3), we have that [se(2), se(2)] is spanned by the vectors {Eu, Ev}. There-

fore, [se(2), se(2)] is an abelian ideal making SE(2) a metabelian Lie group.

For the rest of the paper, we will write the left-invariant vector fields in terms of the

operators
∂
∂θ ,

∂
∂x , and

∂
∂y rather than their matrix representations. For the definition of

left-invariant vector fields, see [9, Chapter 7]. These vector fields are given by

(4) Xθ =
∂

∂θ
, Xu = cos θ

∂

∂x
+ sin θ

∂

∂y
and Xv = − sin θ

∂

∂x
+ cos θ

∂

∂y
.

The frame {Xθ, Xu} forms a non-integrable distribution D over SE(2). The sub-

Riemannian structure over SE(2) is constructed by declaring this frame to be orthonor-

mal.

3.2. The cotangent bundle T ∗ SE(2). Consider the cotangent bundle T ∗ SE(2) with

the canonical coordinates (pθ, px, py, θ, x, y). The momentum functions associated to the

left-invariant vector fields given in equation (4) are

Pθ = pθ, Pu = px cos θ + py sin θ, and Pv = −px sin θ + py cos θ.

As {Xθ, Xu} forms an orthonormal basis over the distribution on SE(2), the Hamil-

tonian function governing the sub-Riemannian geodesic flow is

H(p, g) =
1

2

(
(P 2

θ + P 2
u) =

1

2
(p2θ + (px cos θ + py sin θ)

2

)
(5)

For the formal definition of the sub-Riemannian geodesic flow, refer to [1, Chapter 3] or

[20, Chapter 1].

If (p(t), γ(t)) ∈ T ∗ SE(2) is a solution to the Hamiltonian system (5) for H(p, g), then

the set of Hamilton equations

θ̇ =
∂H

∂pθ
, ẋ =

∂H

∂px
, and ẏ =

∂H

∂py

implies that γ̇(t) is tangent to the distribution D, since

(6) γ̇(t) = PθXθ(γ(t)) + PuXu(γ(t)).

When we choose the energy level H(p, g) = 1
2 , the corresponding geodesic γ(t) is pa-

rameterized by arc-length.

To compute the differential equations forPθ ,Pu andPv , we use the relation {PX , Py} =
P[X,Y ] between the Poisson bracket and vector field bracket given by for vectors X and

Y , we compute that their time derivatives as

(7) Ṗθ = PuPv, Ṗu = −PθPv, and Ṗv = PθPu.
7



Since the Hamiltonian function H(p, g) does not depend on the variables x and y, px
and py have derivative zero and thus are constant motions. Equivalently, the Hamiltonian

function H(p, g) is invariant under the action of R2
by left-multiplication. Therefore, the

momentum map associated to the action is given by

J(p, g) = (px, py) = µ ∈ R2,

where we identify (R2)∗ with R2
itself. For the formal definition of the momentum map,

see sub-sub-Section 6.2.1. If (p(t), γ(t)) is a solution of the sub-Riemannian geodesic flow,

then we say that a geodesic γ(t) has momentum µ if J(p(t), γ(t)) = µ.

3.2.1. Reduced dynamics. Let us consider the level set µ = (a, b), then the inverse image

J−1(a, b) is diffeomorphic to T ∗ SO(2)×R2 × µ. We obtain the reduced Hamiltonian

given by

(8) Hµ(pθ, θ) =
1

2
(p2θ +R2 cos2(θ − δ)),

where the bijection between (a, b) and (R, δ) is given by (R cos δ,R sin δ) = (a, b). The

reduced Hamilton equations are

(9) ṗθ = R2 cos(θ − δ) sin(θ − δ) and θ̇ = pθ.

We think of a point (pθ, θ) in T ∗ SO(2) as a point in the cylinder R×SO(2) ≃ R×S1
.

The level set H−1
µ ( 12 ) is the curve αµ given by the equation 1.

(10) αµ := {(pθ, θ) ∈ R× S1 : 1 = p2θ +R2 cos2(θ − δ)}

3.2.2. Background Theorem. This sub-Section is dedicated to present the method to build

sub-Riemannian geodesics and prove the Background Theorem. Let us prescribe the

method as follows: consider the initial value problem given by the Hamilton equations

(9) and the initial conditions α(t0) in αµ. Having found the solution (pθ(t), θ(t)), we

define the geodesic γ(t) by the differential equation

(11) γ̇(t) = pθ(t)Xθ(γ(t)) +R cos(θ(t)− δ)Xu(γ(t)).

The BackgroundTheorem states that γ is a geodesic with momentum µ

BackgroundTheorem. The above prescription yields a sub-Riemannian geodesic in SE(2)
withmomentumµ parameterized by arc-length. Conversely, every geodesic in SE(2) param-
eterized by arc-length with momentum µ can be achieved by this prescription applied to the
curve αµ.

Proof. Let γ be a curve in SE(2) defined by equation (11) for a fixed value of µ. By

construction, the curve γ is tangent to the distribution and by comparing equations (11)

with (6), we conclude that it is enough to prove that the restriction of the left-invariant

momentum functions Pθ(t), Pu(t) and Pv(t) restricted to the level set J−1(µ) are equal

to the functions

Fθ(t) = θ̇(t), Fu(t) = R cos(θ(t)− δ), and Fv(t) = R sin(θ(t)− δ),

respectively. Thus, we must prove that Fθ(t), Fu(t), and Fµ(t) satisfy the equations given

by (7). Using the reduced Hamilton equations given by equation (9), we have

Ṗθ(t) = R2 cos(θ(t)− δ) sin(θ − δ) = Fu(t)Fv(t),

Ṗu(t) = −R sin(θ − δ)θ̇ = −Pθ(t)Fv(t),

Ḟv(t) = R cos(θ − δ)θ̇ = Fθ(t)Fu(t).

(12)
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Therefore, the equations in (12) are identical to those from (7). We conclude that γ is a

sub-Riemannian geodesic in SE(2) which by construction has momentum µ.

Conversely, let γ be an arbitrary geodesic in SE(2) parameterized by arc-length with

momentumµ. The restriction of the HamiltonianH to the level set J−1(µ) is by definition

the reduced Hamiltonian Hµ, the coordinates pθ and θ satisfies the reduced Hamiltonian

equations (9). In addition, the momentum functions Pθ(t) and Pu(t) restricted to the level

set J−1(µ) have the form Pθ(t) = θ̇ and Pu(t) = R cos(θ(t) − δ), the equation (6) is

identical to (11). Thus, γ is achieved by the prescription applied to the curve αµ. □

Let us describe the curve αµ to understand the symmetries of the geodesic flow. The

following proposition classifies the level set H−1
µ = αµ.

Lemma 3.1. The level set αµ consists precisely of the following cruves:

• If R > 1, αµ consist precisely of two contractible, simple and closed smooth curves.
The first curve is given by

α1
µ = {(pθ, θ) = (±

√
1−R2 cos2(θ − δ), θ) | θ ∈ [θ1min, θ

1
max]},

where θ1min and θ1max are given by the solutions to the equation θ = arccos( 1
R )+ δ

using the principal branch of arccos, then [θ1min, θ
1
max] ⊂ [δ, π + δ].

The second curve is given by

α2
µ = {(pθ, θ) = (±

√
1−R2 cos2(θ − δ), θ) | θ ∈ [θ2min, θ

2
max]},

where θ2min and θ2max are given the solution to the equation θ = arccos( 1
R )+δ+π

using the principal branch, then [θ2min, θ
2
max] ⊂ [δ + π, δ + 2π].

• IfR = 1, αµ consists of precisely one non-contractible, non-simple and closed curve.
• If 0 < R < 1, αµ consists of precisely two non-contractible, simple, and closed
smooth curves given by

α±
µ = {(pθ, θ) = (±

√
1−R2 cos2(θ − δ), θ) | θ ∈ S1}

Proof. By the inverse value theorem αµ is smooth if and only if

dHµ

∣∣
αµ

= (pθ,−R2 cos(θ − δ) sin(θ − δ)) ̸= 0.

If pθ ̸= 0 then dHµ

∣∣
αµ

̸= 0. Thus, it is enough to focus on the case pθ = 0. The condition

pθ = 0 implies R2 cos2(θ − δ) = 1, thus dHµ

∣∣
αµ

= 0 if and only if (pθ, θ) = (0, δ) or

(pθ, θ) = (0, π + δ). The conditions θ = δ or θ = π + δ imply R = 1. Therefore, αµ is a

smooth curve if R ̸= 1.

If R > 1, then the level set αµ is well defined when 0 ≤ 1−R2 cos2(θ− δ) and θ has

two disjoint intervals where this inequality holds. When we parameterize the curves by

θ this inequality yields the domains [θ1min, θ
1
max] and [θ2min, θ

2
max] as defined by Lemma

3.1. When pθ = 0 the positive and negative roots coincide, making each curve a simple

closed curve.

If R = 1, then the level set αµ is well defined for all θ. In addition, we can parameterize

the level set by the expression pθ = ±| sin(θ−δ)|. When pθ = 0 the positive and negative

root coincide, making the level set a non-simple and closed curve.

If R > 1, the level set αµ is well defined for all θ. In addition, we can parameterize the

curves by θ, the fact that pθ ̸= 0 implies that the positive and negative root never coincide,

making the level set consists of two non-contractible, simple, and closed curves. □
9



(a) R > 1 (b) R = 1 (c) R < 1

Figure 3.1. The panels show the curve αµ for the three different cases

Remark 3.2. We notice that the definition of the curves α1
µ and α2

µ for the R > 1 case can
be extended to the case R = 1 when [θ1min, θ

1
max] = [0, π], and [θ2min, θ

2
max] = [π, 2π] are

the domains of the curves, respectively. Similarly, the definition of the curves α+
µ and α−

µ for
the 0 < R < 1 case can be extended to the case R = 1.

The following lemma describe the symmetries of the reduced Hamiltonian flow, which

helps us study the symmetries of the geodesic flow.

Lemma 3.3. The reduced Hamiltonian has the following asymmetries:
• If R ≥ 1 and (pθ(t), θ(t)) is a solution laying in α1

µ, then (pθ(t), θ(t) + π) is a
solution laying in α2

µ.
• If R ≤ 1 and (pθ(t), θ(t)) is a solution laying in α+

µ , then (−pθ(−t), θ(−t)) is a
solution laying in α−

µ .

Proof. If R ≥ 1, we notice that if (pθ, θ) is a point in α1
µ, then (pθ, θ + π) is a point

in α2
µ. Moreover, if (pθ(t), θ(t)) is a solution, then it enough to prove that (p̃θ, θ̃) =

(pθ(t), θ(t) + π) is also a solution. Indeed, (p̃θ, θ̃) satisfies the differential equations

˙̃
θ = θ̇ = pθ = p̃θ and

˙̃pθ = ṗθ = R2 cos(θ − δ) sin(θ − δ) = R2 cos(θ̃ − δ) sin(θ̃ − δ).

If R ≤ 1, we notice that if (pθ, θ) is a point in α+
µ , then (−pθ, θ) is a point in α−

µ .

The time reversibility of the reduced Hamiltonian system implies the second part of the

lemma, i.e., if (px(t), θ(t)) is a solution to the reduced Hamiltonian system (9), then

(−px(−t), θ(−t)) lays in α−
µ . □

3.2.3. Classification of sub-Riemannian geodesics. In this sub-sub-Section, we classify the

sub-Riemannian geodesics according to their reduced dynamics. A geodesic γ can be

classified as one and only one of the following three types:

(Line) We say a geodesic γ is of the type line if θ̇ = 0. A geodesic is of the type line if

and only if its reduced dynamics is trivial, i.e., if R = 1 and θ = δ or θ = δ + π.

(Heteroclinic) We say a geodesic γ is of the type heteroclinic if its reduced dynamics

is heteroclinic. The reduced dynamics is heteroclinic if and only if R = 1 and θ̇ ̸= 0.
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(θ-periodic) We say a geodesic γ is of the type θ-periodic if its reduced dynamics is

periodic. The reduced dynamics is periodic if and only if R ̸= 1.

We further classify geodesics of the type θ-periodic as the two following types:

(Libration) We say a geodesic γ is of the type libration if its reduced dynamics has a

libration solution. If θ is L-periodic, then the reduced dynamics has a libration solution,

i.e., θ([t0, t0 + L]) ⊂ SO(2), if and only if R > 1.

(Oscillatory) We say a geodesic γ is oscillatory if its reduced dynamics has a oscilla-

tory solution. If θ is L-periodic, then the reduced dynamics has a oscillatory solution, i.e.,

θ([t0, t0 + L]) = SO(2), if and only if R < 1.

Let π : T ∗ SO(2) → SO(2) be the canonical projection π(pθ, θ) = θ, we also denote

βµ as the projection of the curve αµ by π within one period of θ. For geodesics of the

type θ-periodic, the following proposition gives explicit formulas for the θ-period, as well

as the distances travelled by the x and y coordinates during this period.

Proposition 3.4. Let γ be a sub-Riemannian geodesic of the type θ-periodic corresponding
to one of curves defined in Lemma 3.1 and βµ be the projection of αµ by the canonical
projection π : T ∗ SO(2) → SO(2). Then, the θ-period is given by

L(µ) :=

∫
βµ

dθ√
1−R2 cos2(θ − δ)

The changes∆x(µ) and∆y(µ) perform by the coordinates x and y after the geodesic travels
a period L(µ) are given by

∆x(µ) :=

∫
βµ

R cos(θ − δ) cos(θ)dθ√
1−R2 cos2(θ − δ)

and ∆y(µ) :=

∫
βµ

R cos(θ − δ) sin(θ)dθ√
1−R2 cos2(θ − δ)

.

In addition, the changes∆x(µ) and ∆y(µ) are independent of the initial point.

To prove Proposition 3.4, we need to employ the calibration function which we will

introduce in Section 4. Therefore, we will delay the proof until sub-Section 4.1. However,

the above proposition allows us to prove Theorem B directly.

3.3. Proof of Theorem B.

Proof. From Proposition 3.4, we know that a geodesics γ of the type θ-periodic is periodic

if and only if

∆x(µ) = 0 and ∆y(µ) = 0.

Let us proceed by contradiction; assuming R ̸= 0, we will show that ∆x(µ) and ∆y(µ)
cannot vanish simultaneously. Proposition 3.4 and the cosine addition formula implies

a∆x(µ) + b∆y(µ) = R2

∫
βµ

cos2(θ − δ)dθ√
1−R2 cos2(θ − δ)

> 0

Therefore, if R ̸= 0, the geodesic γ is not periodic.

When R = 0, x and y are constant and θ is periodic, so the geodesic is periodic. □

4. Hamilton-Jacobi Eqation and Calibration Functions

In this Section, Hamilton-Jacobi theory will be the main tool in proving Proposition

3.4. We will utilize Hamilton-Jacobi theory to build a calibration function. For more on

the Hamilton-Jacobi theory, refer to [13] and to [22] on calibration functions.
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Let us first introduce the proper definitions. Given a sub-Riemannian manifold M and

a Hamiltonian function H : T ∗M → R, the time-independent Hamilton Jacobi equation

is a partial differential equation in S : M → R given by

(13) H(dS, q) = const,

where dS is the differential of S.

We can rewrite the Hamilton-Jacobi equation in the following way. First, let us intro-

duce horizontal gradients.

Definition 4.1. Let M be a sub-Riemannian manifold with distribution D. For a function
S : M → R, the horizontal gradient of S, denoted as∇horS, is the unique horizontal vector
field satisfying, for every q ∈ M .

⟨∇horS, v⟩q = dS(v),

for all v ∈ Dq .

When the Hamiltonian H is purely kinetic (see [2, Chapter 2]), the Hamilton-Jacobi

equation is also known as the Eikonal equation and we can rewrite 13 as ||∇horS|| = 1.

A solutionS to the Eikonal equation has the property that it measure the oriented distance

from the point q to a given sub-manifold. For a detailed discussion, see [20, sub-Chapter

1.5].

From our Hamiltonian function in equation (5), we see that the Hamilton Jacobi equa-

tion is a partial differential equation in S given by

(14) 1 = (
∂Sµ

∂θ
)2 + (cos θ

∂Sµ

∂x
+ sin θ

∂Sµ

∂y
)2.

Let us solve the sub-Riemannian Eikonal equation by reducing it to an ordinary dif-

ferential equation. Consider the ansatz

(15) Sµ(θ, x, y) = f(θ) +R cos(δ)x+R sin(δ)y.

Substituting into equation (14) we find that

1 = (f ′(θ))2 +R2 cos2(θ − δ).

Therefore f(θ) is a solution to the differential equation

f ′(θ) = ±
√

1−R2 cos2(θ − δ),

and the solution Sµ is given by

Sµ(θ, x, y) = ±
∫ √

1−R2 cos2(θ − δ)dθ +R cos(δ)x+R sin(δ)y.(16)

Proposition 4.2. Let Sµ be a solution to the Eikonal equation given by equation (16), and
γ be a geodesic with momentum µ, then ∇horSµ = γ̇.

Before we make the proof to Proposition 4.2, let us introduce the co-frame of left-

invariant one forms:

Θθ = dθ, Θu = cos θdx+ sin θdy, and Θv = − sin θdx+ cos θdy.

Remark 4.3. An alternative way to define the non-integrable distribution D over SE(2) is
as the kernel of Θv , since Θv(Xθ) = Θv(Xu) = 0.

12



Proof. Let γ be a geodesic of momentum µ, without loss of generality let us consider the

positive root to the partial differential equation (14) and assume that θ̇ is positive; then

we can write the differential of Sµ in terms of the co-frame

dSµ =
√
1−R2 cos2(θ − δ)dθ +R cos(δ)dx+R sin(δ)dy

=
√

1−R2 cos2(θ − δ)dθ +R cos(θ − δ)dΘu +R sin(θ − δ)dΘv.

Definition 4.1 gives us the horizontal gradient

∇horSµ =
√

1−R2 cos2(θ − δ)Xθ +R cos(θ − δ)Xu.

By equation (11), we conclude that ∇horSµ = γ̇(t).
□

Let us now introduce the definition of calibration functions.

Definition 4.4. Let M be a sub-Riemannian manifold with distribution D, we say that a
function S : M → R is a calibration function for the geodesic γ if the following conditions
hold:

• dS(γ′(t)) = 1 for all t.
• |dS(v)| ≤ ∥v∥ for all vectors v in D, where ∥ · ∥ is the sub-Riemannian norm given
by ∥v∥ :=

√
⟨v, v⟩ for all vectors v in D.

Lemma 4.5. Let γ be a sub-Riemannian geodesic with momentum µ, then the function
Sµ(θ, x, y) given by (16) is a calibration function for γ.

Proof. Let us prove the first condition from Definition 4.4. Proposition 4.2 implies γ̇(t) =
∇horSµ, by using Definition 4.1 we get

dSµ(γ̇(t)) = ⟨γ̇(t), γ̇(t)⟩ = 1.

To prove the second condition, let v be an arbitrary vector in D, we have that

|dSµ(v)| = |⟨∇horSµ, v⟩| ≤ ∥∇horSµ∥∥v∥ = ∥v∥
by the Cauchy–Schwarz inequality. Therefore, such S is a calibration function for γ. □

Having introduced calibration functions and its related results, we are now ready to

prove Proposition 3.4.

4.1. Proof of Proposition 3.4.

Proof. From equations (9) and (10), since (θ, pθ) lies in αµ, we know that the time deriv-

ative of θ is given by

dθ

dt
= ±

√
1−R2 cos2(θ − δ).

By the inverse function theorem, locally we can write t as a function of θ by

dt

dθ
= ± 1√

1−R2 cos2(θ − δ)
.

If R < 1, the geodesic’s θ coordinates oscillates from 0 to 2π. The θ-period L(µ) satisfies

that for any t0 ∈ R, we have θ(t0+L(µ)) = θ(t0)+2π. Therefore the sign of
dθ
dt doesn’t

change and we have

L(µ) =

∫ t0+L(µ)

t0

dt =

∫ θ(t0+L(µ))

θ(t0)

dt

dθ
dθ =

∫
βµ

dθ√
1−R2 cos2(θ − δ)

.
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If R > 1, the geodesic librates. So the sign of
dθ
dt changes when θ = δ ± arccos( 1

R ) and

θ = δ±arccos( 1
R )+π with the principle branch of arccos. If θ̇(t∗) > 0, then there exists

ϵ > 0 such that θ̇ > 0 when t ∈ [t∗−ϵ, t∗+ϵ]. Therefore,[θ(t∗−ϵ), θ(t∗+ϵ)] is positively

determined. Similarly, when θ̇(t) < 0, there will be a small interval where θ is negatively

oriented. The negative part of
dt
dθ integrated over a negatively oriented interval results in

a positive integral. Therefore, we can write

L(µ) =

∫ θ(t0+L(µ))

θ(t0)

| dt
dθ

|dθ =

∫
βµ

dθ√
1−R2 cos2(θ − δ)

.

To determine the distance travelled by x and y, let us make use of the calibration

function constructed in Lemma 4.5 and write

L(µ) =

∫ t0+L(µ)

t0

1dt

=

∫ t0+L(µ)

t0

dSµ(γ̇(t))dt

=

∫
βµ

√
1− (a cos θ + b sin θ)2dθ + a∆x(µ) + b∆y(µ)

Therefore, from the two directions, we obtain the equation

(17)

∫
βµ

dθ√
1−R2 cos2(θ − δ)

=

∫
βµ

√
1− (a cos θ + b sin θ)2dθ+a∆x(µ)+b∆y(µ)

By taking the derivative with respect to a on equation (17), upon rearranging we obtain

the relation

∆x(µ) =

∫
βµ

(a cos θ + b sin θ) cos θdθ√
1− (a cos θ + b sin θ)2

=

∫
βµ

R cos(θ − δ) cos(θ)dθ√
1−R2 cos2(θ − δ)

.

A similar calculation gives us the expression for ∆y(µ). Since βµ and δ only depends on

αµ, the changes are independent of the initial point as long as they remain on the same

αµ. □

4.2. MinimizingMethod. We will once again utilize the calibration function constructed

in Lemma 4.5 to study the metric lines on SE(2). The following proposition exemplifies

this.

Proposition 4.6. Let M be a sub-Riemannian Manifold and S : M → R be a C2 global
solution of the Eikonal equation, then the integral curves of its horizontal gradient flow given
by γ̇(t) = ∇horS(γ(t)) are metric lines.

Proof. As S is a C2
global solution on M , dS is an exact 1-form. By Stoke’s theorem, for

two arbitrary curves γ and γ̃ sharing the same end points A and B in M , we have that∫
γ

dS =

∫
γ̃

dS = S(A)− S(B)

Furthermore, for any smooth curve γ̃ in a simply connected domain Ω, we have∫
γ̃

dS =

∫
⟨∇S, ˙̃γ⟩dt ≤

∫
∥ ˙̃γ(t)∥∥∇horS(γ̃(t))∥dt =

∫
γ̃

∥ ˙̃γ∥dt = ℓ(γ̃)

where ℓ is the sub-Riemannian length.
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From the Cauchy–Schwarz inequality we have that the equality of the above inequality

holds if and only if
˙̃γ(t) = f∇horS(γ̃(t)) for some scalar function f . That is, γ is a repa-

rameterization of an integral curve of ∇horS. Since any γ satisfying γ̇(t) = ∇horS(γ(t))
is an integral curve, therefore

dS(γ̇) = ⟨∇horS, γ̇⟩ = ⟨∇horS,∇horS⟩ = 1.

For any other curve γ̃ in Ω, we have

dS( ˙̃γ) = ⟨∇horS, ˙̃γ⟩ < ∥ ˙̃γ∥
The inequality above is strict since γ̃ is different from γ on at least an open set, because

the two curves are smooth. Therefore, the inequality becomes

ℓ(γ) = S(A)− S(B) =

∫
γ̃

dS < ℓ(γ̃).

This completes the proof. □

In view of Proposition 4.6, in order to classify the metric lines on SE(2) we need to

study when the calibration function defined in equation (16) is globally defined and C2
.

Proposition 4.7. The calibration function given by equation (16) is not globally defined for
any value of R. However, the calibration function given by

Sµ(θ, x, y) = ±cos(θ − δ) + x cos(δ) + y sin(δ)

is a globally defined and smooth calibration function for geodesics of the type heteroclinic
and line corresponding to αµ, where R = 1.

Proof. When R = 1, equation (16) gives

Sµ(θ, x, y) = ±
∫

| sin(θ − δ)|dθ + x cos(δ) + y sin(δ).

This is not a globally smooth calibration function. However, the corresponding geodesic

is either of the type heteroclinic or line. Therefore, θ is either constrained in (δ, δ + π),
(δ − π, δ), or fixed at δ. Notice that the sign of sin(θ − δ) is fixed in each of the three

regions. Therefore we can ignore the absolute value and write

Sµ(θ, x, y) = ±
∫

sin(θ−δ)dθ+cos(δ)x+sin(δ)y = ∓ cos(θ−δ)+x cos(δ)+y sin(δ)

By an argument similar to the proof of Lemma 4.5, we can check that it is also a calibration

function for our geodesic. □

By Propositions 4.6 and 4.7, the following result follows directly.

Proposition 4.8. Line and heteroclinic geodesics corresponding to the curves defined in
Lemma 3.1 are globally minimizing.

5. Proof of Theorem A

Having completed Proposition 4.8 we have proved the first part of Theorem A. To

complete the proof, it remains to show that geodesics of the type θ-periodic fail to qualify

as metric lines. To do so, we will prove that such geodesics fails to minimize past its

θ-period. The proof relies on the basic theory of Jacobi fields and conjugate points. For

readers unfamiliar with the subject, refer to [10, sub-Chapter 4.8], [11, sub-Chapter 1.6],

or [15, Chapter 10].
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5.1. Cut time in SE(2). Let us formalize the definition of the cut time.

Definition 5.1. Let γ be a sub-Riemannian geodesic parameterized by arc-length, we define
the cut time of γ as

tcut(γ) = sup{t > 0 | γ|[0,t] is length minimizing}.

If geodesics have a finite cut-time, then by definition it fails to be a metric line. The fol-

lowing proposition demonstrates that this is the case for geodesics of the type θ-periodic.

Proposition 5.2. If a geodesic is of the type θ-periodic with period L, then L is an upper-
bound for the cut time.

Proof. Let γ(t) be an L periodic sub-Riemannian geodesic with momentum µ and initial

condition γ(0) = (θ0, x0, y0), we will consider two cases when θ̇0 ̸= 0 and θ̇0 = 0.

We first remark that the second case only corresponds to geodesics of the type libration

(R > 1). First, we observe that since at every half period L/2, θ(t) reverses direction,

we have

θ̇(t) = 0 for t =
kL

2
and k ∈ Z.

By the BackgroundTheorem and θ̇ = pθ , we have that

cos(θ(
kL

2
)) =

1

R2
,

which exists a solution if and only if R > 1, and we have that θ0 is a solution to θ =
arccos(1/R2).

Case θ̇0 ̸= 0: there are exactly two geodesics with initial condition γ(0) and momen-

tum µ, namely γ(t) and
˜γ(t), the latter of which is defined as the one whose reduced dy-

namics are solution to the Hamiltonian Hµ and have the initial condition (p̃θ(0), θ̃(0)) =

(−θ̇0, θ0). The time reversibility (see Lemma 3.3) implies θ(t) = θ̃(−t) for all t, and the

periodicity gives θ(L) = θ̃(L).
Moreover, we claim that γ(L) = γ̃(L). This follows by Prop 3.4, which states the

difference in x̃ and ỹ over the period L is the same as the difference for x̃ and ỹ. That is

to say

γ(L) = γ(0) + (0,∆x(µ),∆y(µ)) = γ̃(L)

Therefore, we have constructed two distinct geodesics meeting at time L, implying that

any geodesics of the type θ-periodic fails to minimize past its period L.

Let µ be such that R > 1, then if θ̇(0) = 0, we have θ̇ = 0 at the point θ ∈
{θ1min, θ

1
max, θ

1
min, θ

2
max} as defined in Lemma 3.1, we will show that γ(L) is conjugate

to γ(0) along γ, thus γ is not minimizing past γ(L). To do so, we will construct a killing

vector field, which by general theory is a Jacobi field when restricted to a geodesic. By [20,

page 8], a vector field K is a killing vector field if and only if its momentum function PK

commutes with the Hamiltonian with respect to the Poisson bracket, i.e, {H,PK} = 0.

It follows that
∂
∂x and

∂
∂y are killing vector fields, since

Ṗ ∂
∂x

= {H,P ∂
∂x
} = 0 and Ṗ ∂

∂y
= {H,P ∂

∂y
} = 0,

(see sub-sub-Section 2.3.1).
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We are now ready to prove the second case of Proposition 5.2. Consider the two Jacobi

fields on γ:

W1(t) = cos(θ0)
∂

∂x
+ sin(θ0)

∂

∂y
restricted to γ, and

W2(t) = γ̇(t).

We see that at t = kL, we have W2(kL) = Xu(γ(kL)) = cos(θ0)
∂
∂x + sin(θ0)

∂
∂y .

Therefore, W1(0) = W1(L) = W2(0) = W2(L). Thus the Jacobi Field J = W1 − W2

vanishes at t = 0 and t = L. Moreover, J is not trivial since θ̇(t) ̸= 0 along 0 < t < L/2
and L/2 < 0 < L. At the time t = L/2, we have that

W2(L/2) = cos(θ(L/2))
∂

∂x
+ sin(θ(L/2))

∂

∂y
̸= W1(L/2).

Showing that γ(L) is a conjugate point and fails to minimize beyond t = L. □

5.2. Proof of Theorem A.

Proof. Proposition 4.8 shows that the geodesics of the type line and heteroclinic are metric

lines. Proposition 5.2 implies that geodesics of type θ-periodic do not qualify as metric

lines, since the period L is an upper-bound for its cut time.

Therefore, we conclude that the metric lines in SE(2) are precisely the geodesics of

the type line and heteroclinic. □

Part 2. Symplectic Reduction

6. Preliminaries

In this section, we introduce the basic theories of group action, symplectic geometry,

and reduction. For readers unfamiliar with these subjects, refer to [4, sub-Chapters 3.1-

3.10] or [18].

6.1. Group Action and the Action of R2 on SE(2). We say G is a group acting on

a manifold M if each g in G induces a map from M to itself given by (g, p) 7→ g · p,

where p, g · p ∈ M . We say that an action is free if the only element in G which fixes

every element in M is the identity element. We define the orbit of p ∈ M as the set

{g ·p | g ∈ G}. The space of all such orbits, denoted by M/G, with the quotient topology

is called the orbit space.

Consider a continuous left action of a Lie group G on a manifold M . We say that this

action is proper if the mapping (g, p) 7→ (g · p, p) is a proper map for all g ∈ G and

p ∈ M . We recall that a map F : X → Y between two topological spaces X and Y is

called a proper map if F−1(K) is compact for every compact set K ⊂ Y .

Let us present the following theorem, which allows us to study SE(2) /R2
with the

structure of a manifold.

Theorem 6.1. (Quotient Manifold Theorem) Let G be a Lie group action on a manifold M
acting smoothly, freely, and properly. Then the orbit spaceM/G is a manifold of dimension
dimM − dimG, and the quotient map π : M → M/G is a smooth submersion.

For a proof to Theorem 6.1, see [14, Chapter 21], and consult [24, Chapter 7] for a more

extensive discussion on quotient topology theory.
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Consider the left action of R2
on SE(2) given by(

I x
0 1

)(
Rθ y
0 1

)
=

(
Rθ x+ y
0 1

)
for column vectors x,y in R2

and Rθ the two by two rotational matrix. It follows directly

that this is a free action. It is also proper since R2
is a closed subgroup of SE(2), that is,

the product and inverse operation on R2
is smooth.

By the Quotient Manifold Theorem 6.1, SE(2) /R2
is a manifold of dimension 1. More-

over, by definition of the semi-direct product we can identify SO(2) with SE(2) /R2
.

6.1.1. Adjoint action. Let G be a Lie group, we define the conjugation map by g ∈ G
as the map Ig : G → G defined by Ig(h) = ghg−1. We can then define the adjoint
action Adg : g → g by Adg = (Ig)∗, where (Ig)∗ denotes the pushforward of Ig . For

more details on the pullbacks and pushforwards of maps, see [15, Chapters 8 and 11]. The

adjoint action induces the co-adjoint action between dual spaces as Ad∗g−1 : g∗ → g∗

through the formula

(Ad∗g−1(µ), ξ) = (µ,Adg−1(ξ))

for all µ ∈ g∗ and ξ ∈ g. Here (·, ·) stands for the pairing for dual spaces, where (µ, ξ) =
µ(ξ). We define the co-adjoint orbit of µ ∈ g∗ as the set

Orb(µ) = {Ad∗g−1(µ) | g ∈ G}.

Finally, for each µ ∈ g∗, we define the co-isotropic group of a group G as

Gµ = {g ∈ G | Ad∗g(µ) = µ}.

Let us express the adjoint action on SE(2) with matrix representations. Let g =
(Rθ,x) be in SE(2), we can calculate that the adjoint map Adg acting on the element

(α, v) =
(
αJ v
0 0

)
∈ se(2)

, where J =

(
0 1
−1 0

)
, as

Adg(α, v) =
(
−αJ αJx+Rθv
0 0

)
Let µ = (µθ,u) ∈ se(2)∗ with the inner pairing of (µ,u) and (α, v) given by

((µθ,u), (α, v)) = µθα+ u · v
where (·) is the dot product, we find that the co-adjoint action is given by

Ad∗g(µθ,u) = (µθ + u · Jx, Rθu).

6.1.2. SE(2) as a group action on T ∗ SE(2). In the statement to Theorem C, we consider

SE(2) as a group acting on its cotangent bundle T ∗ SE(2). Each element h in SE(2)
induces a left translation map Lh : SE(2) → SE(2) by Lh(g) = h · g for g ∈ SE(2)
and (·) is the group multiplication over SE(2). The left translation map induces a group

action on T ∗ SE(2) in the following way.

Let (p, g) be an element in T ∗ SE(2) and h be an element in SE(2). We define the

group action of SE(2) on T ∗ SE(2) to be the mapping

(h, (p, g)) = ((Lh−1)∗p, Lhg).
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6.2. Symplectic Geometry. We say that a two-form ω is symplectic if ω is closed and

non-degenerate. A manifold is symplectic if it is equipped with a symplectic form. As

discussed in sub-sub-Section 2.3.1, every cotangent bundle T ∗M posses a natural tauto-

logical 1-form:

p = p1dx1 + · · ·+ pndxn

in canonical coordinates. This 1-form induces a symplectic structure on T ∗M with the

symplectic form ω = dp =
∑

i dpi ∧ dxi, making T ∗M a symplectic manifold. For more

details, see [4, Chapter 5].

Let H ∈ C∞(T ∗M), we define its Hamiltonian vector field in terms of canonical

coordinates to be

XF = (
∂F

∂x1
, ...,

∂F

∂xn
,− ∂F

∂p1
, ...,− ∂F

∂pn
).

There is a connection between the symplectic and Poisson structure (see sub-sub-

Section 2.3.1) in the following way: Every cotangent bundle T ∗M has the structure of

Poisson manifold, since its symplectic form induces a Poisson bracket by

{F,G} = ω(XF , XG),

for all F , G in C∞(T ∗M).
Conversely, given a Poisson structure on a manifold, we can define the Hamiltonian

vector field via XF = {F, ·} and define the bilinear form by ω(XF , XG) = {F,G}.

However, this ω is not defined everywhere, let alone closed and non-degenerate, so it is

not a symplectic form. Therefore, we can treat symplectic geometry as a special case of

Poisson geometry. For more details about Poisson geometry, see [4, Chapter 11]

6.2.1. Momentum map and symplectic reduction.

Definition 6.2. Let (M,ωM ) and (N,ωN ) be two symplectic manifolds, we say that a map
ϕ : M → N is symplectic if it preserves the symplectic form, i.e., ϕ∗ωN = ωM . In addition,
we say that ϕ is a symplectomorphism if it is also an isomorphism. We say that (M,ωM )
and (N,ωN ) are symplectomorphic if there exists a symplectomorphism between them.

Let (M,ω) be a symplectic manifold, consider the action of a Lie group G on M . Every

g ∈ G induces a left action map from M to itself. We say such group action is symplec-
tic if every g ∈ G induces a symplectic left action map. We define the infinitesimal
generator of ξ ∈ g to be a vector field σξ on M by

σξ(q) :=
d

dt
exp(tξ) · q

∣∣∣∣
t=0

,

for q ∈ M . See [23, Chapter 4] for the definition of the exponential map. Let us next

define the momentum map.

Definition 6.3 (Momentum Map). Let a Lie group G act symplecticly on a manifold M .
Suppose there is a linear map P : g → C∞(M) such that

XP (ξ) = σξ, for all ξ ∈ g.

Then we call the map J : M → g∗ the momentum map of the action group G if

⟨J(p), ξ⟩ = Pξ(p), for all ξ ∈ g and p ∈ M.

Let J : M → g∗ be the momentum map of the action group G on the manifold M and

let µ ∈ g∗, we define the symplectic reduction of M by G by

M//µG := J−1(µ)/Gµ,
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where Gµ is the co-isotropic group.

The following theorem tells us that a reduced symplectic manifold still possess a sym-

plectic structure and that its symplectic form is unique. Let iµ : J−1(µ) → M denote

the inclusion map and πµ : J−1(µ) → M//µG be the projection mapping. We have the

following result (For more details, see [4, Section 3.10])

Theorem 6.4 (Symplectic Reduction Theorem). There exists a unique symplectic form ωµ

on M//Gµ satisfying
i∗µω = π∗

µωµ.

7. Proof of Theorem C

Let us break down the proof to Theorem C in four components. In Proposition 7.1 we

calculate the momentum maps of the action of R2
and SE(2) on T ∗ SE(2) respectively. In

Propositions 7.2 and 7.3 we find the reductions of T ∗ SE(2) by these two actions. Finally,

these three propositions allows us to complete the proof to Theorem C in sub-Section 7.1.

Proposition 7.1. LetR2 be acting on T ∗ SE(2), then themomentummap JR2 : T ∗ SE(2) →
R2 is given by

JR2(p, g) = (px, py),

where (p, g) denotes an element in T ∗ SE(2) in terms of the canonical coordinates. On the
other hand, let SE(2) be acting onT ∗ SE(2), then themomentummap JSE(2) : T

∗ SE(2) →
SE(2)

∗ is given by
JSE(2)(p, g) = (pθ − ypx + xpy, px, py).

Proof. For an element g ∈ R2
, we can treat it as an element in SE(2) given by the matrix

representation

g =

(
I x
0 1

)
where x = (x, y)T is a column vector in R2

. Next, we consider ξ = (u, v) ∈ (R2)∗ ≃ R2
,

where we identity ξ as a row vector in R2
. We calculate that the infinitesimal generator

of ξ to be the vector field σξ given by

σξ =
d

dt
exp(γ(t))(p, g)

∣∣∣∣
t=0

= (0, 0, 0, ξ),

where γ(t) is a curve in R2
subject to the initial conditions

γ(0) = (0, 0) and γ̇(0) = ξ.

Next we find a linear map P : R2 → C∞(T ∗ SE(2)) such that it satisfies XP (ξ) = σξ .

This is equivalent to writing

∂P (ξ)

∂x
=

∂P (ξ)

∂y
= 0,

∂P (ξ)

∂px
= u, and

∂P (ξ)

∂py
= v.

Thus the solution is given by

P (ξ)(p, g) = pxu+ pyv.

We obtain the momentum map JR2 by the relation

⟨JR2(p, g), ξ⟩ = P (ξ)(p, g) = pxu+ pyv.

Giving us the expression for JR2 as

JR2(p, g) = (px, py).
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A similar calculation gives us the expression for the momentum map JSE(2). □

In the next two propositions, we will show that both reductions T ∗ SE(2) //µR2
and

T ∗ SE(2) //µ SE(2) can be identified with T ∗ SO(2) for µ ̸= 0.

Proposition 7.2. Letµ be inR2, then there exist a symplectomorphism from (T ∗ SE(2) //µR2, ωµ)
to T ∗ SO(2), where T ∗ SO(2) possesses the symplectic form ω = dpθ ∧ dθ.

Proof. For a fixed µ ∈ R2
, since R2

is an Abelian group, its co-isotropic group is given

by R2
µ = R2

. By Proposition 7.1, we find that the inverse of the momentum map J−1
R2 (µ)

is given by

J−1
R2 (µ) = {(p, g) ∈ T ∗ SE(2) |(px, py) = µ} .

We have that J−1
R2 (µ) ≃ T ∗ SO(2)×R2 × µ, since the trivialization of T ∗ SE(2) implies

T ∗ SE(2) ≃ T ∗ SO(2)×T ∗R2
; therefore, the symplectic reduction implies

T ∗ SE(2) //µR2 = {[(pθ, µ,Rθ, x, y)] | (pθ, µ,Rθ, x, y) ∈ J−1
R2 (µ)}

where [ ] denotes the equivalence class induced by the equivalence relation

(pθ, µ,Rθ, x, y) ∼ (p̃θ, µ, R̃θ, x̃, ỹ) if and only if (pθ, Rθ) = (p̃θ, R̃θ).

Therefore, if we consider the basis { ∂
∂pθ

, ∂
∂θ ,

∂
∂x ,

∂
∂y} for T (J−1

R2 (µ)) ⊂ T (T ∗ SE(2))

and let v1 and v2 be arbitrary vectors in T (J−1
R2 (µ)), where we use the short-hand no-

tation (ai, bi, ci, di) for vi = ai
∂

∂pθ
+ bi

∂
∂θ + ci

∂
∂x + di

∂
∂y , then [vi] are vectors in

T (T ∗ SE(2) //µR2) and v1 ∼ v2 if and only if (a1, b1) = (a2, b2).

The projection π : J−1
R2 (µ) → T ∗ SE(2) //µR2

given by the Quotient Manifold Theo-

rem 6.1 has the form :

πµ(pθ, µ,Rθ, x, y) = [(pθ, µ,Rθ, x, y)]

There is also a natural inclusion iµ : J−1
R2 (µ) → T ∗ SE(2), since J−1

R2 (µ) is a sub-manifold

of T ∗ SE(2). Hence by the Symplectic Reduction Theorem 6.4, we can find the unique

reduced symplectic form ωµ on T ∗ SE(2) //µR2
given by π∗ωµ = i∗ω, where

ω = dpθ ∧ dθ + dpx ∧ dx+ dpy ∧ dy

is the symplectic form on T ∗ SE(2). By consturction, we know the symplectic form

ωµ defined by ωµ([v1], [v2]) = a1b2 − a2b1 is a closed, non-degenerate two form on

T ∗ SE(2) //µR2
and satisfies π∗ωµ = i∗ω. By the uniqueness statement of the Symplec-

tic Reduction Theorem 6.4, this is the symplectic form we want.

Then we can build a map φ : T ∗ SE(2) //µR2 → T ∗ SO(2) given by

φ1([(pθ, µ,Rθ, x, y)]) = (pθ, Rθ).

Since the symplectic form on T ∗ SO(2) is ω = dpθ ∧ dθ, it is easy to check that φ1 is a

symplectomorphism. □

Proposition 7.3. Let us identify se(2) with so(2)× R2 and let µ = (µθ, µ) be in se(2)∗.

• Ifµ ̸= 0, then there also exist a symplectomorphism from (T ∗ SE(2) //µ SE(2), ωµ)
to T ∗ SO(2) with the symplectic form ω = dpθ ∧ dθ.

• If µ = 0, the symplectic reduction T ∗ SE(2) //µ SE(2) consists of one point.
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Proof. First let us consider a nonzero µ ∈ R2
. For a fixed µ = (µθ, µ) ∈ se(2)∗, the

Preimage Theorem implies that the inverse of the momentum map is a three dimensional

manifold:

J−1
SE(2)(µ) = {(p, g) ∈ T ∗ SE(2) | (p, g) = (µθ + c, µ,Rθ, sµ+

c

||µ||2R2

Jµ),

where c, s ∈ R and Rθ ∈ SO(2)}.

Next we calculate the co-isotropic group SEµ(2). Recalling from 6.1.1, we look for all

g = (Rθ,x) in SE(2) such that Ad∗g(µ) = µ ,i.e.,

(µθ + (µx, µy)Jx, Rθ · (µx, µy)) = µ

Solving the equation above, we find that SE(2)µ is given by

SE(2)µ = {(I,x) ∈ SE(2) | x = sµ where s ∈ R} .

Therefore, with a similar approach from the Proof of Proposition 7.2, we can obtain the

symplectic reduction given by

T ∗ SE(2) //µ SE(2) ≃ {(p, g) ∈ T ∗ SE(2) | (p, g) = (µθ + c, µ,Rθ,
c

||µ||2R2

Jµ),

where Rθ ∈ SO(2), c ∈ R}, with the unique symplectic form

ωµ = d(µθ + c) ∧ dθ = dc ∧ dθ.

Then we can build the map φ2 : T ∗ SE(2) //µ SE(2) → T ∗ SO(2) given by

φ2((µθ + c, µ,Rθ,
c

||µ||2R2

Jµ)) = (c,Rθ).

Since the symplectic form on T ∗ SO(2) is ω = dpθ ∧ dθ, it is easy to check that φ2 is a

symplectomorphism.

If µ = 0, we can obtain the inverse of the momentum map given by

J−1
SE(2)(µ) = {(p, g) ∈ T ∗ SE(2) | (p, g) = (µθ, 0, 0, Rθ, x, y),

where Rθ ∈ SO(2) and x, y ∈ R}. In addition, it can be identified with SE(2). We also

have that SE(2)µ = SE(2) . Therefore we have the symplectic reduction is a single point

since J−1
SE(2)(µ) ≃ SE(2) = SE(2)µ □

7.1. Proof of Theorem C.

Proof. From Propositions 7.2 and 7.3, we have that if µ ̸= 0, both T ∗ SE(2) //µR2
and

T ∗ SE(2) //µ SE(2) are symplectomorphic to T ∗ SO(2). Let the corresponding symplec-

tomorphisms be φ1 and φ2 from their respective proofs of Propositions 7.2 and 7.3, we

can check that φ := φ−1
2 ◦ φ1 is the symplectomorphism between T ∗ SE(2) //µR2

and

T ∗ SE(2) //µ SE(2) . □

8. Conclusion and Future Work

We classified the geodesics on SE(2) with regard to their reduced dynamics. With

the help of Proposition 3.4, we showed that a geodesic is periodic if and only if R = 0.

Afterwards, we introduced calibration functions and the Hamilton-Jacobi method to show

that there is a finite cut time for a θ-periodic geodesic. Then from Theorem A, we gave

a full characterization of metric lines on SE(2). In Part 2, we introduced the symplectic

reduction and showed that there exists a symplectomorphism between T ∗ SE(2) //µR2

and T ∗ SE(2) //µ SE(2), indicating that they have the same symplectic structure.
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In the future, we hope to continue our work in the following possible directions:

(1) Extend our characterizations of the metric lines and periodic geodesics to SE(3),
or more generally to SE(n).

(2) Study the eigenvalue problems and fundamental solutions of the sub-Riemannian

Laplace, Heat, and Schrödinger operators on SE(2).
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