
Modeling the Phase Separation of Polymers

Julia Hastings

May 2024

Abstract

The phase separation of polymers is an important process in chemical engineering
involving the diffusion and attraction/repulsion of two kinds of polymers. We begin by
deriving the diffusion equation using Fick’s law and then solving it using Fourier Series
and the finite-difference method. This is followed by an analysis of the Allen-Cahn
equation, a phase field model illustrating the phase separation process.
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1 Introduction

This REU project is motivated by the study of phase separation of polymers through analysis,
computations, and experiments. The project examines and solves several partial differential
equations which are pertinent to modeling phase separation experiments.

1.1 What is phase separation?

A mixture of two kinds of molecules can undergo a process called phase separation in which
the molecules separate into distinct spatial regions comprising a single kind of molecule.
Phase separation arises due to molecular diffusion and the electrostatic attraction or repulsion
among the molecules.

This video shows the phase separation occurring in a mixture of oil and water. Water
molecules are polar and each moelcules has an electric dipole due to the charge gradient
between the oxygen atom and hydrogen atoms; on the other hand, an oil molecule is a
hydrocarbon chain with oxygen atoms at the ends, hence oil is nonpolar and hydrophobic.
The video shows that the oil floats on top of the water; this is because oil has fewer oxygen
atoms than water and hence has lower density.

1.2 What is a polymer?

Polymers are an important type of molecule in chemistry, chemical engineering, and macro-
molecular science. A polymer is a chain of repeating monomers each of which is a simple
chemical unit. Figure 1 shows an example of a polymer chain with carbon atoms as black,
oxygen atoms as red, hydrogen atoms as white. A polymer generally has a three-dimensional
structure.

Figure 1: The chain of repeating monomers which form a polymer.

1.3 Polyelectrolyte experiments

The Larson Group in the Department of Chemical Engineering is researching the phase
separation of polyelectrolytes. A polyelectrolyte is a macromolecule with charged groups and
they can be classified according to their charge as either polycations (positive) or polyanions
(negative) [2]. Figure 2 illustrates the phase separation of polyelectrolytes induced by various
salts.

Box 1 shows a diagram of polycations and polyanions in a sample tube along with a
picture of the phase separation of polymers.

Box 2 shows the liquid to solid transition observed by rheology, which examines the
viscosity of non-Newtonian matter.
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Box 3 shows salt cations and anions bonding to polyelectrolytes. Naturally, the polyca-
tions are attracted to salt anions and polyanions are attracted to salt cations.

Figure 2: Larson Group, Department of Chemical Engineering, University of Michigan,
larsonlab.engin.umich.edu, accessed 28 May, 2024.

2 Diffusion Equation

Diffusion is an important factor in the phase separation of polymer mixtures. This section
presents the derivation of the diffusion equation by Fick’s law, then the solution by Fourier
series, and then the solution by the finite-difference method.

2.1 Derivation of diffusion equation by Fick’s law

We will present the derivation of the diffusion equation in one space dimension. The deriva-
tion depends on Fick’s 1st law and 2nd law. Fick’s 1st law is

J = −D
∂ϕ

∂x
, (1)

where J is the diffusion flux, D is the diffusion coefficient, ϕ is the concentration, and x is the
spatial variable. In words, the diffusion flux is proportional to the concentration gradient.
In the absence of any chemical reactions, the law of mass conservation states

∂ϕ

∂t
+

∂J

∂x
= 0, (2)

which relates the rate of change of concentration with respect to time and the rate of change
of diffusion flux with respect to space. The next step is to replace the diffusion flux, J , using
Fick’s 1st law,

∂ϕ

∂t
− ∂

∂x

(
D
∂ϕ

∂x

)
= 0. (3)

This yields Fick’s 2nd law,
∂ϕ

∂t
= D

∂2ϕ

∂x2
, (4)
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which is the diffusion equation for the concentration. This is a partial differential equation
in space and time, which requires an initial condition and boundary conditions. We will
consider the space domain to be the unit interval 0 ≤ x ≤ 1 with Dirichlet boundary
conditions ϕ(0, t) = ϕ(1, t) = 0. The initial condition is denoted ϕ(x, 0) = f(x). Next, we
present the solution of the diffusion equation by Fourier Series.

2.2 Solution by Fourier series

2.2.1 Introduction to Fourier series

Let f(x) be a given function defined on the unit interval 0 ≤ x ≤ 1 and consider the Fourier
Sine series,

f(x) =
∞∑
n=1

an sin(nπx), (5)

where an are the Fourier Sine coefficients and they are determined as follows. Note that
each term in the series vanishes for x = 0 and x = 1. Multiply Eq. (5) by sin(jπx), where j
ranges over the same values as n (namely j = 1, 2, 3, . . .),

f(x) sin(jπx) =
∞∑
n=1

an sin(nπx) sin(jπx). (6)

The next step is to integrate from x = 0 to x = 1,∫ 1

0

f(x) sin(jπx)dx =

∫ 1

0

∞∑
n=1

an sin(nπx) sin(jπx)dx (7a)

=
∞∑
n=1

an

∫ 1

0

sin(nπx) sin(jπx)dx, (7b)

where we have interchanged the order of integration and summation. Now we need to
compute the following integral, where n, j = 1, 2, . . .,∫ 1

0

sin(nπx) sin(jπx)dx, (8)

which is done by using the trigonometric identities.

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b), (9a)

cos(a− b) = cos(a) cos(b) + sin(a) sin(b). (9b)

Now set a = nπx and b = jπx.

cos((n+ j)πx) = cos(nπx) cos(jπx)− sin(nπx) sin(jπx), (10a)

cos((n− j)πx) = cos(nπx) cos(jπx) + sin(nπx) sin(jπx). (10b)

Now take Equation (10b) and subtract Equation (10a) to obtain,

sin(nπx) sin(jπx) =
1

2
(cos((n− j)πx)− cos((n+ j)πx)), (11)
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and then substitute into Equation (8),∫ 1

0

sin(nπx) sin(jπx)dx =
1

2

∫ 1

0

[
cos((n− j)πx)− cos((n+ j)πx)

]
dx (12a)

=
1

2

[
sin(n− j)πx

(n− j)π
− sin(n+ j)πx

(n+ j)π

]1
0

=

{
0, n ̸= j,

1/2, n = j.
(12b)

Figure 3 plots the integrand in Eq. (12a), where by symmetry one can see that when n ̸= j,
the area under the curve is zero, which is consistent with Eq. (12b).
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Figure 3: Plot of sin(nπx) sin(jπx) for n = 1, 2, 3 and j = 1, 2, 3.

Substituting the result from Eq. (12) into Eq. (7) yields∫ 1

0

f(x) sin(jπx)dx =
∞∑
n=1

an

∫ 1

0

sin(nπx) sin(jπx)dx = aj/2, (13)

This yields the Fourier Sine series

f(x) =
∞∑
n=1

an sin(nπx), an = 2

∫ 1

0

f(x) sin(nπx)dx. (14)

2.2.2 Square wave example

Next we are going to illustrate the Fourier Sine Series expansion with an important example,
the square wave defined by

f(x) =


1, 0 ≤ x < 1/2

0, x = 1/2

−1, 1/2 < x ≤ 1.

(15)
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Equation (14) gives the Fourier Sine coefficients,

an = 2

∫ 1

0

f(x) sin(nπx)dx = 2

[ ∫ 1/2

0

f(x) sin(nπx)dx+

∫ 1

1/2

f(x) sin(nπx)dx

]
(16a)

= 2

[ ∫ 1/2

0

sin(nπx)dx−
∫ 1

1/2

sin(nπx)dx

]
= 2

[
− cos(nπx)

nπ

∣∣∣∣1/2
0

+
cos(nπx)

nπ

∣∣∣∣1
1/2

]
(16b)

=
2

nπ

[
− cos(nπ/2) + cos(0) + cos(nπ)− cos(nπ/2)

]
. (16c)

At this point, we note that

cos(0) = 1, cos(nπ) = (−1)n, cos(nπ/2) =


1, n = 0, 4, 8, 12, . . .

0, n = 1, 3, 5, 7, . . .

−1, n = 2, 6, 10, 14, . . .

(17a)

− cos(nπ/2) + cos(0) + cos(nπ)− cos(nπ/2) =


0, n = 0, 4, 8, 12 . . .

0, n = 1, 3, 5, 7, . . .

4, n = 2, 6, 10, 14, . . .

(17b)

Substituting this into Eq. (16c) yields the Fourier Sine coefficients of the square wave,

an =


0, n = 0, 4, 8, 12, . . .

0, n = 1, 3, 5, 7, . . .

8/(nπ), n = 2, 6, 10, 14, . . .

(18)

The Fourier Series approximation of the square wave is

fN(x) =
N∑

n=1

an sin(nπx). (19)

Figure 4 shows the Fourier Series approximation of the square wave for N = 2, 6, 10, 14. As
the value of N increases, we see that the approximation becomes more accurate.

2.2.3 Separation of Variables

This subsection derives the Fourier Sine series solution of the diffusion equation in Eq. (4)
with D = 1 by separation of variables. Let ϕ(x, t) = X(x)T (t), a function of x multiplied by
a function of t. Then substitute into the diffusion equation in Eq. (4) to obtain X(x)T ′(t) =
X ′′(x)T (t). Then divide both sides by X(x)T (t) to obtain

T ′(t)

T (t)
=

X ′′(x)

X(x)
= c, (20)

where c is a constant; this follows because t and x are independent variables. We then have
two ordinary differential equations,

X ′′(x) = cX(x), T ′(t) = cT (t). (21)
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Figure 4: The square wave curve and its Fourier Series approximation for N = 2, 6, 10, 14

The first equation. The general solution of the first equation is X(x) = Ae
√
cx +Be−

√
cx,

where the constants A,B are determined by satisfying the Dirichlet boundary conditions,
X(0) = A+B = 0 andX(1) = Ae

√
c+Be−

√
c = 0. This gives B = −A and Ae

√
c−Ae−

√
c = 0,

which can be rewritten as A(e
√
c − e−

√
c) = 0. To obtain a non-zero solution X(x) we

must have A ̸= 0, so therefore e
√
c − e−

√
c = 0, which implies e

√
c = e−

√
c = 1/e

√
c, which

implies e
√
c · e

√
c = 1, or equivalently, e2

√
c = 1. To solve for c we apply Euler’s formula,

eix = cos(x) + i sin(x), which implies that 2
√
c = 2nπi, where n = 0,±1,±2, . . ., and this

gives infinitely many constants c = cn = −n2π2.

The second equation. Substituting this into the second equation in Eq. (21) gives the
differential equation T ′(t) = −n2π2T (t), and the solution is T (t) = T (0)e−n2π2t, where T (0)
is a constant. Recall that X(x) = Ae

√
cx +Be−

√
cx, which yields

X(x) = Aenπix − Ae−nπix = A(enπix − e−nπix) (22a)

= A(cos(nπx) + i sin(nπx)− cos(−nπx)− i sin(−nπx)). (22b)

Since cosine is an even function, we have cos(−nπx) = cos(nπx), and since sine is an odd
function, we have sin(−nπx) = − sin(nπx), and therefore X(x) = 2Ai sin(nπx).

This shows that separation of variables gives solutions of the diffusion equation satisfying
the Dirichlet boundary conditions of the form

T (t) ·X(x) = T (0)e−n2π2t · 2Ai sin(nπx) = ane
−n2π2t sin(nπx), (23)

where an is an arbitrary constant.
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2.2.4 Fourier Series Solution

The solutions of the diffusion equation in Eq. (23) can be added together giving the Fourier
Sine series solution of the diffusion equation in Eq. (4) with D = 1,

ϕ(x, t) =
∞∑
n=1

ane
−n2π2t sin(nπx), an = 2

∫ 1

0

f(x) sin(nπx)dx, (24)

where the coefficients an have been chosen in accordance with Eq. (14) to satisfy the initial
condition ϕ(x, 0) = f(x).

2.3 Solution by Finite-Difference Method

This section presents the solution of the diffusion equation by the finite-difference method.

2.3.1 Finite-difference approximations of derivatives

Given a function f(x), we can consider finite-difference approximations to the first and
second derivatives. The forward difference approximation of the first derivative is defined by

f ′(x) ≈ f(x+ h)− f(x)

h
= D+f(x), (25)

where h is the step size. The exact value of the derivative is obtained in the limit h → 0 and
for any finite value h > 0 we have an approximation. To analyze the error we consider the
Taylor expansion,

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 + · · · , (26)

which can be rearranged in the form

D+f(x) =
f(x+ h)− f(x)

h
= f ′(x) +

1

2
f ′′(x)h+ · · · . (27)︸ ︷︷ ︸

↑ ↑ ↑
approximation exact error

value
Equation (27) shows that the error is proportional to h, and we write this as

D+f(x) = f ′(x) +O(h). (28)

For example if f(x) = ex, x = 1, then f ′(x) = e = 2.71828 . . . is the exact value. In the
Table below, column 1 is the step size h, column 2 is the approximation D+f(1), column 3
is the truncation error |D+f(1)− f ′(1)|, and column 4 is the ratio of column 3 to column 1.
The final column shows that the error is proportional to the step size, h.

We shall also need the backward difference approximation of the first derivative defined by

D−f(x) =
f(x)− f(x− h)

h
= f ′(x) +O(h), (29)

and the central difference approximation of the second derivative defined by

D+D−f(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
= f ′′(x) +O(h2). (30)
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h D+f(1) |D+f(1)− f ′(1)| |D+f
′(1)− f ′(1)|/h

0.1 2.8588 0.1406 1.4056
0.05 2.7874 0.0691 1.3821
0.025 2.7525 0.0343 1.3705
↓ ↓ ↓ ↓
0 e 0 0

0
= 1

2
f ′′(1) = e

2

Table 1: Forward Difference Approximation

2.3.2 Finite-difference solution of diffusion equation

The finite-difference method replaces the derivatives by finite-difference approximations de-
fined on a grid in space and time. Let h = ∆x = 1/N be the space step and let k = ∆t
be the time step. Then define the spatial grid points xj = jh, j = 0, 1, . . . , N , and the
temporal grid points tn = nk, n = 0, 1, 2, . . ., as shown in Fig. 5. The approximation values
are denoted by un

j ≈ ϕ(xj, tn) and the derivatives in the diffusion equation are approximated
by finite differences,

ϕt = ϕxx →
un+1
j − un

j

k
= D+D−u

n
j =

un
j+1 − 2un

j + un
j−1

h2
. (31)

Let λ = k/h2. Then the finite-difference equation can be rewritten as

un+1
j = un

j + λ(un
j+1 − 2un

j + un
j−1) = λun

j+1 + (1− 2λ)un
j + λun

j−1. (32)

Hence, the numerical solution at time step n + 1 is given by a linear combination of the
numerical solution values at time step n as indicated by the stencil in Fig. 5.

Figure 5: Stencil for finite-difference approximation of the diffusion equation.

It can be shown that the finite-difference method in Eq. (32) is stable only if the coefficients
are positive, which requires that λ ≤ 1/2.

3 Allen-Cahn Equation

Consider a mixture of two kinds of polymers labeled A and B. The phase separation of the
polymers can be modeled by the Allen-Cahn equation [1], which adds a reaction term to the
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Figure 6: Stable figure for finite-difference approximation of the diffusion equation. The first
figure shows the initial condition, the second is at 25 time steps, and the final figure is at 50
time steps.

Figure 7: Unstable figure for finite-difference approximation of the diffusion equation.The
first figure shows the initial condition, the second is at 25 time steps, and the final figure is
at 50 time steps.

diffusion equation,
∂ϕ

∂t
=

∂2ϕ

∂x2
+ ϕ− ϕ3. (33)

The function ϕ(x, t) is called the phase function and it measures the amount of polymer A
compared to the amount of polymer B at any spatial point x and time t. The phase function
lies in the range −1 ≤ ϕ(x, t) ≤ 1 in such a way that ϕ(x, t) ≈ 1 corresponds to polymer A,
ϕ(x, t) ≈ −1 corresponds to polymer B, and intermediate values indicate a mixture. Given
an initial distribution of polymers ϕ(x, 0), we want to determine the distribution ϕ(x, t) at
later times t > 0.

3.1 Without diffusion

First we consider the Allen-Cahn equation without diffusion. This yields an ordinary differ-
ential equation, which for convenience is written in the form

dy

dt
= y − y3. (34)

The equation has three constant solutions c = −1, 0, 1. Figure 8 shows the phase plane
which plots dy/dt versus y, where the arrows denote whether the solution y(t) is increasing
or decreasing in time, which depends on the sign of dy/dt. Hence, from the direction of the
arrows, we see that the constant solution c = 0 is unstable, while the constant solutions
c = −1, 1 are both stable.
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Figure 8: Phase plane of Allen-Cahn equation without diffusion.

3.1.1 ODE Solution by Separation of Variables

3.2 With diffusion

∂ϕ

∂t
=

∂2ϕ

∂x2
+ γ(ϕ− ϕ3)

un+1
j − un

j

k
= D+D−u

n
j + γ(un

j − (un
j )

3)

=
un
j+1 − 2un

j + un
j−1

h2
+ γ(un

j − (un
j )

3)

un+1
j = λun

j+1 + (1− 2λ)un
j + λun

j−1 + kγ(un
j − (un

j )
3)
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Figure 9: Allen-Cahn Equation with Diffusion, left side time step k = 0.000165 is unstable,
while right side k = 0.00016 is stable. Time steps 0, 10, 80 are shown.
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4 Future Work

4.1 Solution of Diffusion Equation by the Heat Kernel

There is another way to solve the diffusion equation with the heat kernel, defined by

f(x, t) =
1√
4πt

e−(x− µ)2/4t, (35)

where f(x, t) is the temperature induced by a point heat source at location x and time t > 0,
but this is left to future work. Note however that f(x, t) is the pdf of a normally distributed
random variable with mean µ and variance 2t.

4.2 Cahn-Hilliard Equation

The Cahn-Hilliard equation [3] is closely related to the Allen-Cahn equation, but that is left
for future work.
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