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ABSTRACT. Path polytopes are defined by indicator vectors that represent the paths between differ-
ent leaves of a tree. They arise in polyhedral geometry and many applications, including phylogenet-
ics, tropical geometry, and algebraic statistics. In this paper, we present a halfspace representation
of these polytopes. We use the toric fiber product as an inductive tool to build polytopes, compute a
characterization of their facets, and obtain their corresponding halfspaces.

1. INTRODUCTION

A polytope can be given by its vertex representation (V-representation) or halfspace representation
(H-representation). The V-representation describes a polytope as the convex hull of its vertices
and the H-representation defines a polytope as the intersection of halfspaces. Therefore, a V-
representation is a parametric description of the polytope, and an H-representation is an implicit
description of the polytope. We study path polytopes of trees, which are defined by their V-
representation as follows: given two distinct leaves i, j in a tree T = (V,E), let i ↔ j be the set
of edges in the path between i and j, and let ci↔j ∈ {0, 1}|E| be the indicator vector for the edges
used in i ↔ j. The path polytope of the tree T , denoted PT , is the convex hull of the vectors ci↔j

for any two distinct leaves i, j in T . Our goal is to find its H-representation.

Path polytopes arrive naturally in graph theory and combinatorics, but they also have diverse
applications. In tropical geometry, the space of phylogenetic trees is parametrized by the path
map [10], which coincides with the tropical Grassmanian of lines G2,n [13]. A key motivation
of this work is the growing recognition that many statistical models defined on trees or graphs
are parametrized by paths between their nodes. Examples include Brownian motion tree models,
where the parametrization is given by paths among leaves in a phylogenetic tree [1]; staged tree
models, parametrized by the paths from the root to a leaf on a rooted tree [5]; and colored and
standard Gaussian graphical models, parametrized by paths between any two nodes on a block
graph [12, 2], among others.

Explicit descriptions of the halfspaces for PT in terms of the tree structure provide a better un-
derstanding of the polytope and its applications. In general, polytopes arising from a monomial
parametrization of log-linear models, such as our polytope induced by the path parametrization,
have shown to be useful in Maximum Likelihood Estimation (MLE) problems [6, 7]. For example,
given a normalized vector of counts for a log-linear model, the MLE exists if and only if this vector
belongs to the relative interior of the corresponding polytope, and the halfspace description gives a
membership test for the interior of the polytope. In fact, the path parametrization has already shown
essential for all the progress related to the MLE of Brownian motion tree models [1, 3]. In [8],
the authors use halfspace representations to learn causal polytree structures from a combination of
observational and interventional data. Therefore, we anticipate that the halfspace representation of
our path polytope will be valuable for statistical applications in the models discussed earlier.
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The conversion from V-representation to H-representation, or the facet enumeration problem,
is computationally expensive. The Fourier-Motzkin elimination algorithm [9] outputs the H-
representation given the vertices of the polytope, but its time complexity grows exponentially with
the dimension of the polytope. Therefore, computing the H-representation of path polytopes with
this algorithm is infeasible for large trees.

Before presenting our main result, let us introduce the necessary notation. A graph is a tuple
G = (V,E) where V is a set of nodes and E is a set of unordered pairs of nodes, which are called
edges. We assume 1 < |V | < ∞. A path in a graph is a sequence of edges that connects a sequence
of distinct nodes. A tree is a graph in which any pair of nodes is connected by exactly one path. A
star tree on n > 1 leaves is Sn = ({v0, v1, . . . , vn}, {{v0, vi} | 1 ≤ i ≤ n}). See Figure 1.

(A) Graph G. (B) Tree T .

i j

(C) Path i ↔ j in T . (D) Star tree S3.

FIGURE 1. Example of a graph, a tree, a path (highlighted in red), and a star tree.
Let T be a tree. Given a node v in T , let N(v) = {u ∈ V | {u, v} ∈ E} be the neighborhood of v.
The degree of a node v in T is deg(v) = |N(v)|. A node is called a leaf if it has degree one. Let
Lv(T ) ⊂ V denote the set of leaves of T , and Int(T ) = V \Lv(T ) denote the set of internal nodes
of T . Note that a tree T is a star tree if and only if |Int(T )| = 1. Let Eleaf(T ) = {{u, v} ∈ E |
u ∈ Lv(T ) or v ∈ Lv(T )} be the set of edges that have a leaf as an endpoint. Let RE be the vector
space with basis elements indexed by the set E, so PT ⊂ RE . Our main result is the following.

Theorem 1.1. Given a tree T = (V,E), an H-representation of its path polytope PT is given by

xe ≥ 0 for all e ∈ E

−x{v,u} +
∑

w∈N(v)\{u}
x{v,w} ≥ 0 for all v ∈ Int(T ) with deg(v) ≥ 3 and all u ∈ N(v)

−x{v,u} + x{v,w} = 0 for all v ∈ Int(T ) such that N(v) = {u,w}∑
e∈Eleaf(T )

xe = 2.

In particular, dim(PT ) = |E| − 1− |{v ∈ V | deg(v) = 2}|.

Remark 1.2. Some of the inequalities x{v,u} ≥ 0 are redundant for nodes of degree 2. For example,
let v ∈ V with N(v) = {u,w}. Then −x{v,u} + x{v,w} = 0 and x{v,u} ≥ 0 imply x{v,w} ≥ 0.
All other halfspaces are not redundant. The inequality x{v,u} ≥ 0 when deg(v) = 3 is also
satisfied by the polytope, but it is redundant. Internal nodes of degree 2 and 3 are special for the
following reason. The polytope PT is closely related to the second hypersimplex ∆n,2. We have
dim(∆n,2) = n − 1 for all n > 2 while ∆2,2 = {(1, 1)} is 0-dimensional. Moreover, ∆n,2 has 2n
facets for n > 3 while ∆3,2 has only 3 facets.

The intuition behind the H-representation given in Theorem 1.1 is the following. First, in any path,
an edge e must be used at least zero times. Second, any path that goes through an internal node v
using the edge {v, u} must leave that internal node using a different edge {v, w}, because we only
consider paths between leaves. Third, we have a particular case of the second case for nodes v of
degree 2: a path that goes through v uses either both edges that contain v or none of them. Finally,
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every path between two leaves uses exactly one edge per leaf, so exactly two of those edges must
be used.

In view of the above, it is easy to check that every vertex in PT satisfies the conditions implied
by the H-representation given in Theorem 1.1, so PT is included in the polytope defined by that
H-representation. Our contribution is proving that these halfspaces are sufficient to define PT . To
do so, we explicitly compute a sufficient characterization facets of PT using toric fiber products,
and then prove that those facets, along with some hyperplanes that contain our entire polytope,
produce our halfspace description, which makes it sufficient.

Structure of the paper. In Section 2 we review the literature on trees, polytopes and toric fiber
products that is relevant for this paper. In Section 3 we show how to construct path polytopes
inductively via toric fiber products. Finally, in Section 4, we describe the facets and their respective
halfspaces of path polytopes of trees, which is our main result. We finish with a discussion of the
extension of this work to block graphs.

2. PRELIMINARIES

We begin with some useful results on trees, which are the kind of graph we study in this paper. We
then show how to induce a polytope from a tree, and finally we introduce the toric fiber product,
which is a convenient operation on polytopes. The main strategy we employ throughout the paper
is induction, because trees, which are the base of our subsequent objects, can be constructed using
induction.

2.1. Gluing of trees. Here, we show how to construct trees using star trees. A star tree Sn is a tree
with one internal node and n leaves, which are all connected to the internal node (see Figure 1d).
We present a method to combine trees, called gluing. Then we use gluing to inductively deconstruct
any tree into star trees, as follows.

Definition 2.1. Given two trees T1 = (V1, E1), T2 = (V2, E2), and two edges e1 ∈ Eleaf(T1)
and e2 ∈ Eleaf(T2). The gluing of T1 and T2 along e1, e2 is the new tree T = T1∗e1,e2 T2 obtained as
the disjoint union of T1 and T2 while identifying e1 ∼ e2. That is, if ei = {vi, ki} with ki ∈ Lv(Ti)
for i = 1, 2, then V (T ) = (V1 ⊔ V2) \ {k1, k2} and E(T ) = (E1 ∪ E2 ∪ {v1, v2}) \ {e1, e2}.

Example 2.2. The tree in Figure 1b can be obtained by gluing two star trees S3 (Figure 1d).

Proposition 2.3. Given a tree T with k ≥ 1 internal nodes, T = Sn1 ∗e′1,e2Sn2 ∗e′2,e3 · · ·∗e′k−1,ek
Snk

,
where each Snj

is a star tree with nj ≥ 2 leaves.

Proof. First, note that gluing any tree with S1 leaves the tree unchanged, so we can assume nj ≥ 2
for all j. Each star tree appearing in the decomposition corresponds to an internal node of T . We
prove this proposition by induction on k = |Int(T )|. For the base case, let T have one internal
node. Then T is a star tree by definition, so the base case holds. Now assume that for a tree T
with k internal nodes, T can be decomposed as T = Sn1 ∗e′1,e2 . . . ∗e′k−1,ek

Snk
, where Sn1 , . . . , Snk

are star trees. Consider a tree T with k + 1 internal nodes. Pick an internal node v ∈ T such
that all but one of its adjacent nodes are leaves. Such a node v always exists since k + 1 ≥ 2.
Let u be the non-leaf node adjacent to v. Define S as the subtree formed by v and all nodes
adjacent to v (including the leaves and u), along with the edges connecting them. By construction,
S ∼= Sdeg(v) is a star tree. Define T ′ as the tree obtained from T by removing the leaves adjacent
to v. This leaves us with a tree T ′ with k internal nodes. By the inductive hypothesis, T ′ can be
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decomposed into star trees as T ′ = Sn1 ∗e′1,e2 . . . ∗e′k−1,ek
Snk

. Let e′k = {u, v} ∈ E(T ′) and let
ek+1 be any edge from S. Then, T can be expressed by gluing T ′ and S along the edges e′k, ek+1,
i.e. T = T ′ ∗e′k,ek+1

S = Sn1 ∗e′1,e2 . . . ∗e′k−1,ek
Snk

∗e′k,ek+1
S. Therefore, T is a gluing of k + 1 star

trees. □

2.2. Path polytopes on trees. The primary objects of study in this paper are polytopes, which
are geometric objects that can be described in two equivalent ways: the V-representation and the
H-representation. The equivalence of these two descriptions is fundamental in polytope theory
[15, Theorem 1.1]. We follow the notation from [15].

Definition 2.4. A set P ⊂ Rd is a polytope if there exist points v1, . . . ,vk ∈ Rd such that

P = conv({v1, . . . ,vk}) =

{
k∑

i=1

λivi | λi ≥ 0,
k∑

i=1

λi = 1

}
The set V(P ) = {v1, . . . ,vk} is called a V- representation of P . Given a vector a ∈ Rd and a
scalar b ∈ R, a linear inequality a⊤x ≤ b is valid for P if it is satisfied for all points x ∈ P . A
face of P is any set of the form

F = P ∩ {x ∈ Rd : a⊤x = b}
where a⊤x ≤ b is a valid inequality for P . The dimension of a face F is the dimension of its
affine hull aff(F ), i.e. the smallest affine space containing F . We denote dim(F ) = dim(aff(F )).
Similarly, the dimension of a polytope P is dim(aff(P )). A d-dimensional polytope is called a
d-polytope. Given a face F = P ∩ {x ∈ Rd : a⊤x = b}, the equation a⊤x = b is called
the supporting affine space of F . A face F of dimension d − 1 is called a facet of P , and a
corresponding valid inequality a⊤x ≤ b is a halfspace of P . The set of affine spaces that contain
P together with a set of halfspaces which describe the facets of P is called an H-representation of
P .

The class of polytopes we consider for this paper are path polytopes, which are geometric objects
that encode the structure of a tree into a geometric object. Every tree induces a path polytope.
These polytopes are defined parametrically, as the convex hull of vertices which are encodings of
paths over a tree T . These vertices provide a V-representation of the polytope. The goal of this
paper is to find a H-representation for path polytopes. The vertices of path polytopes are called
indicator vectors, and they uniquely encode paths on the graph as binary-valued vectors that denote
which edges are used in that path.

Definition 2.5. Consider a tree T = (V,E). For two vertices u, v ∈ V , denote by E(u ↔ v) ⊆ E
the set of edges in the path connecting u and v. We define an indicator vector cT,u↔v = (ce)e∈E ∈
RE such that ce = 1 if e ∈ E(u ↔ v) and ce = 0 otherwise.

For simplicity, we will use cu↔v instead of cT,u↔v if there is no risk of ambiguity.

Definition 2.6. The path polytope of a tree T = (V,E) is

PT = conv({ci↔j | i, j ∈ Lv(T )}) ⊂ RE.

It will become important for us to use the free join of two polytopes, which is a special kind of
union that can be performed when the polytopes are in skew affine spaces. That is, when the two
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polytopes are in affine subpaces which do not intersect and are not parallel. When we take the
union of two polytopes in skew affine subspaces, the result must increase in dimension.

Definition 2.7 (see [11]). If P,Q are two polytopes such that dim(conv(P ∪ Q)) = dim(P ) +
dim(Q) + 1, we call conv(P ∪Q) the free join of P and Q, and denote it by P ⃝∨ Q.

Example 2.8. If Q is a point (0-polytope) not contained in a polytope P , then the free join P ⃝∨ Q
is a pyramid with basis P . See Figure 2.

(A) Polytope PS3 . (B) Polytope PS3 ⃝∨ {0}.

FIGURE 2. Path polytope for the star tree S3 (left), and free join of PS3 and {0}
(right). The coordinates correspond to ordering the edges lexicographically, i.e.
points are of the form x = (x{0,1}, x{0,2}, x{0,3}) ∈ R|E|.

The following result describes the faces of the free join of two polytopes, which will become
essential to construct path polytopes inductively.

Lemma 2.9 ([11, Proposition 2.1]). The faces of P ⃝∨ Q are precisely the sets of the form F ⃝∨ G,
where F is a face of P and G is a face of Q (including F = ∅ or P , and G = ∅ or Q).

There results are useful because our path polytope is always contained in an affine space which
does not contain the origin. Because of that, it is skew with the origin, and a union with the origin
is resultingly a free join.

Proposition 2.10. Given a tree T with at least two edges, the polytope PT lives in the hyperplane
defined by

∑
e∈Eleaf(T ) xe = 2. In particular, conv(PT ∪ {0})= PT ⃝∨ {0}.

Proof. By definition, PT = conv({ci↔j | i ̸= j ∈ Lv(T )}). Every vertex ci↔j satisfies the
equation

∑
e∈Eleaf(T ) xe = 2. Every point in the polytope is a convex combination of its vertices,

so it also satisfies this equation. Hence, PT lives in a hyperplane that does not contain the origin,
so we have conv(PT ∪ {0}) = PT ⃝∨ {0}. □

2.3. Toric Fiber Products on Polytopes. Recall that path polytopes encode the combinatorial
structure of paths in their corresponding trees, and thus capture the same underlying structural in-
formation. Consequently, operations on trees should have analogous counterparts for their induced
polytopes. We note that we can build larger trees T from smaller ones Sn1 , . . . , Snk

inductively
using gluing. Then we will build PT from the polytopes of thePSn1

, . . . , PSnk
inductively using an

operation analogous to gluing. This ensures that the polytopes we produce through the operation
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are the correct polytope for T , because we will build PT in an analogous way we built T , from
analogous building blocks. We construct these polytopes inductively, instead of forming them ex-
plicitly from T so we can track their facets as we build them. At the end of our construction, this
tracking will lead us to a complete, closed-form description of the facets of PT , which we would
not able to derive directly from T .

To start, we need an operation on polytopes which is analogous to gluing. For this we use the toric
fiber product as it appears in [8], along with some adjustments, which gives us a V-representation
of the polytope resulting from a certain product of two polytopes. Note that this definition was
first used by Dinu and Vodicka in [4], who expand on the facets of the product polytope and that
toric fiber products were first constructed by Sullivant in [14]. Just as a tree T can be formed using
gluing on stars Sn1 , . . . , Snk

, we will note that PT will be retrieved from some adjustments of the
toric fiber products on PSn1

, . . . , PSnk
.

To define the toric fiber product, note that an integral polytope is a polytope whose vertices all
have integer coordinates. Given an integral polytope P ⊂ Rn, a projection π : P → Rm is called
integral if π(P ) is an integral polytope.

Definition 2.11. Given integral polytopes P1 and P2 and integral projections π1 : P1 → Q and
π2 : P2 → Q, the toric fiber product of P1 and P2 is

P1 ×Q P2 = conv({(x,y) ∈ V(P1)× V(P2) | π1(x) = π2(y)}).

Definition 2.11 gives the toric fiber product product polytope P1 ×Q P2 as a V-representation. We
will use this toric fiber product to construct path polytopes, for which we need a H-representation.
To achieve this, we first retrieve the facets, which is made possible by the following lemma using
an integral projection onto a simplex.

Definition 2.12. Given two positive integers k, n, the (n, k)-hypersimplex is

∆n,k =

{
(x1, . . . , xn) ∈ Rn |

n∑
i=1

xi = k, 0 ≤ xi ≤ 1 for all i

}
.

When k = 1, ∆n,1 is called the standard simplex.

Lemma 2.13 ([4, lemma 3.2]). Let P1 and P2 be two polytopes. Let πi : Pi → Rn, (i = 1, 2) be
integral projections such that π1(P1) = π2(P2) = ∆n,1. Then all facets of the toric fiber product
P1 ×∆n,1 P2 are of the form F1 ×∆n,1 P2 or P1 ×∆n,1 F2, where Fi is a facet of Pi.

3. PATH POLYTOPES OF TREES VIA TORIC FIBER PRODUCTS

In this section, we use toric fiber products to combine path polytopes of smaller trees into the path
polytope of a bigger tree. Specifically, if we take two trees T1 and T2 and glue them along an
edge to form T , we can use the toric fiber product to input PT1 and PT2 and retrieve PT . For our
purposes, we need to specify the integral projections π1 and π2 to achieve our intended combina-
tion. Specifically, we define edges along which two trees T1 and T2 will be glued. These edges act
as the “connections” between T1 and T2 in the resultant glued tree. The mappings π1 and π2 are
constructed to ensure that any indicator vector cT1,i↔j that “connects” to T2 through the specified
edge is aligned with the corresponding vectors cT2,i′↔j′ that “connects” back to T1. These matched
vectors form new indicator vectors cT,i↔j′ which describe connected paths in T that result from
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the gluing. Effectively, this matches the indicator vectors of paths that are glued together, forming
a larger indicator vector of the glued path.

This is the desired result, because it matches vertices of PT1 and PT2 , which are indicator vectors
over T1 and T2, to form vertices of a new polytope, according to the gluing of the tree. The
resulting polytope’s vertices will be the indicator vectors of all paths in T , which is by definition
the V-representation of PT . Due to some concerns with dimensionality, this polytope is actually
isomorphic to PT , but this makes PT easily retrievable. First we define our integral projections,
which we call gluing integral projections because of how they mimic tree gluing on polytopes.

Definition 3.1. Consider two trees T1 and T2, and two edges e1 ∈ Eleaf(T1) and e2 ∈ Eleaf(T2). We
call gluing integral projections for (T1, T2, e1, e2) to a pair of integral projections πi : PTi

⃝∨ {0} →
∆3,1 (i = 1, 2) such that π1(0) = (0, 0, 1), π2(0) = (1, 0, 0),

π1(c
T1,i↔j) =

{
(1, 0, 0) if e1 /∈ E(i ↔ j)

(0, 1, 0) if e1 ∈ E(i ↔ j),
π2(c

T2,i↔j) =

{
(0, 1, 0) if e2 ∈ E(i ↔ j)

(0, 0, 1) if e2 /∈ E(i ↔ j).

Example 3.2 (Gluing integral projection). Let {b(i)
e | e ∈ E(Ti)} denote the standard basis of

RE(Ti) for i = 1, 2. Let πi : RE(Ti) → R3 for i = 1, 2 be defined by

π1(b
(1)
e ) =

1
2
1[e ∈ Eleaf(T1)]− 1[e = e1]

1[e = e1]
−1

2
1[e ∈ Eleaf(T1)] + 1

 , π2(b
(2)
e ) =

 −1
2
1[e ∈ Eleaf(T2)] + 1

1[e = e2]
1
2
1[e ∈ Eleaf(T2)]− 1[e = e2]

 .

Here we will use the toric fiber product on modified polytopes PT1 ⃝∨ {0} and PT2 ⃝∨ {0}. This is
because using our toric fiber product without 0, paths in T1 and T2 which do not ”connect” to the
other tree are left unmatched. When we attempt use this toric fiber product matching to combine
PT1 and PT2 , we see that those ”non-connecting” paths are not included as indicator vectors in the
resulting product polytope, which is supposed to be PT . However, these leaf paths remain leaf
paths in the glued tree T , and therefore must be included in PT as indicator vectors. To remedy
this, we include a null 0 vector in our polytopes that we can match with those non-gluing leaf paths
of T1 and T2 so we can preserve them in PT as we construct it using the toric fiber product.

Example 3.3. Here we show an example of how to use this toric fiber product to derive the V-
representation of the path polytope of a small tree T . The colors in the matrices correspond to
vectors matched together by gluing integral projections π1 and π2.

Consider T1 = S3, with center 1 and leaves 2, 3, 4. Consider T2 = S3, with center 5 and leaves
6, 7, 8. We let T = T1 ∗{1,4},{8,5} T2 (see Figure 3). We use the affine linear π1 : R3 → R3

and π2 : R3 → R3 defined above such that π1(PT1 ⃝∨ {0}) = π2(PT2 ⃝∨ {0}) = ∆3,1 =
conv((1, 0, 0), (0, 1, 0), (0, 0, 1)). We let Q = (PT1 ⃝∨ {0})×∆3,1 (PT2 ⃝∨ {0}).

1

2

3

4

(A) Tree T1.

∗{1,4},{8,5}
5

6

7

8

(B) Tree T2.

=
1

2

3

5

6

7

(C) Tree T .

FIGURE 3. Gluing T1 and T2 along edges {1, 4} and {8, 5} to form T .
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V(PT1 ⃝∨ {0}) c2↔3 c2↔4 c3↔4 0

{1,2} 1 1 0 0
{1,3} 1 0 1 0
{1,4} 0 1 1 0

V(PT2 ⃝∨ {0}) c6↔7 c8↔6 c8↔6 0

{8,5} 0 1 1 0
{5,6} 1 1 0 0
{5,7} 1 0 1 0

V(Q) c2↔3 c6↔7 c2↔6 c2↔7 c3↔6 c3↔7

{1,2} 1 0 1 1 0 0

{1,3} 1 0 0 0 1 1

{1,4} 0 0 1 1 1 1

{8,5} 0 0 1 1 1 1

{5,6} 0 1 1 0 1 0

{5,7} 0 1 0 1 0 1

V(PT ) c2↔3 c6↔7 c2↔6 c2↔7 c3↔6 c3↔7

{1,2} 1 0 1 1 0 0

{1,3} 1 0 0 0 1 1

{1,5} 0 0 1 1 1 1

{5,6} 0 1 1 0 1 0

{5,7} 0 1 0 1 0 1

Notice from the above example that the toric fiber product polytope (PT1⃝∨ {0})×∆3,1 (PT2⃝∨ {0})
is not exactly PT , since the edge which becomes {1, 5} in T after gluing is duplicated as separate
edges {1, 4} and {8, 5} from T1 and T2. However, this polytope is isomorphic to PT , and it is
simple to retrieve PT from the toric fiber product polytope.

Theorem 3.4. Consider a gluing of two trees T = T1 ∗e1,e2 T2. Let πi : PTi
⃝∨ {0} → ∆3,1

(i = 1, 2) be a pair of gluing integral projections for (T1, T2, e1, e2). Then,

PT
∼= (PT1 ⃝∨ {0})×∆3,1 (PT2 ⃝∨ {0}).

Proof. Let Q = (PT1 ⃝∨ {0})×∆3,1 (PT2 ⃝∨ {0}). It suffices to construct an affine transformation ϕ
that establishes a bijection between the vertices of Q and the vertices of PT . Let e1 = {u1, k1}, e2 =
{u2, k2} where ki ∈ Lv(Ti) for i = 1, 2. Let {ae | e ∈ E(T1) ∪ E(T2)} be the standard basis of
RE(T1)×RE(T2) ∼= RE(T1)∪E(T2), and let {be | e ∈ E(T )} be the standard basis of RE(T ). Consider
the afiine map given by ϕ(ae1) = ϕ(ae2) =

1
2
b{u1,u2} and ϕ(ae) = be if e ̸= e1, e2.

The vertices of Q can be divided in three classes, one for each vertex of ∆3,1, according to Defi-
nition 3.1. First, given two distinct leaves i, j ∈ Lv(T1) \ {k1}, the vertex (cT1,i↔j,0) ∈ V(Q) is
mapped to cT,i↔j ∈ V(PT ) under ϕ. Second, given two distinct leaves i, j ∈ Lv(T2) \ {k2}, the
vertex (0, cT1,i↔j) ∈ V(Q) is mapped to cT,i↔j ∈ V(PT ) under ϕ. Finally, given i ∈ Lv(T1)\{k1}
and j ∈ Lv(T2) \ {k2} the vertex (cT1,i↔k1 , cT2,k2↔j) ∈ V(Q) is mapped to cT,i↔j ∈ V(PT )
under ϕ. We have considered all the vertices of both Q and PT , so PT

∼= Q. □

This gives us our desired result. Now, we can input PT1 and PT2 and retrieve PT using the toric
fiber product, which mimics the operation gluing on trees. We had to append 0 to account for
unmatched paths, which is why we needed Definition 2.7, because as noted in Proposition 2.10,
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PT is skew with the origin. Now, when we need to add the origin as a null vector, our union is a
free join. As noted in Lemma 2.13, this characterization is fortunate, since it will allow us to char-
acterize the facets of these free-join polytopes, which is important in our halfspace representation.
We also noted an isomorphism which results from the two edges being identified as one during
gluing, allowing us to retrieve PT from the toric fiber product polytope. We end the section with
another result about isomorphism, which is not explicitly related to toric fiber products but will be
important for our later characterization of facets.

Proposition 3.5. If T = T ′ ∗e1,e2 S2, then PT
∼= PT ′ .

Proof. Let f ∈ E(T ) be the edge resulting from identifying e1 with e2, and let g ∈ E(T ) be
the edge in S2 distinct from e2. Let {ae | e ∈ E(T ′)} be the standard basis of RE(T ′), and let
{be | e ∈ E(T )} be the standard basis of RE(T ). Consider the affine map ϕ : RE(T ′) → RE(T )

given by ϕ(ae) = be if e ̸= e1 and ϕ(ae1) = bf +bg. The map ϕ is injective and maps the vertices
of PT ′ to the vertices of PT , so PT

∼= PT ′ . □

4. PROOF OF OUR MAIN THEOREM

In this section, we prove Theorem 1.1. We use the toric fiber product, along with facet-descriptions
of our intermediate polytopes from Lemma 2.13 and Lemma 2.9 to create explicit descriptions for
the facets of PT .

Proposition 2.3 implies that all trees can decompose into star trees. The following result shows
that Theorem 1.1 is true for star trees, which will serve as a base case of our inductive argument.

Lemma 4.1. Let Sn = (V,E) be the star tree on n > 1 leaves, and let v0 be the only internal node
of Sn, i.e. N(v0) = Lv(Sn). Then, PSn = ∆n,2. In particular, if n ≥ 4 an H-representation of PSn

is given by 
xe ≥ 0 for all e ∈ E

−x{v0,k} +
∑

j∈N(v0)\{k}
x{v0,j} ≥ 0 for all k ∈ N(v0)∑

e∈E xe = 2.

The corresponding set of facets is F = {Fe | e ∈ E} ∪ {G(v0,k) | k ∈ N(v0)} where

Fe = conv
(
{ci↔j | i, j ∈ Lv(Sn), e ̸∈ E(i ↔ j)}

)
G(v0,k) = conv

(
{ci↔k | i ∈ Lv(Sn) \ {k}}

)
.

When n = 2, PS2 is a point. When n = 3, the first class of halfspaces is redundant and the Fe’s
are not facets, but the rest of the statement holds.

Proof. By construction, we have

∆n,2 = conv

({
(x{v0,v1}, . . . , x{v0,vn}) ∈ {0, 1}n |

∑
e∈E

xe = 2

})
= PSn .

The cases n = 2, 3 are trivial (see Figure 2). Assume that n ≥ 4. For a star tree, Eleaf(T ) = E,
so
∑

e∈E xe = 2, by Proposition 2.10. By definition of ∆n,2 (2.12), the halfspaces of PSn are
0 ≤ xe ≤ 1 for all e ∈ E. Subtracting 2xe ≤ 2 from

∑
e∈E xe = 2 we get the desired H-

representation. Finally, given an edge e = {v0, k} with k ∈ Lv(Sn), we have Fe = PSn ∩{xe = 0}
and G(v0,k) = PSn ∩ {xe = 1}, so the statement follows. □
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Now, we have all of the parts we need to contruct the facets of a path polytope PT . We have the
facets of the polytope of a star tree from Lemma 4.1, which will serve as the base case and the
building blocks for our larger polytope. We have the toric fiber product, along with Definition 2.7
and Theorem 3.4, which we can use to combine these smaller polytopes into the polytope of PT ,
and we have Lemma 2.9 and Lemma 2.13, which we can use to track the facets of PT as we
construct it through the process of the toric fiber product. We use these results to inductively
construct the facets of any PT .

Theorem 4.2. Given a tree T , the facets of PT are of the form

F T
e = conv

(
{ci↔j | i, j ∈ Lv(T ), e ̸∈ E(i ↔ j)}

)
GT

(v,u) = conv
(
{ci↔j | i, j ∈ Lv(T ), {v, u} ∈ E(i ↔ j)}
∪ {ci↔j | i, j ∈ Lv(T ), {v, w} /∈ E(i ↔ j) for any w ∈ NT (v)}

)
for all e ∈ E, v ∈ Int(T ) and u ∈ NT (v).

Proof. We prove it by strong induction on r = |Int(T )|. The case r = 1 follows from Lemma 4.1.
Suppose the claim holds for r and let T be r + 1 nodes. By Proposition 2.3, let T = T1 ∗e1,e2 T2,
where Ti is a tree with ri < r internal nodes for i = 1, 2. Let ei = {vi, ki} with ki ∈ Lv(Ti)
for i = 1, 2. For simplicity of notation, let P̃Ti

= PTi
⃝∨ {0}. Hence, PT

∼= P̃T1 ×∆3,1 P̃T2 by
Theorem 3.4. By Lemma 2.13, the facets of PT are isomorphic to facets of the form {F1×∆3,1 P̃T2 |
F1 facet of P̃T1} and {P̃T1 ×∆3,1 F2 | F2 facet of P̃T2}. We consider the first case (F1 ×∆3,1 P̃T2)
and, by symmetry, the same argument holds for the other facets.

By Lemma 2.9 and the induction hypothesis, the facets of P̃T1 are F T1
e ⃝∨ {0} and GT1

(v,u) ⃝∨ {0}
for all e ∈ E(T1), v ∈ Int(T1) and u ∈ NT1(v), together with PT1 .

First, fix an edge e ∈ E(T1). Then

(F T1
e ⃝∨ {0})×∆3,1 P̃T2 = conv

(
{(cT1,i↔k1 , cT2,k2↔j) | cT1,i↔k1 ∈ F T1

e , cT2,k2↔j ∈ PT2}
∪ {(cT1,i↔j,0) | cT1,i↔j ∈ F T1

e , i, j ̸= k1}
∪ {(0, cT2,i↔j) | cT2,i↔j ∈ PT2 , i, j ̸= k2}

)
which is isomorphic to F T

e if e ̸= e1, and to F T
{u1,u2} if e = e1. Second, fix v ∈ Int(T1) and

u ∈ NT1(v). Then

(GT1

(v,u) ⃝∨ {0})×∆3,1 P̃T2 = conv
(
{(cT1,i↔k1 , cT2,k2↔j) | cT1,i↔k1 ∈ GT1

(v,u), c
T2,k2↔j ∈ PT2}

∪ {(cT1,i↔j,0) | cT1,i↔j ∈ GT1

(v,u), i, j ̸= k1}

∪ {(0, cT2,i↔j) | cT2,i↔j ∈ PT2 , i, j ̸= k2}
)

which is isomorphic to GT
(v,u) if (v, u) ̸= (v1, k1), and to GT

(v1,v2)
if (v, u) = (v1, k1). Finally,

PT1 ×∆3,1 P̃T2 = conv
(
{(cT1,i↔k1 , cT2,k2↔j) | i ∈ Lv(T1) \ {k1}, j ∈ Lv(T2) \ {k2}}
∪ {(cT1,i↔j,0) | i, j ∈ Lv(T1) \ {k1}}

)
is included in P̃T1 ×∆3,1 (G

T2

(v2,k2)
⃝∨ {0}), which is isomorphic to GT

(v2,v1)
. □
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This should be interpreted similar to 4.1. The facets of the tree path polytope,

F T
e = conv

(
{ci↔j | i, j ∈ Lv(T ), e ̸∈ E(i ↔ j)}

)
GT

(v,u) = conv
(
{ci↔j | i, j ∈ Lv(T ), {v, u} ∈ E(i ↔ j)}
∪ {ci↔j | i, j ∈ Lv(T ), {v, w} /∈ E(i ↔ j) for any w ∈ N(v)}

)
Are analogous to the facets of the star tree path polytope

Fe = conv
(
{ci↔j | i, j ∈ Lv(Sn), e ̸∈ E(i ↔ j)}

)
G(v0,k) = conv

(
{ci↔k | i ∈ Lv(Sn) \ {k}}

)
.

An intuitive way of thinking is that each internal node v of T induces a star structure, with adjacent
nodes u ∈ N(v) starting branches of the star tree centered at v. This is analogous to collapsing all
leaves passing through u on the path to v into a single leaf at node u, reducing the tree to a star
tree. Instead of considering only the leaf u ∈ N(v) as in the star tree, we consider any leaf in the
branch starting at u, denoted Tv→u, reflecting the induced star structure of the tree.

Now we are ready to form a complete H-representation of PT . Recall that this representation re-
quires us to find two kinds of halfspaces: facet-defining halfspaces, which are inequalities satisfied
by the entire polytope and are derived from its facets, and polytope-containing halfspaces, which
are hyperplanes (equalities) that contain the polytope in a affine subspace. The intersection of all
of these halfspaces defines the polytope.

We have everything we need to verify the facet-defining halfspaces as listed in Theorem 1.1. The
points in F T

e and GT
(v0,k)

will provide us with enough affinely independent points which satisfy
each equality to prove those to be facet-defining linear spaces. Then, the fact that every point
in the polytope satisfies the inequality proves those to each be halfspaces, which are members
of the H-representation. By Lemma 2.13, we know the sets F T

e and GT
(v0,k)

to contain all facets
of PT , so they produce all facet-defining halfspaces of PT . We will show their form in the full
H-representation in the proof of Theorem 1.1.

Before that, we must see if there are any polytope-containing hyperplanes, which must intersect
with the facet-defining halfspaces of F T

e and GT
(v0,k)

define a to completely define the polytope. We
fully describe these hyperplanes in the following theorem. After we find those, we will have all
inequalities (facet-defining halfspaces) and equalities (polytope-containing halfspaces) needed for
a H-representation.

Theorem 4.3. Given a tree T = (V,E) with |V | > 2, the dimension of the path polytope PT

is |E(T )| − 1− |{v ∈ V | deg(v) = 2}|, and PT is contained in the linear space defined by{
x{v,u} − x{v,w} = 0 for all v ∈ Int(V ) such that N(v) = {u,w}∑

e∈Eleaf(T ) xe = 2.

Proof. Let v ∈ Int(V ) such that N(v) = {u,w}. Given any pair of distinct leaves i, j ∈ Lv(T ),
{v, u} ∈ i ↔ j if and only if {v, w} ∈ i ↔ j. So ci↔j

{v,u} − ci↔j
{v,w}. Therefore, every point in

the polytope satisfies the first set of equations. The polytope also satisfies the last equation by
Proposition 2.10. All these equations are linearly independent, so the dimension of the polytope is
at most |E(T )| − 1− |{v ∈ V | deg(v) = 2}|. We show that it is equal to this quantity.
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Consider a gluing of two trees T = T1 ∗e1,e2 T2. Let πi : PTi
⃝∨ {0} → ∆3,1 (i = 1, 2) be a pair of

gluing integral projections for (T1, T2, e1, e2). Then

dim(PT ) = dim((PT1 ⃝∨ {0})×∆3,1 (PT1 ⃝∨ {0})) =
= dim(PT1 ⃝∨ {0}) + (PT2 ⃝∨ {0})− dim(∆3,1) =

= dim(PT1) + dim(PT2),

because dim((PT1 ⃝∨ {0})×∆3,1 (PT1 ⃝∨ {0})) = dim(PT1 ⃝∨ {0})+ (PT2 ⃝∨ {0})−dim(∆3,1) by
[4], dim(∆3,1) = 2 and dim(PTi

⃝∨ {0}) = dim(PTi
)+1 for i = 1, 2 by Definition 2.7. Therefore,

if T = Sn1 ∗e1,e2 . . . ∗er−1,er Snr where Sni
is a star tree, we have dim(PT ) =

∑r
i=1 dim(PSni

)
and |E(T )| = 1 +

∑r
i=1(ni − 1). Finally, dim(PS2) = 0 and dim(PSn) = n − 1 for n > 2 by

Lemma 4.1, so the statement follows. □

We are now ready to prove our main theorem, which describes all halfspaces that form a complete
H-representation of PT .

Theorem 1.1. Given a tree T = (V,E), an H-representation of its path polytope PT is given by

xe ≥ 0 for all e ∈ E

−x{v,u} +
∑

w∈N(v)\{u}
x{v,w} ≥ 0 for all v ∈ Int(T ) with deg(v) ≥ 3 and all u ∈ N(v)

−x{v,u} + x{v,w} = 0 for all v ∈ Int(T ) such that N(v) = {u,w}∑
e∈Eleaf(T )

xe = 2.

In particular, dim(PT ) = |E| − 1− |{v ∈ V | deg(v) = 2}|.

Proof. Consider a tree T = (V,E). The last two equalities come from Proposition 2.10 and
Theorem 4.3. By Theorem 4.2, all the facets of PT of the form F T

e , and GT
(u,v)) for all e ∈ E,

u ∈ Int(T ) and v ∈ N(u). Recall that every vertex in the polytope satisfies the inequalities
described above, so it enough to check that the facets satisfy them with equality. Fix an arbitrary
edge e ∈ E, then F T

w = PT ∩ {xe = 0}. Fix u ∈ Int(T ), v ∈ N(u), then

GT
(u,v) = PT ∩ {−x{v,u} +

∑
w∈N(v)\{u}

x{v,w} = 0}.

This concludes the proof. □
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