HILBERT–KUNZ MULTIPLICITY IN A TWO-PARAMETER FAMILY

KARINA DOVGODKO AND JACK WESTBROOK MENTOR: AUSTYN SIMPSON

Abstract. We compute the Hilbert–Kunz multiplicity of the Segre product of Monsky's point- S_4 and line- S_4 quartic hypersurfaces, showing that the Hilbert–Kunz multiplicity may vary in a two-parameter family. Appealing to a result of Trivedi, our computation requires an analysis of the Hilbert–Kunz density functions of the aforementioned hypersurfaces.

1. INTRODUCTION

Let (R,\mathfrak{m}) denote either a Noetherian local ring or a standard graded ring over a field with unique (resp. homogeneous) maximal ideal m . Further assume that R has prime characteristic $p > 0$, and denote $d = \dim(R)$. The Hilbert–Kunz function of R, denoted $e_n(R)$, is defined to be

$$
n \mapsto \ell_R(R/\mathfrak{m}^{[p^n]})
$$

where $\mathfrak{m}^{[p^n]}$ denotes the ideal generated by elements of the form r^{p^n} for $r \in \mathfrak{m}$. The main result of [\[Mon83\]](#page-10-0) says that $e_n(R) = e_{HK}(R) \cdot p^{nd} + O(p^{(d-1)n})$, where the leading term $e_{HK}(R)$ is called the *Hilbert–Kunz multiplicity* of R . The goal of the present article is to give an explicit formula for the Hilbert–Kunz multiplicity of the fibers of a certain two parameter family $\hat{\kappa}[s,t] \to R$. This family is inspired by two well known one-parameter families considered in [\[Mon98a;](#page-10-1) [Mon98b\]](#page-10-2), and in fact our ring R is obtained as the Segre product of the rings considered in op. cit..

Let $\hat{\kappa}$ be an algebraically closed field of characteristic 2 and let $\alpha \in \hat{\kappa}^*$. In the sequel, we will consider the irreducible quartic polynomials

$$
g_{\alpha} = \alpha x^2 y^2 + x^3 z + y^3 z + z^4 + xyz^2
$$

$$
h_{\alpha} = \alpha z^4 + (x^2 + yz)(y^2 + xz)
$$

in $\mathcal{R}[x,y,z]$. The Hilbert–Kunz theory of these polynomials demonstrates a jump in severity between the generic fiber and a special fiber, according to the algebraic (resp. dynamical) complexity of the parameter α . More specifically, the Hilbert–Kunz function of g_{α} depends on the degree of the field extension $[\mathbb{F}_2(\lambda) : \mathbb{F}_2] =: m(\alpha)$ where $\alpha = \lambda^2 + \lambda$, whereas that of h_{α} depends on the stopping time (denoted in the sequel by $l(\alpha)$) of a certain dynamical system attached to α — see Settings [2.3](#page-2-0) and [3.1](#page-6-0) respectively for a summary of the results of [\[Mon98a;](#page-10-1) [Mon98b\]](#page-10-2). These hypersurfaces are also notable for exhibiting tight closure's failure to localize [\[BM10;](#page-10-3) [Bor+24\]](#page-10-4).

The primary contribution of this article is a closed formula for the Hilbert–Kunz multiplicity of the Segre products of the above quartic hypersurfaces. For $\gamma \in \mathbb{R}^*$, we denote $R_{\gamma} := \mathcal{R}[x,y,z]/(g_{\alpha})$ and $S_{\gamma} := \mathcal{R}[x,y,z]/(h_{\alpha}).$

Theorem 1.1. Let $\alpha, \beta \in \mathbb{R}^*$. Then

$$
e_{HK}(R_{\alpha} \# R_{\beta}) = 12 - 2 \cdot 2^{-m(\alpha) - 2m(\beta)} + 6(4^{-m(\alpha)} + 4^{-m(\beta)}) - \frac{2}{3} \cdot 8^{-m(\alpha)} \text{ if } m(\alpha) \le m(\beta)
$$

\n
$$
e_{HK}(S_{\alpha} \# S_{\beta}) = 12 - 2 \cdot 2^{-2l(\alpha) - 4l(\beta)} + 6(4^{-2l(\alpha)} + 4^{-2l(\beta)}) - \frac{2}{3} \cdot 8^{-2l(\alpha)} \text{ if } l(\alpha) \le l(\beta)
$$

\n
$$
e_{HK}(R_{\alpha} \# S_{\beta}) = \begin{cases} 12 - 2 \cdot 2^{-m(\alpha) - 4l(\beta)} + 6(4^{-m(\alpha)} + 4^{-2l(\beta)}) - \frac{2}{3} \cdot 8^{-m(\alpha)} : & m(\alpha) \le 2l(\beta) \\ 12 - 2 \cdot 2^{-2l(\beta) - 2m(\beta)} + 6(4^{-2l(\beta)} + 4^{-m(\alpha)}) - \frac{2}{3} \cdot 8^{-2l(\beta)} : & 2l(\beta) \le m(\alpha) \end{cases}
$$

Our method for computing the above multiplicities involves understanding the *Hilbert*-Kunz density functions of the g_{α} and h_{α} , as introduced by Trivedi in [\[Tri18\]](#page-10-5). These are compactly supported continuous real-valued functions which allow one to recover the Hilbert– Kunz multiplicity by integration. Moreover, a tool emerging from $op.$ cit. is that the density function of the Segre product may be realized as a certain convolution of the density functions of each factor. We summarize Trivedi's results in Section [2.](#page-1-0)

2. Density Function: Point-S⁴ Quartics

In this section we compute the Hilbert–Kunz density function for Monsky's point- S_4 quartic polynomial. First, we recall the facts from [\[Tri18\]](#page-10-5) that will be pertinent to us.

2.1. Trivedi's density function.

Theorem 2.1 ([\[Tri18\]](#page-10-5)). Let (R, m) be a Noetherian ring which is standard graded over a perfect field of prime characteristic $p > 0$ with $d = \dim(R) \geq 2$. Then there exists a uniformly convergent sequence $\{h_n : \mathbb{R} \to \mathbb{R}\}_{n \in \mathbb{N}}$ of compactly supported piecewise linear continuous functions such that

(1) $\text{HKD}(R)(w) := \lim_{n \to \infty} h_n(w)$ is a compactly supported function with

$$
e_{HK}(R) = \int_{\mathbb{R}} HKD(R)(w) dw;
$$

(2) HKD(R)(-) may be computed via HKD(w) = $\lim_{n\to\infty} f_n(w)$ where

$$
f_n(w) := \frac{\ell_R\left((R/\mathfrak{m}^{[p^n]})_{\lfloor w p^n\rfloor}\right)}{p^{n(d-1)}}.
$$

The fact we will leverage is the multiplicative nature of the density function under Segre products, which is the key ingredient in proving Theorem [1.1.](#page-0-0) We recall this result at the required level of generality for us, which is much more restrictive than what is proven in φ . cit.

Theorem 2.2 ([\[Tri18,](#page-10-5) Proposition 2.17]). Let R_1, \ldots, R_T be Noetherian rings of $\dim(R_i) = 2$ which are standard graded over a common algebraically closed field of prime characteristic $p > 0$. Further assume that the R_i all have the same Hilbert–Samuel multiplicity e_{HS} . Then:

$$
\begin{aligned} \text{HKD}(R_1 \# \cdots \# R_T)(w) &= e_{HS}^T w^T - \prod_{i=1}^T (e_{HS} w - \text{HKD}(R_i)(w)) \\ &= \sum_{i=1}^T (-1)^{i+1} e_{HS}^{T-i} w^{T-i} e_i(\text{HKD}(R_1)(w), \dots, \text{HKD}(R_T)(w)) \end{aligned}
$$

where e_i is the i-th elementary symmetric polynomial.

2.2. **Point-** S_4 quartics. We assume the following setup for the remainder of this section.

Setting 2.3. For an element $\alpha \in \mathbb{R}^*$ which is algebraic over \mathbb{F}_2 write $\alpha = \lambda^2 + \lambda$. Then $m(\alpha)$ is defined to be the degree of the field extension $\mathbb{F}_2(\lambda) \supseteq \mathbb{F}_2$ (for $\alpha \in \mathbb{R}^*$ transcendental over \mathbb{F}_2 , set $m(\alpha) = \infty$). For ease of notation, we let $g = g_\alpha = \alpha x^2 y^2 + x^3 z + y^3 z + z^4 + xyz^2$, $m = m(\alpha)$, and $q = 2^{m+r}$ for $r \ge 1$. Let $\mathbb{G} = \mathbb{R}[x, y, z]/m^{[q]}$ is the artinian graded ring where $m = (x, y, z)$. Then $\varphi_i : \mathbb{G}_i \to \mathbb{G}_{i+4}$ denotes multiplication by g, with kernel and cokernel N_i and C_i , respectively. If $0 \neq u \in \mathcal{O}_t$ is written in descending powers of z, i.e. $u = A_l(x, y)z^l + \cdots + A_1(x, y)z + A_0(x, y)$, we define the *z*-degree to be deg_z(u) := l.

We provide a dossier for the facts from [\[Mon98a\]](#page-10-1) that will be used in this section.

Fact 2.4. Let $n \geq 2$.

- (1) [\[Mon98a,](#page-10-1) Theorem 3.1(2), Lemma 4.15, Lemma 4.16] When $n = m + 1$, (0) \neq $N_{3\cdot2^{n-1}-5}$ = span_k{u} and $N_{3\cdot2^{n-1}-4}$ = span_k{xu,yu,zu}. Moreover, this principal generator has $deg_z(u) = 2^n - 4$.
- (2) [\[Mon98a,](#page-10-1) Lemma 4.7] For every $n \ge m+1$, $N_{3 \cdot 2^{n-1}-4-2^{n-m-1}} \ne (0)$.
- (3) [\[Mon98a,](#page-10-1) Lemma 4.11(a)] For every $n \ge m+2$ and $i < 3 \cdot 2^{n-1} - 4 - 2^{n-m-1}$, $N_i = (0)$.
- (4) [\[Mon98a,](#page-10-1) Lemma 4.5] For every n and $i \leq 2^{n+1} 6$, if $0 \neq v \in N_i$ and $0 \neq L(x,y,z)$ is a linear form, then $Lv \neq 0$.
- (5) [\[Mon98a,](#page-10-1) Lemma 4.8] If $n \ge m + 1$ and $0 \ne v \in N_{3 \cdot 2^{n-1}-4-2^{n-m-1}}$ then for every $0 \le s \le 2^{n-m-1}$, the set $\{x^a y^b v \mid a+b=s\}$ is linearly independent.
- (6) [\[Mon98a,](#page-10-1) Lemma 4.1] dim_k($\mathcal{O}_n/g_\alpha \mathcal{O}_n$) = 3 · 4ⁿ - 4 + 2 $\sum_{n=1}^{3 \cdot 2^{n-1}-4}$ $\sum_{i=0}$ $\dim_k N_i$.
- (7) [\[Mon98a,](#page-10-1) Theorem 4.14 & Theorem 4.18] $\dim_k(\mathbb{G}_n/g_\alpha \mathbb{G}_n) = 3 \cdot 4^n - 4$ for $1 \le n \le m$, and dim $_{\mathcal{R}}(\mathbb{G}_n/g_\alpha\mathbb{G}_n) = 3 \cdot 4^n + 4^{n-m}$ otherwise.

Lemma 2.5. For each $r \ge 1$, there is a nonzero element $u \in N_{3q/2-4-2^{r-1}}$. Moreover, u has *z*-degree $q − 4$.

Proof. Argue by induction on r, with the base case given by Fact [2.4\(](#page-2-1)[1\)](#page-2-2). Given $u \in N_{3q/2-4-2^{r-1}}$ we set $v = gu^2$. As $gu \in \mathfrak{m}^{[q]}$, $g^2u^2 \in \mathfrak{m}^{[2q]}$ so indeed v is annihilated by g. By induction, u has z-degree $q - 4$, and as g has z-degree 4, v has z-degree $2q - 4$ as long as its leading coefficient is not in $m^{[2q]}$. Write $u = \sum_{i=0}^{q-4} P_i z^i$ with each $P_i(x, y)$ homogeneous of degree $3q/2-4-2^{r-1}-i$. Then the leading coefficient of v is P_a^2 . q^{2}_{q-4} with degree $q-2^r$. In particular, P_a^2 q^{2} ² q ∉ m^[2 q] . □

Lemma 2.6. Let $u \in N_{3q/2-4-2^{r-1}}$ be given by Lemma [2.5.](#page-2-3) Then for each $0 \le s \le 2^{r-1}$, the set

$$
L_s := \{x^{d_1} y^{d_2} z^{d_3} u \mid d_1 + d_2 + d_3 = s, d_3 < 4\}
$$

is linearly independent in $\mathbb{G}_{3q/2-4-2^{r-1}+s}.$

Proof. If some linear combination is trivial, then $L = Q_0 + Q_1 z + Q_2 z^2 + Q_3 z^3$ annihilates u with each $Q_j(x,y)$ homogeneous of degree $s - j$. Write $u = \sum_{i=0}^{q-4} P_i z^i$ with each $P_i(x,y)$ homogeneous of degree $3q/2 - 4 - 2^{r-1} - i$. We then compute

$$
0=uL=P_{q-4}Q_3z^{q-1}+(P_{q-5}Q_3+P_{q-4}Q_2)z^{q-2}+(P_{q-6}Q_3+P_{q-5}Q_2+P_{q-4}Q_1)z^{q-3}
$$

$$
+\, (P_{q-7}Q_3+P_{q-6}Q_2+P_{q-5}Q_1+P_{q-4}Q_0)z^{q-4}+\sum_{i=5}^q z^{q-i}\sum_{j=0}^3 P_{q-j-i}Q_j.
$$

The first four coefficients must all be 0 because the z-degrees are less than q. Since P_{q-4} is nonzero with degree $q/2 - 2^{r-1}$ and each Q_j has degree $s - j \leqslant s \leqslant 2^{r-1}$, we observe that each $P_{q-4}Q_j$ has degree at most $q/2$, hence must be 0 in $\mathcal{R}[x,y]$. By iterated substitution, $Q_3 = Q_2 = Q_1 = Q_0 = 0$ as desired.

Corollary 2.7. For $s \le 3$, $N_{3q/2-4-2^{r-1}+s}$ has dimension at least $\binom{s+2}{2}$ and for $4 \le s \le 2^{r-1}$, $N_{3q/2-4-2^{r-1}+s}$ has dimension at least 4s – 2.

Proof. By Lemmas [2.5](#page-2-3) and [2.6,](#page-2-4) the cardinality of L_s gives lower bounds. For $s \leq 3$, every monomial is indivisible by z^4 , hence L_s has cardinality $\binom{s+2}{2}$. For $s \ge 4$, L_s corresponds to the monomials of degree s in 3 variables, except for those divisible by z^4 , of which there are ${s+2 \choose 2} - {s-2 \choose 2} = 4s - 2.$

Lemma 2.8. In the same situation as Lemma [2.6,](#page-2-4) L_s is a basis for $N_{3q/2-4-2^{r-1}+s}$.

Proof. We showed linear independence in Lemma [2.6](#page-2-4) so it remains to show L_s spans. Fact [2.4](#page-2-1)[\(3\)](#page-2-5) gives that $N_i = 0$ for all $i < 3q/2 - 4 - 2^{r-1}$ $i < 3q/2 - 4 - 2^{r-1}$ $i < 3q/2 - 4 - 2^{r-1}$ when $r \ge 2$. In case $r = 1$, we use Fact [2.4\(](#page-2-1)1[,6](#page-2-6)[,7\)](#page-2-7) to see

$$
3q^{2} + 4 = 3q^{2} - 4 + 2\left(4 + \sum_{i=0}^{3q/2 - 6} \dim N_{i}\right) = 3q^{2} + 4 + \sum_{i=0}^{3q/2 - 6} \dim N_{i}.
$$

Thus each dim $N_i = 0$ for $i < 3q/2 - 4 - 2^{r-1}$ as well. Then Fact [2.4](#page-2-1)[\(6](#page-2-6)[,7\)](#page-2-7) yields

$$
3q^{2} + 4^{r} = 3q^{2} - 4 + 2 \sum_{i=0}^{3q/2-4} \dim N_{i} = 3q^{2} - 4 + 2 \sum_{s=0}^{2^{r-1}} \dim N_{3q/2-4-2^{r-1}+s}.
$$

We use the bounds from Corollary [2.7](#page-3-0) with the above equality to see

$$
3q^{2} + 4^{r} \ge 3q^{2} - 4 + 40 + \sum_{s=4}^{2^{r-1}} (s+1)(s+2) - (s-3)(s-2) = 3q^{2} + 36 + 4\sum_{s=4}^{2^{r-1}} 2s - 1
$$

with equality if and only if each L_s is a basis. As

$$
\sum_{s=4}^{2^{r-1}} 2s - 1 = 2 \sum_{s=4}^{2^{r-1}} s - \sum_{s=4}^{2^{r-1}} 1 = (2^{r-1} + 1)2^{r-1} - 12 - (2^{r-1} - 3) = 4^{r-1} - 9,
$$

we get equality. \Box

Corollary 2.9. For all $i \leq 3q/2-4$,

$$
\dim N_i = \begin{cases} 0 & \text{if } i < 3q/2 - 4 - 2^{r-1} \\ \frac{(s+2)(s+1)}{2} & \text{if } i = 3q/2 - 4 - 2^{r-1} + s \text{ with } 0 \le s \le 3 \\ 4s - 2 & \text{if } i = 3q/2 - 4 - 2^{r-1} + s \text{ with } 4 \le s \le 2^{r-1} \end{cases}
$$

Proof. By Corollary [2.7](#page-3-0) and Lemma [2.8.](#page-3-1) \Box

Lemma 2.10. \mathbb{G}_i has dimension $\binom{i+2}{2}$ if $i < q$ and dimension $\binom{i+2}{2} - 3\binom{i-q+2}{2}$ if $q \leq i \leq 3q/2$.

Proof. A basis for \mathbb{G}_i is given by monomials of degree *i* indivisible by x^q, y^q , and z^q . Because $3q/2 \leq 2q - 1$, it follows that a monomial of degree *i* is divisible by at most one of x^q, y^q , or z^q . If $i < q$, \mathcal{O}_i has basis given by the monomials of degree *i*, of which there are $\binom{i+2}{2}$. If

 $i \geqslant q$, there are exactly $\binom{i-q+2}{2}$ monomials divisible by x^q , and the same is true of y^q and z^q . Thus \mathbb{G}_i has dimension $\binom{i+2}{2} - 3\binom{i-q+2}{2}$. □

Lemma 2.11. For all *i*, C_i has dimension dim $C_i = \dim N_i - \dim \mathcal{O}_i + \dim \mathcal{O}_{i+4}$. In addition, dim $C_i = \dim N_{3q-7-i}$.

Proof. The first claim follows from additivity of dimension on exact sequences applied to

$$
0 \to N_i \to \mathbb{G}_i \to \mathbb{G}_{i+4} \to C_i \to 0.
$$

The second claim follows by applying the duality functor $\text{Hom}_{\mathcal{O}}(-,\mathcal{O}(3q-3))$ to the above exact sequence. \Box

Lemma 2.12. For $i \ge -4$ and $r \ge 3$, we compute the dimensions of C_i below.

Proof. We divide into cases for i and will use Corollary [2.9](#page-3-2) and Lemmas [2.10](#page-3-3) and [2.11](#page-4-0) repeatedly.

Case 1: $-4 \le i < 0$. Here $N_i = 0 = \mathbb{G}_i$, so dim $\mathbb{G}_{i+4} = \dim C_i$, thus

dim
$$
C_i = {i+6 \choose 2} = \frac{(i+6)(i+5)}{2}
$$
.

Case 2: $0 \le i \le q - 4$. Since $i \le 3q/2 - 4 - 2^{r-1}$, we get dim $N_i = 0$, dim $\mathbb{G}_i = \binom{i+2}{2}$ and dim $\mathbb{G}_{i+4} = \binom{i+6}{2}$. Thus

$$
\dim C_i = \frac{(i+6)(i+5)}{2} - \frac{(i+2)(i+1)}{2} = 4i + 14.
$$

Case 3: $i = q - 4 + k$ with $k = 0, 1, 2, 3$. Because $i < 3q/2 - 4 - 2^{r-1}$, we have dim $N_i = 0$, dim $\mathbb{G}_i = \binom{i+2}{2}$ and dim $\mathbb{G}_{i+4} = \binom{i+6}{2} - 3\binom{k+2}{2}$. Thus

$$
\dim C_i = 4i + 14 - \frac{3}{2}(k+2)(k+1) = 4i + 14 - \frac{3}{2}(i - q + 6)(i - q + 5).
$$

Case 4: $i = q + k$, $0 \le k < q/2 - 2^{r-1} - 4$. We check that $i < 3q/2 - 4 - 2^{r-1}$. In this case, dim $N_i = 0$, dim $\mathbb{O}_i = \binom{i+2}{2} - 3\binom{k+2}{2}$ and dim $\mathbb{O}_{i+4} = \binom{i+6}{2} - 3\binom{k+6}{2}$ so $\dim C_1 = 4i - 19k - 98 - 19a - 8i - 98$

$$
\dim C_i = 4i - 12k - 20 = 12q - 0i - 20.
$$

Case 5: $i = q + k$, $k = q/2 - 2^{r-1} - 4 + s$ with $s = 0, 1, 2, 3$. Here we have $i = 3q/2 - 4 - 2^{r-1} + s$, so dim $N_i = {s+2 \choose 2}$, dim $\mathbb{O}_i = {i+2 \choose 2} - 3{k+2 \choose 2}$ and dim $\mathbb{O}_{i+4} = {i+6 \choose 2} - 3{k+6 \choose 2}$, hence

$$
\dim C_i = \frac{(s+2)(s+1)}{2} + 4i - 12k - 28 = \frac{(s+2)(s+1)}{2} + 12q - 8i - 28.
$$

Case 6: $i = q + k$, $k = q/2 - 2^{r-1} - 4 + s$ with $4 \le s \le 2^{r-1}$. We have dim $N_i = 4s - 2$, dim $\mathbb{G}_i = \binom{i+2}{2} - 3\binom{k+2}{2}$, and dim $\mathbb{G}_{i+4} = \binom{i+6}{2} - 3\binom{k+6}{2}$. Then

$$
\dim C_i = 4s + 4i - 12k - 30.
$$

Expanding, and letting $s = i - 3q/2 + 2^{r-1} + 4$,

$$
\dim C_i = 12q - 8i - 28 + 4s - 2 = (6 + \frac{1}{2^{m-1}})q - 4i - 14.
$$

Case 7: $3q/2 - 3 \le i < 3q/2 - 6 + 2^{r-1}$. Let $s = 3q/2 - 3 + 2^{r-1} - i$, so $4 \le s \le 2^{r-1}$. We observe $3q/2-2^{r-1}$ ≤ $3q-7-i$ ≤ $3q/2-4$, so we let $j = 3q-7-i$ and $j = 3q/2-4-2^{r-1}+s$. By Lemma [2.11](#page-4-0) and Corollary [2.9,](#page-3-2)

$$
\dim C_i = \dim N_j = 4s - 2 = 6q - 14 + 2^{r+1} - 4i = (6 + \frac{1}{2^{m-1}})q - 4i - 14.
$$

Case 8: $3q/2-6+2^{r-1} \le i < 3q/2-2+2^{r-1}$. We have $3q/2-2^{r-1}-4 \le 3q-7-i < 3q/2-2^{r-1}$, so we let $j = 3q - 7 - i = 3q/2 - 4 - 2^{r-1} + s$ with $0 \le s \le 3$. Then

$$
\dim C_i = \dim N_j = \frac{(s+2)(s+1)}{2} = \frac{(3q/2 - 1 + 2^{r-1} - i)(3q/2 - 2 + 2^{r-1} - i)}{2}
$$

Case 9: $3q/2 - 2 + 2^{r-1} \le i$. Then $3q - 7 - i < 3q/2 - 4 - 2^{r-1}$, so

$$
\dim C_i = \dim N_{3q-7-i} = 0.
$$

□

.

Corollary 2.13. In the notation of Theorem [2.1,](#page-1-1) $f_n(x)$ is a piecewise function supported on $[-\frac{4}{q}, \frac{3}{2}]$ $rac{3}{2} - \frac{2}{q}$ $\frac{3}{q}$ + 2^{-m-1}] given below for $r \ge 2$ where $i = \lfloor wq \rfloor$ and $q = 2^n = 2^{m+r}$.

$$
qf_n(w) = \begin{cases} \frac{(i+6)(i+5)}{2} & \text{if } -\frac{4}{q} \le w < 0\\ 4i+14 & \text{if } 0 \le w < 1 - \frac{4}{q} \\ 4i+14 - \frac{3}{2}(i-q+6)(i-q+5) & \text{if } 1 - \frac{4}{q} \le w < 1\\ 4(3q-2i-7) & \text{if } 1 \le w < \frac{3}{2} - \frac{1}{2^{m+1}} - \frac{4}{q} \\ \frac{(i-3q/2+2^{r-1}+6)(i-3q/2+2^{r-1}+5)}{2} + 4(3q-2i-7) & \text{if } \frac{3}{2} - \frac{1}{2^{m+1}} - \frac{4}{q} \le w < \frac{3}{2} - \frac{1}{2^{m+1}}\\ \frac{(3q/2-1+2^{r-1}-i)(3q/2-2+2^{r-1}-i)}{2} & \text{if } \frac{3}{2} - \frac{1}{q} - \frac{1}{q} \le w < \frac{3}{2} - \frac{6}{q} + \frac{1}{2^{m+1}}\\ \end{cases}
$$

Proof. The claim follows from Fact [2.4](#page-2-1)[\(5\)](#page-2-8) and the fact that $a \leq \lfloor wq \rfloor < b$ iff $a/q \leq w < b/q$ for any $a, b \in \mathbb{Z}$.

Lemma 2.14. Continuing the notation from Corollary [2.13,](#page-5-0) the Hilbert–Kunz density function $f = \lim_{n \to \infty} f_n$ of $\kappa[x, y, z]/(g_\alpha)$ is supported on $[0, \frac{3}{2}]$ $\frac{3}{2} + 2^{-m-1}$] and is given below:

$$
f(w) = \begin{cases} 4w & \text{if } 0 \le w < 1 \\ 12 - 8w & \text{if } 1 \le w < \frac{3}{2} - \frac{1}{2^{m+1}} \\ 6 + 2^{1-m} - 4w & \text{if } \frac{3}{2} - \frac{1}{2^{m+1}} \le w < \frac{3}{2} + \frac{1}{2^{m+1}} \end{cases}
$$

J. *Proof.* We notice $\lim_{n\to\infty} \frac{i}{a}$ $\frac{i}{q} = w$ since

$$
\lfloor wq\rfloor \leqslant wq < \lfloor wq\rfloor + 1.
$$

The result is then easily derived from Corollary 2.13 . \square

We now let $\alpha \in \mathcal{R}^*$ be transcendental over \mathbb{F}_2 .

.

□

Lemma 2.15. For each i , the dimension of C_i is given below:

$$
\dim C_i = \begin{cases} {i+6 \choose 2} & \text{if } -4 \le i < 0 \\ 4i + 14 & \text{if } 0 \le i < q-4 \\ 4i + 14 - 3{i-q+6 \choose 2} & \text{if } q-4 \le i < q \\ 12q - 8i - 28 & \text{if } q \le i < \frac{3q}{2} - 3 \\ 0 & \text{if } i \ge 3q/2 - 3. \end{cases}
$$

Proof. Since α is transcendental, $m = \infty$. Thus $n < m$ for all n, hence Fact [2.4](#page-2-1)[\(7\)](#page-2-7) tells us that $e_n(g) = 3q^2 - 4$. By comparing with Fact [2.4](#page-2-1)[\(6\)](#page-2-6), we get that N_i is trivial for $i \leq \frac{3q}{2}$ $\frac{3q}{2}$ – 4. The claim then follows from Lemmas 2.10 and 2.11 .

Lemma 2.16. With the notation of Theorem [2.1,](#page-1-1) $f_n(w)$ is a piecewise function supported on $[-\frac{4}{q}, \frac{3}{2}]$ $rac{3}{2} - \frac{3}{q}$ $\frac{3}{q}$] and is given below, where $i = \lfloor wq \rfloor$ and $q = 2^n$:

$$
qf_n(w) = \begin{cases} {i+6 \choose 2} & \text{if } -4/q \leq w < 0 \\ 4i+14 & \text{if } 0 \leq w < 1 - \frac{4}{q} \\ 4i+14-3{i-q+6 \choose 2} & \text{if } 1 - \frac{4}{q} \leq w < 1 \\ 12q-8i-28 & \text{if } 1 \leq w < \frac{3}{2} - \frac{3}{q} \\ 0 & \text{if } w \geq \frac{3}{2} - \frac{3}{q}. \end{cases}
$$

Proof. This follows from Lemma [2.15](#page-5-1) and $a \leq \lfloor wq \rfloor < b$ iff $a/q \leq w < b/q$ for integers $a, b.$

3. Density Function: Line-S⁴ Quartics

In this section we compute the Hilbert–Kunz density function of Monsky's line- S_4 quartic polynomial. We assume the following setup.

Setting 3.1. For $\alpha \in \mathbb{R}^*$, let $\varphi_\alpha : \mathbb{R} \cup \{\infty\} \to \mathbb{R} \cup \{\infty\}$ given by $t \mapsto t^4 + \alpha t^{-4}$. We define $\varphi_\alpha^{(r)}$ to be the r-fold composition of φ_{α} with itself, and say the *escape time* $l(\alpha)$ of α is the positive integer r such that $\varphi_{\alpha}^{(r)}(1) = 0$ (if there is no such integer, we set $l(\alpha) = \infty$). Note that there is at most one integer r such that $\varphi_\alpha^{(r)}(1) = 0$ because if $\varphi_\alpha^{(r)}(1) = 0$, then $\varphi_\alpha^{(s)}(1) = \infty$ for all $s > r$. Let $h = h_\alpha = \alpha z^4 + (x^2 + yz)(y^2 + xz)$, $l = l(\alpha)$ and $q = 2^{2l+r}$ for $r \ge 1$ and finite l. In addition, $\varphi_i: \mathbb{G}_i \to \mathbb{G}_{i+4}$ denotes multiplication by h , with kernel and cokernel N_i and C_i , respectively. Lastly, we consider elements of \odot to be polynomials in z with coefficients being polynomials in x and y . We then say the *lowest term* of a polynomial is its term with minimal z-degree.

In analogy with Fact [2.4,](#page-2-1) we list some facts about h_{α} established in [\[Mon98b\]](#page-10-2).

Fact 3.2. Let $n \geq 2$.

- (1) [\[Mon98b,](#page-10-2) Theorem 4.8] When $n = 2l + 1$, $N_{3q/2-5} \neq (0)$.
- (2) [\[Mon98a,](#page-10-1) Lemma 4.1] dim_k($\mathcal{O}_n/g_\alpha \mathcal{O}_n$) = 3 · 4ⁿ - 4 + 2 $\sum_{n=1}^{3 \cdot 2^{n-1}-4}$ $\sum_{i=0}$ $\dim_k N_i$.
- (3) [\[Mon98b,](#page-10-2) Corollary 3.15 & Theorem 5.8] $\dim_k(\mathbb{G}_n/g_\alpha \mathbb{G}_n) = 3 \cdot 4^n - 4$ for $1 \le n \le 2l$, and dim_k($\mathcal{O}_n/g_\alpha \mathcal{O}_n$) = 3 · 4ⁿ + 4^{n-2l} otherwise.

Lemma 3.3. Let $q = 2^{2l+1}$ and $u \in N_{3q/2-5}$ have lowest term Pz^c . Then $c \le q/2 - 3$.

Proof. We notice that the lowest term of hu is $x^2y^2Pz^c$. Since h annihilates u and $c < q$ (else $u = 0$, x^2y^2 annihilates P. Thus every term in P is divisible by either x^{q-2} or y^{q-2} . This implies that P has degree at least $q-2$. On the other hand, P has degree $3q/2-5-c$. Putting the two together gives the result. \Box

Lemma 3.4. In the setting of Lemma [3.3,](#page-6-1) P is a k-linear combination of $x^{q-2}y^{q/2-3-\epsilon}$ and $x^{q/2-3-c}y^{q-2}.$

Proof. Lemma 3.8 in [\[Mon98a\]](#page-10-1) tells us P is a polynomial in x^2 and y^2 . This means no term of P is divisible by x^{q-1} or y^{q-1} (since $q-1$ is odd and $x^q = y^q = 0$). On the other hand, every term of P is divisible by x^{q-2} or y^{q-2} , which gives the result. □

Lemma 3.5. In the setting of Lemma [3.3,](#page-6-1) $P = ax^{q-2}y^{q/2-3-c} + bx^{q/2-3-c}y^{q-2}$ for some $a, b \in \mathbb{R}^*$.

Proof. By Lemma [3.4,](#page-7-0) $P = ax^{q-2}y^{q/2-3-c} + bx^{q/2-3-c}y^{q-2}$ for some $a, b \in \mathbb{R}$. Suppose for a contradiction that $b = 0$. We may then take $P = x^{q-2}y^{q/2-3-c}$ by rescaling, and will write $u = \sum_{i=c}^{q-1} P_i z^i$ (so $P_c = P$). Because $h = \alpha z^4 + xyz^2 + (x^3 + y^3)z + x^2y^2$ annihilates u, we get the following expression:

$$
0 = hu
$$

\n
$$
= x^{2}y^{2}P_{c}z^{c} + ((x^{3} + y^{3})P_{c} + x^{2}y^{2}P_{c+1})z^{c+1} + (xyP_{c} + (x^{3} + y^{3})P_{c+1} + x^{2}y^{2}P_{c+2})z^{c+2}
$$

\n
$$
+ (xyP_{c+1} + (x^{3} + y^{3})P_{c+2} + x^{2}y^{2}P_{c+3})z^{c+3}
$$

\n
$$
+ \sum_{k=0}^{q-c-5} (\alpha P_{c+k} + xyP_{c+k+2} + (x^{3} + y^{3})P_{c+k+3} + x^{2}y^{2}P_{c+k+4})z^{c+k+4}.
$$

Because the z-degrees are sufficiently small, we get the following equations for all $0 \le k <$ $q - c - 4$:

$$
x^{2}y^{2}P_{c+1} = (x^{3} + y^{3})P_{c}
$$

\n
$$
x^{2}y^{2}P_{c+2} = xyP_{c} + (x^{3} + y^{3})P_{c+1}
$$

\n
$$
x^{2}y^{2}P_{c+3} = xyP_{c+1} + (x^{3} + y^{3})P_{c+2}
$$

\n
$$
x^{2}y^{2}P_{c+k+4} = \alpha P_{c+k} + xyP_{c+k+2} + (x^{3} + y^{3})P_{c+k+3}.
$$

By our assumption that $P_c = x^{q-2} y^{q/2-3-\epsilon}$, we get the following equalities:

$$
P_{c+1} = x^{q-4} y^{q/2-2-c}
$$

\n
$$
P_{c+2} = x^{q-6} y^{q/2-1-c}
$$

\n
$$
P_{c+3} = x^{q-8} y^{q/2-c}.
$$

We now claim that the minimal x-degree of P_{c+k} is $q-2(k+1)$ for each k. The cases $k = 0, 1, 2, 3$ are handled above. For $k \geq 4$, we have

$$
x^{2}y^{2}P_{c+k} = \alpha P_{c+k-4} + xyP_{c+k-2} + (x^{3} + y^{3})P_{c+k-1}.
$$

By induction, P_{c+k-4} has minimal x-degree $q-2(k-3)$, P_{c+k-2} has minimal x-degree $q-2(k-1)$ and P_{c+k-1} has minimal x-degree $q - 2k$. On the right side of the equality, we have a term

 $y^{3}P_{c+k-1}$ with minimal x-degree $q-2k$, and every other term has minimal x-degree strictly larger than $q - 2k$. Thus the minimal x-degree of the right hand side is $q - 2k$. Our claim follows.

Now letting $k = q/2$, we notice that the minimal x-degree of P_{c+k-1} is 0 by the above. In addition, by Lemma [3.3,](#page-6-1) $c + k \leq q - 3 < q$, hence

$$
x^{2}y^{2}P_{c+k} = \alpha P_{c+k-4} + xyP_{c+k-2} + (x^{3} + y^{3})P_{c+k-1}.
$$

Then the right hand side has minimal x -degree 0, which tells us there are no polynomials P_{c+k} satisfying the equation, contradicting our assumptions. The argument in showing $a \neq 0$ is completely analogous, so we conclude $a \neq 0$ and $b \neq 0$ as desired.

Lemma 3.6. For each $r \ge 1$, there is a nontrivial element $u \in N_{3q/2-4-2^{r-1}}$ with lowest term of the form $(ax^{q-2}y^{\lambda} + bx^{\lambda}y^{q-2})z^c$ with $a, b \in \mathbb{R}^*$. In addition, $c \leq q/2 - 3 \cdot 2^{r-1}$.

Proof. Argue by induction on r, with $r = 1$ given by Lemmas [3.3,](#page-6-1) [3.5,](#page-7-1) and 4.8 in [\[Mon98a\]](#page-10-1). Let $u \in N_{3q/2-4-2^{r-1}}$ be an element given to us inductively. It is clear that $h^2u^2 \in \mathfrak{m}^{[2q]}$, so it suffices to show hu^2 has the other desired properties. Let Pz^c be the lowest term of u. The lowest term of hu^2 is $x^2y^2P^2z^{2c}$ (as long as $x^2y^2P^2 \notin \mathfrak{m}^{[2q]}$). We will now show $x^2y^2P^2 \notin \mathfrak{m}^{[2q]}$ by writing P as $ax^{q-2}y^{\lambda} + bx^{\lambda}y^{q-2}$ where $\lambda = q/2 - 2 - 2^{r-1} - c$ by induction. Thus $P^2 = a^2x^{2q-4}y^{2\lambda} + b^2x^{2\lambda}y^{2q-4}$, so x^2y^2 does not annihilate P^2 . By induction it's also clear that the *z*-degree requirement is satisfied. \Box

Lemma 3.7. Let u be as in Lemma [3.6.](#page-8-0) For each $k \le 2^{r-1}$, the set

$$
T_k := \{x^{d_1} y^{d_2} z^{d_3} u \mid d_1 + d_2 + d_3 = k, d_1 < 2 \text{ or } d_2 < 2\}
$$

is linearly independent in $N_{3q/2-4-2^{r-1}+k}$.

Proof. Suppose we have a nontrivial linear combination of monomials of degree k , each indivisible by x^2y^2 , annihilating u. Let $Q(x, y)z^d$ be the lowest term of this linear combination. Letting Pz^c be the lowest term of u, it follows that $PQz^{c+d} = 0$. However, the inequalities $d \le k \le 2^{r-1}$ and $c \le q/2 - 3 \cdot 2^{r-1}$ (by Lemma [3.6\)](#page-8-0) imply that $c + d \le q/2 - 2 \cdot 2^{r-1} < q$, hence $PQ = 0$. Now let $Q = \sum_{i=0}^{k} a_i x^i y^{k-i}$. By Lemma [3.6](#page-8-0) once more,

$$
0 = PQ = a\left(\sum_{j=0}^{k} a_j x^{j+q-2} y^{k+\lambda-j}\right) + b\left(\sum_{i=0}^{k} a_i x^{i+\lambda} y^{k+q-2-i}\right)
$$

where $\lambda = q/2 - 2 - 2^{r-1} - c$ and $a, b \in \mathbb{R}^*$. Then $\lambda \leq q/2 - 2 - 2^{r-1}$. As a consequence, none of the powers of x overlap in either sum, for

$$
i + \lambda \leq 2^{r-1} + q/2 - 2 - 2^{r-1} < q-2 \leq j+q-2.
$$

For the same reason, none of the powers of y overlap, so each monomial appearing in our sum is distinct. Then for each j with $a_j \neq 0$, it must be that

$$
j+q-2 \geqslant q \text{ or } k+\lambda-j \geqslant q.
$$

The second possibility is never true by our bounds, hence we get $a_j \neq 0$ implies $j \ge 2$. In addition, for each *i* with $a_i \neq 0$, we get

$$
i + \lambda \geq q \text{ or } k + q - 2 - i \geq q.
$$

The first possibility is never realized by our bounds, so it must be that $i \leq k - 2$. In other words, we have shown

$$
Q = \sum_{i=2}^{k-2} a_i x^i y^{k-i} = x^2 y^2 \sum_{i=0}^{k-4} a_{i+2} x^i y^{k-i-4}.
$$

Then x^2y^2 divides Q, contrary to assumption. \Box

Corollary 3.8. For each $0 \le k \le 2^{r-1}$, $N_{3q/2-4-2^{r-1}+k}$ has dimension at least $\binom{k+2}{2}$ for $k \le 3$ and dimension at least $4k - 2$ if $k \ge 4$.

Proof. For $k \leq 3$, no monomial is divisible by x^2y^2 , hence Lemma [3.7](#page-8-1) provides to us a linearly independent set of size $\binom{k+2}{2}$. If $k \ge 4$, there are precisely $\binom{k-2}{2}$ monomials divisible by x^2y^2 . □

Lemma 3.9. For each $0 \le k \le 2^{r-1}$, the linearly independent set T_k is a basis for $N_{3q/2-4-2^{r-1}+k}$. Moreover, for $N_i = (0)$ for all $i < 3q/2 - 4 - 2^{r-1} + k$.

Proof. The argument follows *mutatis mutandis* as Lemma [2.8](#page-3-1) using Lemma [3.7,](#page-8-1) Corollary [3.8,](#page-9-0) and Fact $3.2(2,3)$ $3.2(2,3)$ $3.2(2,3)$. □

Using Lemma [3.9,](#page-9-1) the calculation of the density function for S_α is identical to that of R_α in Section [2](#page-1-0) so we omit the details.

Lemma 3.10. For $\alpha \in \mathbb{R}^*$ with escape time l , the Hilbert–Kunz density function of $\mathbb{R}[x, y, z]/(h_\alpha)$ is given below:

$$
f(w) = \begin{cases} 4w & \text{if } 0 \le w < 1 \\ 12 - 8w & \text{if } 1 \le w < \frac{3}{2} - 2^{-2l-1} \\ 6 + 2^{1-2l} - 4w & \text{if } \frac{3}{2} - 2^{-2l-1} \le w < \frac{3}{2} + 2^{-2l-1}. \end{cases}
$$

4. Hilbert–Kunz Multiplicities for Segre Products

We are now prepared to prove the main result of this article by combining the results of Sections [2](#page-1-0) and [3](#page-6-5) with [\[Tri18\]](#page-10-5).

Proof of Theorem [1.1.](#page-0-0) With the notation of Section [1,](#page-0-1) Lemma [2.14](#page-5-2) and Lemma [3.10](#page-9-2) give the Hilbert–Kunz density functions for R_α and S_α for all $\alpha \in \mathbb{R}^*$. Denote by f_γ the Hilbert–Kunz density function of R_{γ} . By Theorem [2.2,](#page-1-2)

$$
HKD(R_{\alpha}#R_{\beta})(x) = e(R_{\alpha})wf_{\beta}(w) + e(R_{\beta})wf_{\alpha}(w) - f_{\alpha}(w)f_{\beta}(w).
$$

 $HKD(R_\alpha#R_\beta)(w)$ is supported on $[0, \frac{3}{2}]$ $\frac{3}{2}$ + 2^{-m(α)-1] and since $e(R_{\alpha}) = e(R_{\beta}) = 4$ we have that} $HKD(R_{\alpha}#R_{\beta})(w)$ equals

 \int $\begin{array}{c} \hline \end{array}$ $16w^2$ if $0 \leq w < 1$ $-128w^2 + 288w - 144$ if $1 \leq w < \frac{3}{2} - 2^{-m(\alpha)-1}$ $-80w^2 + 12(14 + 2^{1-m(\alpha)})w - 12(6 + 2^{1-m(\alpha)})$ if $\frac{3}{2} - 2^{-m(\alpha)-1} \leq w < \frac{3}{2} - 2^{-m(\beta)-1}$ $-48w^2+8(12+2^{1-m(\beta)}+2^{1-m(\alpha)})w-36-6(2^{1-m(\beta)}+2^{1-m(\alpha)})-2^{2-m(\alpha)-m(\beta)}$ if $\frac{3}{2}-2^{-m(\beta)-1} \leq w < \frac{3}{2}+2^{-m(\beta)-1}$ $-16w^2 + 4(6 + 2)$ $\text{if } \frac{3}{2} + 2^{-m(\beta)-1} \leq w < \frac{3}{2} + 2^{-m(\alpha)-1}.$ $\frac{3}{2} + 2^{-m(\beta)-1} \leq w < \frac{3}{2} + 2^{-m(\alpha)-1}$

J.

By Theorem [2.1,](#page-1-1) $e_{HK}(R_\alpha#R_\beta) = \int_{\mathbb{R}} HKD(R_\alpha#R_\beta)(w) dw$, which we compute to be

$$
12 - 2 \cdot 2^{-m(\alpha) - 2m(\beta)} + 6 \cdot 4^{-m(\alpha)} + 6 \cdot 4^{-m(\beta)} - \frac{2}{3} \cdot 8^{-m(\alpha)}
$$

The calculations for $S_{\alpha} \# S_{\beta}$ and $R_{\alpha} \# S_{\beta}$ are identical. \square

REFERENCES

- [BM10] Holger Brenner and Paul Monsky. "Tight closure does not commute with localization". Ann. of Math. (2) 171.1 (2010), pp. 571-588. DOI: [10.4007/annals.2010.171.571](https://doi.org/10.4007/annals.2010.171.571).
- [Bor+24] Levi Borevitz, Naima Nader, Theodore J. Sandstrom, Amelia Shapiro, Austyn Simpson, and Jenna Zomback. "On localization of tight closure in line-S₄ quartics". J. Pure Appl. Algebra 228.9 (2024), Paper No. 107682, 17. DOI: [10.1016/j.jpaa.2024.107682](https://doi.org/10.1016/j.jpaa.2024.107682).
- [Mon83] Paul Monsky. "The Hilbert-Kunz function". Math. Ann. 263.1 (1983), pp. 43–49. DOI: [10.1007/BF0](https://doi.org/10.1007/BF01457082) [1457082](https://doi.org/10.1007/BF01457082).
- [Mon98a] Paul Monsky. "Hilbert–Kunz Functions in a Family: Line-S4 Quartics". Journal of Algebra 208.1 (1998), pp. 359-371. DOI: [10.1006/jabr.1998.7517](https://doi.org/10.1006/jabr.1998.7517).
- [Mon98b] Paul Monsky. "Hilbert-Kunz Functions in a Family: Point-S4 Quartics". Journal of Algebra 208.1 (1998), pp. 343-358. DOI: [10.1006/jabr.1998.7500](https://doi.org/10.1006/jabr.1998.7500).
- [Tri18] Vijaylaxmi Trivedi. "Hilbert-Kunz density function and Hilbert-Kunz multiplicity". Trans. Amer. Math. Soc. 370.12 (2018), pp. 8403-8428. DOI: [10.1090/tran/7268](https://doi.org/10.1090/tran/7268).

Department of Mathematics, Columbia University, New York, NY 10027 USA Email address: kmd2235@columbia.edu

Department of Mathematics, University of Wisconsin, Madison, WI 53706 Email address: jswestbrook@wisc.edu

.