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Abstract. We compute the Hilbert–Kunz multiplicity of the Segre product of Monsky’s point-
S4 and line-S4 quartic hypersurfaces, showing that the Hilbert–Kunz multiplicity may vary in
a two-parameter family. Appealing to a result of Trivedi, our computation requires an analysis
of the Hilbert–Kunz density functions of the aforementioned hypersurfaces.

1. Introduction

Let (R,𝔪) denote either a Noetherian local ring or a standard graded ring over a field
with unique (resp. homogeneous) maximal ideal 𝔪. Further assume that R has prime char-
acteristic p > 0, and denote d = dim(R). The Hilbert–Kunz function of R, denoted en (R), is
defined to be

n ↦→ ℓR (R/𝔪[pn ])

where 𝔪[pn ] denotes the ideal generated by elements of the form r p
n

for r ∈ 𝔪. The main
result of [Mon83] says that en (R) = eHK(R) ·pnd +O (p (d−1)n), where the leading term eHK(R) is
called the Hilbert–Kunz multiplicity of R. The goal of the present article is to give an explicit
formula for the Hilbert–Kunz multiplicity of the fibers of a certain two parameter family
𝓀[s ,t ] → R. This family is inspired by two well known one-parameter families considered
in [Mon98a; Mon98b], and in fact our ring R is obtained as the Segre product of the rings
considered in op. cit..

Let 𝓀 be an algebraically closed field of characteristic 2 and let 𝛼 ∈ 𝓀∗. In the sequel, we
will consider the irreducible quartic polynomials

g𝛼 = 𝛼x2y2 + x3z + y3z + z 4 + xyz 2

h𝛼 = 𝛼z 4 + (x2 + yz ) (y2 + xz )

in 𝓀[x ,y ,z ]. The Hilbert–Kunz theory of these polynomials demonstrates a jump in severity
between the generic fiber and a special fiber, according to the algebraic (resp. dynamical)
complexity of the parameter 𝛼. More specifically, the Hilbert–Kunz function of g𝛼 depends
on the degree of the field extension [𝔽2(𝜆 ) : 𝔽2] =: m (𝛼) where 𝛼 = 𝜆2 + 𝜆 , whereas that
of h𝛼 depends on the stopping time (denoted in the sequel by l (𝛼)) of a certain dynamical
system attached to 𝛼 — see Settings 2.3 and 3.1 respectively for a summary of the results of
[Mon98a; Mon98b]. These hypersurfaces are also notable for exhibiting tight closure’s failure
to localize [BM10; Bor+24].

The primary contribution of this article is a closed formula for the Hilbert–Kunz multi-
plicity of the Segre products of the above quartic hypersurfaces. For 𝛾 ∈ 𝓀∗, we denote
R𝛾 := 𝓀[x ,y ,z ]/(g𝛼) and S𝛾 := 𝓀[x ,y ,z ]/(h𝛼).
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Theorem 1.1. Let 𝛼, 𝛽 ∈ 𝓀∗. Then

eHK(R𝛼#R𝛽 ) = 12 − 2 · 2−m (𝛼)−2m (𝛽 ) + 6(4−m (𝛼) + 4−m (𝛽 )) − 2
3
· 8−m (𝛼) if m (𝛼) ≤ m (𝛽 )

eHK(S𝛼#S𝛽 ) = 12 − 2 · 2−2l (𝛼)−4l (𝛽 ) + 6(4−2l (𝛼) + 4−2l (𝛽 )) − 2
3
· 8−2l (𝛼) if l (𝛼) ≤ l (𝛽 )

eHK(R𝛼#S𝛽 ) =
{
12 − 2 · 2−m (𝛼)−4l (𝛽 ) + 6(4−m (𝛼) + 4−2l (𝛽 )) − 2

3 · 8−m (𝛼) : m (𝛼) ≤ 2l (𝛽 )
12 − 2 · 2−2l (𝛽 )−2m (𝛽 ) + 6(4−2l (𝛽 ) + 4−m (𝛼)) − 2

3 · 8−2l (𝛽 ) : 2l (𝛽 ) ≤ m (𝛼)

Our method for computing the above multiplicities involves understanding the Hilbert–
Kunz density functions of the g𝛼 and h𝛼, as introduced by Trivedi in [Tri18]. These are com-
pactly supported continuous real-valued functions which allow one to recover the Hilbert–
Kunz multiplicity by integration. Moreover, a tool emerging from op. cit. is that the density
function of the Segre product may be realized as a certain convolution of the density functions
of each factor. We summarize Trivedi’s results in Section 2.

2. Density Function: Point-S4 Quartics

In this section we compute the Hilbert–Kunz density function for Monsky’s point-S4 quartic
polynomial. First, we recall the facts from [Tri18] that will be pertinent to us.

2.1. Trivedi’s density function.

Theorem 2.1 ([Tri18]). Let (R,𝔪) be a Noetherian ring which is standard graded over a perfect
field of prime characteristic p > 0 with d = dim(R) ≥ 2. Then there exists a uniformly convergent
sequence {hn : ℝ → ℝ}n∈ℕ of compactly supported piecewise linear continuous functions such that

(1) HKD(R) (w) := lim
n→∞

hn (w) is a compactly supported function with

eHK(R) =
∫
ℝ

HKD(R) (w) dw ;

(2) HKD(R) (−) may be computed via HKD(w) = lim
n→∞

fn (w) where

fn (w) :=
ℓR

(
(R/𝔪[pn ])⌊wpn⌋

)
pn (d−1) .

The fact we will leverage is the multiplicative nature of the density function under Segre
products, which is the key ingredient in proving Theorem 1.1. We recall this result at the
required level of generality for us, which is much more restrictive than what is proven in op.
cit.

Theorem 2.2 ([Tri18, Proposition 2.17]). Let R1, . . . ,RT be Noetherian rings of dim(Ri ) = 2
which are standard graded over a common algebraically closed field of prime characteristic p > 0.
Further assume that the Ri all have the same Hilbert–Samuel multiplicity eHS. Then:

HKD(R1# · · · #RT ) (w) = eTHSw
T −

T∏
i=1

(eHSw − HKD(Ri ) (w))

=

T∑︁
i=1

(−1)i+1eT −i
HS w

T −iei (HKD(R1) (w), . . . ,HKD(RT ) (w))
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where ei is the i -th elementary symmetric polynomial.

2.2. Point-S4 quartics. We assume the following setup for the remainder of this section.

Setting 2.3. For an element 𝛼 ∈ 𝓀∗ which is algebraic over 𝔽2 write 𝛼 = 𝜆2 + 𝜆 . Then m (𝛼)
is defined to be the degree of the field extension 𝔽2(𝜆 ) ⊇ 𝔽2 (for 𝛼 ∈ 𝓀∗ transcendental over
𝔽2, set m (𝛼) = ∞). For ease of notation, we let g = g𝛼 = 𝛼x2y2 + x3z + y3z + z 4 + xyz 2,
m = m (𝛼), and q = 2m+r for r ≥ 1. Let 𝒪 = 𝓀[x ,y ,z ]/𝔪[q ] is the artinian graded ring
where 𝔪 = (x ,y ,z ). Then 𝜑i : 𝒪i → 𝒪i+4 denotes multiplication by g , with kernel and
cokernel Ni and Ci , respectively. If 0 ≠ u ∈ 𝒪t is written in descending powers of z , i.e.
u = Al (x ,y)z l + · · · + A1(x ,y)z + A0(x ,y), we define the z -degree to be degz (u) := l .

We provide a dossier for the facts from [Mon98a] that will be used in this section.

Fact 2.4. Let n ≥ 2.
(1) [Mon98a, Theorem 3.1(2), Lemma 4.15, Lemma 4.16] When n = m + 1, (0) ≠

N3·2n−1−5 = span𝓀{u} and N3·2n−1−4 = span𝓀{xu ,yu ,zu}. Moreover, this principal gen-
erator has degz (u) = 2n − 4.

(2) [Mon98a, Lemma 4.7] For every n ⩾ m + 1, N3·2n−1−4−2n−m−1 ≠ (0).
(3) [Mon98a, Lemma 4.11(a)] For every n ⩾ m + 2 and i < 3 · 2n−1 − 4− 2n−m−1, Ni = (0).
(4) [Mon98a, Lemma 4.5] For every n and i ⩽ 2n+1 − 6, if 0 ≠ v ∈ Ni and 0 ≠ L(x ,y ,z ) is

a linear form, then Lv ≠ 0.
(5) [Mon98a, Lemma 4.8] If n ⩾ m + 1 and 0 ≠ v ∈ N3·2n−1−4−2n−m−1 then for every

0 ⩽ s ⩽ 2n−m−1, the set {xaybv | a + b = s } is linearly independent.

(6) [Mon98a, Lemma 4.1] dim𝓀(𝒪n/g𝛼𝒪n) = 3 · 4n − 4 + 2
3·2n−1−4∑
i=0

dim𝓀Ni .

(7) [Mon98a, Theorem 4.14 & Theorem 4.18] dim𝓀(𝒪n/g𝛼𝒪n) = 3 · 4n − 4 for 1 ⩽ n ⩽ m,
and dim𝓀(𝒪n/g𝛼𝒪n) = 3 · 4n + 4n−m otherwise.

Lemma 2.5. For each r ⩾ 1, there is a nonzero element u ∈ N3q/2−4−2r−1 . Moreover, u has
z -degree q − 4.

Proof. Argue by induction on r , with the base case given by Fact 2.4(1). Given u ∈ N3q/2−4−2r−1

we set v = gu2. As gu ∈ 𝔪[q ] , g 2u2 ∈ 𝔪[2q ] so indeed v is annihilated by g . By induction,
u has z -degree q − 4, and as g has z -degree 4, v has z -degree 2q − 4 as long as its leading
coefficient is not in 𝔪[2q ] . Write u =

∑q−4
i=0 Pi z

i with each Pi (x ,y) homogeneous of degree
3q/2− 4− 2r−1 − i . Then the leading coefficient of v is P 2

q−4 with degree q − 2r . In particular,

P 2
q−4 ∉ 𝔪[2q ] . □

Lemma 2.6. Let u ∈ N3q/2−4−2r−1 be given by Lemma 2.5. Then for each 0 ⩽ s ⩽ 2r−1, the
set

Ls := {xd1yd2zd3u | d1 + d2 + d3 = s ,d3 < 4}
is linearly independent in 𝒪3q/2−4−2r−1+s .

Proof. If some linear combination is trivial, then L = Q0 + Q1z + Q2z 2 + Q3z 3 annihilates u
with each Q j (x ,y) homogeneous of degree s − j . Write u =

∑q−4
i=0 Pi z

i with each Pi (x ,y)
homogeneous of degree 3q/2 − 4 − 2r−1 − i . We then compute

0 = uL = Pq−4Q3z q−1 + (Pq−5Q3 + Pq−4Q2)z q−2 + (Pq−6Q3 + Pq−5Q2 + Pq−4Q1)z q−3
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+ (Pq−7Q3 + Pq−6Q2 + Pq−5Q1 + Pq−4Q0)z q−4 +
q∑︁
i=5

z q−i
3∑︁
j=0

Pq− j−iQ j .

The first four coefficients must all be 0 because the z -degrees are less than q . Since Pq−4 is
nonzero with degree q/2 − 2r−1 and each Q j has degree s − j ⩽ s ⩽ 2r−1, we observe that
each Pq−4Q j has degree at most q/2, hence must be 0 in 𝓀[x ,y]. By iterated substitution,
Q3 = Q2 = Q1 = Q0 = 0 as desired. □

Corollary 2.7. For s ⩽ 3, N3q/2−4−2r−1+s has dimension at least
(s+2

2

)
and for 4 ⩽ s ⩽ 2r−1,

N3q/2−4−2r−1+s has dimension at least 4s − 2.

Proof. By Lemmas 2.5 and 2.6, the cardinality of Ls gives lower bounds. For s ⩽ 3, every
monomial is indivisible by z 4, hence Ls has cardinality

(s+2
2

)
. For s ⩾ 4, Ls corresponds to

the monomials of degree s in 3 variables, except for those divisible by z 4, of which there are(s+2
2

)
−

(s−2
2

)
= 4s − 2. □

Lemma 2.8. In the same situation as Lemma 2.6, Ls is a basis for N3q/2−4−2r−1+s .

Proof. We showed linear independence in Lemma 2.6 so it remains to show Ls spans. Fact 2.4(3)
gives that Ni = 0 for all i < 3q/2 − 4 − 2r−1 when r ⩾ 2. In case r = 1, we use Fact 2.4(1,6,7)
to see

3q 2 + 4 = 3q 2 − 4 + 2 ©­«4 +
3q/2−6∑︁
i=0

dimNi
ª®¬ = 3q 2 + 4 +

3q/2−6∑︁
i=0

dimNi .

Thus each dimNi = 0 for i < 3q/2 − 4 − 2r−1 as well. Then Fact 2.4(6,7) yields

3q 2 + 4r = 3q 2 − 4 + 2
3q/2−4∑︁
i=0

dimNi = 3q 2 − 4 + 2
2r−1∑︁
s=0

dimN3q/2−4−2r−1+s .

We use the bounds from Corollary 2.7 with the above equality to see

3q 2 + 4r ⩾ 3q 2 − 4 + 40 +
2r−1∑︁
s=4

(s + 1) (s + 2) − (s − 3) (s − 2) = 3q 2 + 36 + 4
2r−1∑︁
s=4

2s − 1

with equality if and only if each Ls is a basis. As

2r−1∑︁
s=4

2s − 1 = 2
2r−1∑︁
s=4

s −
2r−1∑︁
s=4

1 = (2r−1 + 1)2r−1 − 12 − (2r−1 − 3) = 4r−1 − 9,

we get equality. □

Corollary 2.9. For all i ⩽ 3q/2 − 4,

dimNi =


0 if i < 3q/2 − 4 − 2r−1

(s+2) (s+1)
2 if i = 3q/2 − 4 − 2r−1 + s with 0 ⩽ s ⩽ 3

4s − 2 if i = 3q/2 − 4 − 2r−1 + s with 4 ⩽ s ⩽ 2r−1.

Proof. By Corollary 2.7 and Lemma 2.8. □

Lemma 2.10. 𝒪i has dimension
(i+2

2

)
if i < q and dimension

(i+2
2

)
− 3

(i−q+2
2

)
if

q ⩽ i ⩽ 3q/2.
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Proof. A basis for 𝒪i is given by monomials of degree i indivisible by xq ,yq , and z q . Because
3q/2 ⩽ 2q − 1, it follows that a monomial of degree i is divisible by at most one of xq ,yq ,
or z q . If i < q , 𝒪i has basis given by the monomials of degree i , of which there are

(i+2
2

)
. If

i ⩾ q , there are exactly
(i−q+2

2

)
monomials divisible by xq , and the same is true of yq and z q .

Thus 𝒪i has dimension
(i+2

2

)
− 3

(i−q+2
2

)
. □

Lemma 2.11. For all i , Ci has dimension dimCi = dimNi − dim𝒪i + dim𝒪i+4. In addition,
dimCi = dimN3q−7−i .

Proof. The first claim follows from additivity of dimension on exact sequences applied to

0 → Ni → 𝒪i → 𝒪i+4 → Ci → 0.

The second claim follows by applying the duality functor Hom𝒪(−,𝒪(3q − 3)) to the above
exact sequence. □

Lemma 2.12. For i ⩾ −4 and r ⩾ 3, we compute the dimensions of Ci below.

Proof. We divide into cases for i and will use Corollary 2.9 and Lemmas 2.10 and 2.11 re-
peatedly.

Case 1: −4 ⩽ i < 0. Here Ni = 0 = 𝒪i , so dim𝒪i+4 = dimCi , thus

dimCi =
(
i + 6

2

)
=

(i + 6) (i + 5)
2

.

Case 2: 0 ⩽ i < q − 4. Since i < 3q/2 − 4 − 2r−1, we get dimNi = 0, dim𝒪i =
(i+2

2

)
and

dim𝒪i+4 =
(i+6

2

)
. Thus

dimCi =
(i + 6) (i + 5)

2
− (i + 2) (i + 1)

2
= 4i + 14.

Case 3: i = q − 4 + k with k = 0,1,2,3. Because i < 3q/2 − 4 − 2r−1, we have dimNi = 0,
dim𝒪i =

(i+2
2

)
and dim𝒪i+4 =

(i+6
2

)
− 3

(k+2
2

)
. Thus

dimCi = 4i + 14 − 3
2
(k + 2) (k + 1) = 4i + 14 − 3

2
(i − q + 6) (i − q + 5).

Case 4: i = q + k , 0 ⩽ k < q/2 − 2r−1 − 4. We check that i < 3q/2 − 4 − 2r−1. In this case,
dimNi = 0, dim𝒪i =

(i+2
2

)
− 3

(k+2
2

)
and dim𝒪i+4 =

(i+6
2

)
− 3

(k+6
2

)
so

dimCi = 4i − 12k − 28 = 12q − 8i − 28.

Case 5: i = q +k , k = q/2− 2r−1 − 4+ s with s = 0,1,2,3. Here we have i = 3q/2− 4− 2r−1 + s ,
so dimNi =

(s+2
2

)
, dim𝒪i =

(i+2
2

)
− 3

(k+2
2

)
and dim𝒪i+4 =

(i+6
2

)
− 3

(k+6
2

)
, hence

dimCi =
(s + 2) (s + 1)

2
+ 4i − 12k − 28 =

(s + 2) (s + 1)
2

+ 12q − 8i − 28.

Case 6: i = q + k , k = q/2 − 2r−1 − 4 + s with 4 ⩽ s ⩽ 2r−1. We have dimNi = 4s − 2,
dim𝒪i =

(i+2
2

)
− 3

(k+2
2

)
, and dim𝒪i+4 =

(i+6
2

)
− 3

(k+6
2

)
. Then

dimCi = 4s + 4i − 12k − 30.

Expanding, and letting s = i − 3q/2 + 2r−1 + 4,

dimCi = 12q − 8i − 28 + 4s − 2 = (6 + 1
2m−1

)q − 4i − 14.
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Case 7: 3q/2 − 3 ⩽ i < 3q/2 − 6 + 2r−1. Let s = 3q/2 − 3 + 2r−1 − i , so 4 ⩽ s ⩽ 2r−1. We
observe 3q/2−2r−1 ⩽ 3q −7− i ⩽ 3q/2−4, so we let j = 3q −7− i and j = 3q/2−4−2r−1 + s .
By Lemma 2.11 and Corollary 2.9,

dimCi = dimN j = 4s − 2 = 6q − 14 + 2r+1 − 4i = (6 + 1
2m−1

)q − 4i − 14.

Case 8: 3q/2−6+2r−1 ⩽ i < 3q/2−2+2r−1. We have 3q/2−2r−1−4 ⩽ 3q −7−i < 3q/2−2r−1,
so we let j = 3q − 7 − i = 3q/2 − 4 − 2r−1 + s with 0 ⩽ s ⩽ 3. Then

dimCi = dimN j =
(s + 2) (s + 1)

2
=

(3q/2 − 1 + 2r−1 − i ) (3q/2 − 2 + 2r−1 − i )
2

.

Case 9: 3q/2 − 2 + 2r−1 ⩽ i . Then 3q − 7 − i < 3q/2 − 4 − 2r−1, so

dimCi = dimN3q−7−i = 0.

□

Corollary 2.13. In the notation of Theorem 2.1, fn (x) is a piecewise function supported on
[− 4

q ,
3
2 − 2

q + 2−m−1] given below for r ⩾ 2 where i = ⌊wq ⌋ and q = 2n = 2m+r :

q fn (w) =



(i+6) (i+5)
2 if − 4

q ⩽ w < 0

4i + 14 if 0 ⩽ w < 1 − 4
q

4i + 14 − 3
2 (i − q + 6) (i − q + 5) if 1 − 4

q ⩽ w < 1

4(3q − 2i − 7) if 1 ⩽ w < 3
2 − 1

2m+1 − 4
q

(i−3q/2+2r−1+6) (i−3q/2+2r−1+5)
2 + 4(3q − 2i − 7) if 3

2 − 1
2m+1 − 4

q ⩽ w < 3
2 − 1

2m+1

(6 + 1
2m−1 )q − 4i − 14 if 3

2 − 1
2m+1 ⩽ w < 3

2 − 6
q +

1
2m+1

(3q/2−1+2r−1−i ) (3q/2−2+2r−1−i )
2 if 3

2 − 6
q +

1
2m+1 ⩽ w < 3

2 − 2
q +

1
2m+1 .

Proof. The claim follows from Fact 2.4(5) and the fact that a ⩽ ⌊wq ⌋ < b iff a/q ⩽ w < b/q
for any a,b ∈ ℤ.

□

Lemma 2.14. Continuing the notation from Corollary 2.13, the Hilbert–Kunz density func-
tion f = limn→∞ fn of 𝓀[x ,y ,z ]/(g𝛼) is supported on [0, 3

2 + 2−m−1] and is given below:

f (w) =


4w if 0 ⩽ w < 1
12 − 8w if 1 ⩽ w < 3

2 − 1
2m+1

6 + 21−m − 4w if 3
2 − 1

2m+1 ⩽ w < 3
2 + 1

2m+1 .

Proof. We notice limn→∞
i
q = w since

⌊wq ⌋ ⩽ wq < ⌊wq ⌋ + 1.

The result is then easily derived from Corollary 2.13. □

We now let 𝛼 ∈ 𝓀∗ be transcendental over 𝔽2.
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Lemma 2.15. For each i , the dimension of Ci is given below:

dimCi =



(i+6
2

)
if − 4 ⩽ i < 0

4i + 14 if 0 ⩽ i < q − 4
4i + 14 − 3

(i−q+6
2

)
if q − 4 ⩽ i < q

12q − 8i − 28 if q ⩽ i < 3q
2 − 3

0 if i ⩾ 3q/2 − 3.

Proof. Since 𝛼 is transcendental, m = ∞. Thus n < m for all n, hence Fact 2.4(7) tells us that
en (g ) = 3q 2 − 4. By comparing with Fact 2.4(6), we get that Ni is trivial for i ⩽ 3q

2 − 4. The
claim then follows from Lemmas 2.10 and 2.11. □

Lemma 2.16. With the notation of Theorem 2.1, fn (w) is a piecewise function supported
on [− 4

q ,
3
2 − 3

q ] and is given below, where i = ⌊wq ⌋ and q = 2n :

q fn (w) =



(i+6
2

)
if − 4/q ⩽ w < 0

4i + 14 if 0 ⩽ w < 1 − 4
q

4i + 14 − 3
(i−q+6

2

)
if 1 − 4

q ⩽ w < 1

12q − 8i − 28 if 1 ⩽ w < 3
2 − 3

q

0 if w ⩾ 3
2 − 3

q .

Proof. This follows from Lemma 2.15 and a ⩽ ⌊wq ⌋ < b iff a/q ⩽ w < b/q for integers
a,b . □

3. Density Function: Line-S4 Quartics

In this section we compute the Hilbert–Kunz density function of Monsky’s line-S4 quartic
polynomial. We assume the following setup.

Setting 3.1. For 𝛼 ∈ 𝓀∗, let 𝜑𝛼 : 𝓀 ∪ {∞} → 𝓀 ∪ {∞} given by t ↦→ t4 + 𝛼t−4. We define 𝜑
(r )
𝛼

to be the r -fold composition of 𝜑𝛼 with itself, and say the escape time l (𝛼) of 𝛼 is the positive
integer r such that 𝜑(r )

𝛼 (1) = 0 (if there is no such integer, we set l (𝛼) = ∞). Note that there
is at most one integer r such that 𝜑(r )

𝛼 (1) = 0 because if 𝜑(r )
𝛼 (1) = 0, then 𝜑

(s )
𝛼 (1) = ∞ for all

s > r . Let h = h𝛼 = 𝛼z 4 + (x2 + yz ) (y2 + xz ), l = l (𝛼) and q = 22l+r for r ⩾ 1 and finite l .
In addition, 𝜑i : 𝒪i → 𝒪i+4 denotes multiplication by h, with kernel and cokernel Ni and Ci ,
respectively. Lastly, we consider elements of 𝒪 to be polynomials in z with coefficients being
polynomials in x and y . We then say the lowest term of a polynomial is its term with minimal
z -degree.

In analogy with Fact 2.4, we list some facts about h𝛼 established in [Mon98b].

Fact 3.2. Let n ≥ 2.
(1) [Mon98b, Theorem 4.8] When n = 2l + 1, N3q/2−5 ≠ (0).

(2) [Mon98a, Lemma 4.1] dim𝓀(𝒪n/g𝛼𝒪n) = 3 · 4n − 4 + 2
3·2n−1−4∑
i=0

dim𝓀Ni .

(3) [Mon98b, Corollary 3.15 & Theorem 5.8] dim𝓀(𝒪n/g𝛼𝒪n) = 3 · 4n − 4 for 1 ⩽ n ⩽ 2l ,
and dim𝓀(𝒪n/g𝛼𝒪n) = 3 · 4n + 4n−2l otherwise.
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Lemma 3.3. Let q = 22l+1 and u ∈ N3q/2−5 have lowest term P z c . Then c ⩽ q/2 − 3.

Proof. We notice that the lowest term of hu is x2y2P z c . Since h annihilates u and c < q (else
u = 0), x2y2 annihilates P . Thus every term in P is divisible by either xq−2 or yq−2. This
implies that P has degree at least q −2. On the other hand, P has degree 3q/2−5−c . Putting
the two together gives the result. □

Lemma 3.4. In the setting of Lemma 3.3, P is a 𝓀-linear combination of xq−2yq/2−3−c and
xq/2−3−c yq−2.

Proof. Lemma 3.8 in [Mon98a] tells us P is a polynomial in x2 and y2. This means no term
of P is divisible by xq−1 or yq−1 (since q − 1 is odd and xq = yq = 0). On the other hand,
every term of P is divisible by xq−2 or yq−2, which gives the result. □

Lemma 3.5. In the setting of Lemma 3.3, P = axq−2yq/2−3−c+bxq/2−3−c yq−2 for some a,b ∈ 𝓀∗.

Proof. By Lemma 3.4, P = axq−2yq/2−3−c + bxq/2−3−c yq−2 for some a,b ∈ 𝓀. Suppose for a
contradiction that b = 0. We may then take P = xq−2yq/2−3−c by rescaling, and will write
u =

∑q−1
i=c Pi z

i (so Pc = P ). Because h = 𝛼z 4 + xyz 2 + (x3 + y3)z + x2y2 annihilates u, we get
the following expression:

0 = hu

= x2y2Pc z c +
(
(x3 + y3)Pc + x2y2Pc+1

)
z c+1 +

(
xyPc + (x3 + y3)Pc+1 + x2y2Pc+2

)
z c+2

+
(
xyPc+1 + (x3 + y3)Pc+2 + x2y2Pc+3

)
z c+3

+
q−c−5∑︁
k=0

(
𝛼Pc+k + xyPc+k+2 + (x3 + y3)Pc+k+3 + x2y2Pc+k+4

)
z c+k+4.

Because the z -degrees are sufficiently small, we get the following equations for all 0 ⩽ k <

q − c − 4:

x2y2Pc+1 = (x3 + y3)Pc
x2y2Pc+2 = xyPc + (x3 + y3)Pc+1

x2y2Pc+3 = xyPc+1 + (x3 + y3)Pc+2

x2y2Pc+k+4 = 𝛼Pc+k + xyPc+k+2 + (x3 + y3)Pc+k+3.

By our assumption that Pc = xq−2yq/2−3−c , we get the following equalities:

Pc+1 = xq−4yq/2−2−c

Pc+2 = xq−6yq/2−1−c

Pc+3 = xq−8yq/2−c .

We now claim that the minimal x -degree of Pc+k is q−2(k+1) for each k . The cases k = 0,1,2,3
are handled above. For k ⩾ 4, we have

x2y2Pc+k = 𝛼Pc+k−4 + xyPc+k−2 + (x3 + y3)Pc+k−1.

By induction, Pc+k−4 has minimal x -degree q−2(k−3), Pc+k−2 has minimal x -degree q−2(k−1)
and Pc+k−1 has minimal x -degree q − 2k . On the right side of the equality, we have a term
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y3Pc+k−1 with minimal x -degree q − 2k , and every other term has minimal x -degree strictly
larger than q − 2k . Thus the minimal x -degree of the right hand side is q − 2k . Our claim
follows.

Now letting k = q/2, we notice that the minimal x -degree of Pc+k−1 is 0 by the above. In
addition, by Lemma 3.3, c + k ⩽ q − 3 < q , hence

x2y2Pc+k = 𝛼Pc+k−4 + xyPc+k−2 + (x3 + y3)Pc+k−1.

Then the right hand side has minimal x -degree 0, which tells us there are no polynomials
Pc+k satisfying the equation, contradicting our assumptions. The argument in showing a ≠ 0
is completely analogous, so we conclude a ≠ 0 and b ≠ 0 as desired. □

Lemma 3.6. For each r ⩾ 1, there is a nontrivial element u ∈ N3q/2−4−2r−1 with lowest term
of the form (axq−2y𝜆 + bx𝜆 yq−2)z c with a,b ∈ 𝓀∗. In addition, c ⩽ q/2 − 3 · 2r−1.

Proof. Argue by induction on r , with r = 1 given by Lemmas 3.3, 3.5, and 4.8 in [Mon98a].
Let u ∈ N3q/2−4−2r−1 be an element given to us inductively. It is clear that h2u2 ∈ 𝔪[2q ] ,
so it suffices to show hu2 has the other desired properties. Let P z c be the lowest term of
u . The lowest term of hu2 is x2y2P 2z 2c (as long as x2y2P 2 ∉ 𝔪[2q ]). We will now show
x2y2P 2 ∉ 𝔪[2q ] by writing P as axq−2y𝜆 + bx𝜆 yq−2 where 𝜆 = q/2 − 2 − 2r−1 − c by induction.
Thus P 2 = a2x2q−4y2𝜆 + b2x2𝜆 y2q−4, so x2y2 does not annihilate P 2. By induction it’s also
clear that the z -degree requirement is satisfied. □

Lemma 3.7. Let u be as in Lemma 3.6. For each k ⩽ 2r−1, the set

Tk := {xd1yd2zd3u | d1 + d2 + d3 = k ,d1 < 2 or d2 < 2}
is linearly independent in N3q/2−4−2r−1+k .

Proof. Suppose we have a nontrivial linear combination of monomials of degree k , each
indivisible by x2y2, annihilating u . LetQ (x ,y)zd be the lowest term of this linear combination.
Letting P z c be the lowest term of u , it follows that PQz c+d = 0. However, the inequalities
d ⩽ k ⩽ 2r−1 and c ⩽ q/2 − 3 · 2r−1 (by Lemma 3.6) imply that c + d ⩽ q/2 − 2 · 2r−1 < q ,
hence PQ = 0. Now let Q =

∑k
i=0 aix

i yk−i . By Lemma 3.6 once more,

0 = PQ = a ©­«
k∑︁
j=0

a jx j+q−2yk+𝜆− j ª®¬ + b
(
k∑︁
i=0

aix i+𝜆 yk+q−2−i
)

where 𝜆 = q/2 − 2 − 2r−1 − c and a,b ∈ 𝓀∗. Then 𝜆 ⩽ q/2 − 2 − 2r−1. As a consequence, none
of the powers of x overlap in either sum, for

i + 𝜆 ⩽ 2r−1 + q/2 − 2 − 2r−1 < q − 2 ⩽ j + q − 2.

For the same reason, none of the powers of y overlap, so each monomial appearing in our
sum is distinct. Then for each j with a j ≠ 0, it must be that

j + q − 2 ⩾ q or k + 𝜆 − j ⩾ q .
The second possibility is never true by our bounds, hence we get a j ≠ 0 implies j ⩾ 2. In
addition, for each i with ai ≠ 0, we get

i + 𝜆 ⩾ q or k + q − 2 − i ⩾ q .
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The first possibility is never realized by our bounds, so it must be that i ⩽ k − 2. In other
words, we have shown

Q =

k−2∑︁
i=2

aix i yk−i = x2y2
k−4∑︁
i=0

ai+2x i yk−i−4.

Then x2y2 divides Q , contrary to assumption. □

Corollary 3.8. For each 0 ⩽ k ⩽ 2r−1, N3q/2−4−2r−1+k has dimension at least
(k+2

2

)
for k ⩽ 3

and dimension at least 4k − 2 if k ⩾ 4.

Proof. For k ⩽ 3, no monomial is divisible by x2y2, hence Lemma 3.7 provides to us a linearly
independent set of size

(k+2
2

)
. If k ⩾ 4, there are precisely

(k−2
2

)
monomials divisible by

x2y2. □

Lemma 3.9. For each 0 ⩽ k ⩽ 2r−1, the linearly independent setTk is a basis forN3q/2−4−2r−1+k .
Moreover, for Ni = (0) for all i < 3q/2 − 4 − 2r−1 + k .

Proof. The argument follows mutatis mutandis as Lemma 2.8 using Lemma 3.7, Corollary 3.8,
and Fact 3.2(2,3). □

Using Lemma 3.9, the calculation of the density function for S𝛼 is identical to that of R𝛼

in Section 2 so we omit the details.

Lemma 3.10. For 𝛼 ∈ 𝓀∗ with escape time l , the Hilbert–Kunz density function of𝓀[x ,y ,z ]/(h𝛼)
is given below:

f (w) =


4w if 0 ⩽ w < 1
12 − 8w if 1 ⩽ w < 3

2 − 2−2l−1

6 + 21−2l − 4w if 3
2 − 2−2l−1 ⩽ w < 3

2 + 2−2l−1.

4. Hilbert–Kunz Multiplicities for Segre Products

We are now prepared to prove the main result of this article by combining the results of
Sections 2 and 3 with [Tri18].

Proof of Theorem 1.1. With the notation of Section 1, Lemma 2.14 and Lemma 3.10 give the
Hilbert–Kunz density functions for R𝛼 and S𝛼 for all 𝛼 ∈ 𝓀∗. Denote by f𝛾 the Hilbert–Kunz
density function of R𝛾. By Theorem 2.2,

HKD(R𝛼#R𝛽 ) (x) = e (R𝛼)w f𝛽 (w) + e (R𝛽 )w f𝛼 (w) − f𝛼 (w) f𝛽 (w).

HKD(R𝛼#R𝛽 ) (w) is supported on [0, 3
2 + 2−m (𝛼)−1] and since e (R𝛼) = e (R𝛽 ) = 4 we have that

HKD(R𝛼#R𝛽 ) (w) equals
16w2 if 0 ⩽ w < 1
−128w2 + 288w − 144 if 1 ⩽ w < 3

2 − 2−m (𝛼)−1

−80w2 + 12(14 + 21−m (𝛼) )w − 12(6 + 21−m (𝛼) ) if 3
2 − 2−m (𝛼)−1 ⩽ w < 3

2 − 2−m (𝛽 )−1

−48w2 + 8(12 + 21−m (𝛽 ) + 21−m (𝛼) )w − 36 − 6(21−m (𝛽 ) + 21−m (𝛼) ) − 22−m (𝛼)−m (𝛽 ) if 3
2 − 2−m (𝛽 )−1 ⩽ w < 3

2 + 2−m (𝛽 )−1

−16w2 + 4(6 + 21−m (𝛼) )w if 3
2 + 2−m (𝛽 )−1 ⩽ w < 3

2 + 2−m (𝛼)−1.
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By Theorem 2.1, eHK(R𝛼#R𝛽 ) =
∫
ℝ

HKD(R𝛼#R𝛽 ) (w) dw , which we compute to be

12 − 2 · 2−m (𝛼)−2m (𝛽 ) + 6 · 4−m (𝛼) + 6 · 4−m (𝛽 ) − 2
3
· 8−m (𝛼) .

The calculations for S𝛼#S𝛽 and R𝛼#S𝛽 are identical. □
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