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Abstract. In this paper, we present the basic theory of median algebras.
Then we construct two types of universal and homogeneous median algebras

explicitly, and prove their universality and homogeneity.

1. Introduction

Median algebras are a kind of algebraic structure closely related to distributive
lattices and the boolean algebras. They were studied extensively by Birkhoff and
Kiss in [2] and by Isbell in [8]. They also have close relations with graphs and cube
complexes, and this aspect is studied in detail by [3].

On the other hand, a significant focus in model theory is the study of universal,
homogeneous models.

Definition 1.1 (Homogeneous Model, Universal Model). Suppose K is a class of
finite models, and ≤ is a class of embeddings.

A model M is (K,≤)-homogeneous, if for any two isomorphic finite submodels
A,B ⊆ M and isomorphism f : A → B such that A,B ∈ K and A,B ≤ M , there
exists an automorphism g : M → M such that g|A = f .

For a class of finite structures K, a model M is (K,≤)-universal if for every
structure A ∈ K we have A ≤ M .

When K is the set of finite models of a known theory, we would informally simply
say M is universal.

Close relatives of median algebra, the boolean algebra and distributive lattice,
are known to produce concrete examples of universal, homogeneous structures, as
discussed in [5] and Section 6.3 of [9], which motivates the discussion of universal,
homogeneous median algebra.
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Now, an interesting type of universal and homogeneous structure is the Fräıssé
Limit, whose theory is well-studied.

Definition 1.2 (Fräıssé Limit). Given a class of finite structures K, the Fräıssé
Limit of K is a model D such that

(1) K = {finite submodels of D} up to isomorphism.
(2) D is homogeneous.
(3) D has cardinality ℵ0.

Theorem 1.3 (Fräıssé’s Theorem). If K satisfies

(1) closure under substructure (Hereditary Property, HP)
(2) For A,B ∈ K, there is C ∈ K such that A,B embeds into C (Joint Em-

bedding Property, JEP)
(3) For A,B,C ∈ K such that A embeds into B and C, there is D ∈ K

such that B,C embeds into D and the embeddings commute with each other
(Amalgamation Property, AP)

then there is a unique Fräıssé Limit of K up to isomorphism.

The theorem and its proof are discussed in [7] as Theorem 7.1.2. Notice that if
D is Fräıssé Limit of K, then K must satisfies HP, JEP and AP, suggesting that a
Fräıssé Limit, if exists, must be unique.

In this paper, we give the explicit constructions of two median algebras M and
M that are homogeneous and universal in different senses.

Theorem 1.4 (Main Theorem 1). M is the Fräıssé Limit of all finite median
algebras.

M can be said as (K,⊆)-homogeneous and universal model when K is the class
of all finite median algebras, that is, here we take ≤ to be all embeddings. On the
other hand, if we take ≤ to be the convex embeddings, then we yield a different
model M which is (K,≤)-homogeneous and universal.

Theorem 1.5 (Main Theorem 2). M is the unique median algebra satisfies the
following.

(1) Every finite median algebra embeds into M as a convex subset.
(2) M is homogeneous only for convex subsets.
(3) M has cardinality ℵ0.
(4) For every finite subset A ⊆ M, the convex hull cl(A) of A is finite.

The detail of the definitions will become clear as the paper proceeds.
Our two main tools in proving the above theorems are

(1) a theory of median algebras and their amalgamation, allowing us to do
induction on the set of finite median algebras;

(2) duality theory, allowing us to find enough automorphisms of the universal
homogeneous median algebra.

2. Median Algebra

2.1. The Algebraic Structure.

Definition 2.1. Consider the language Lma = {⟨−,−,−⟩} of one single ternary
operator. The theory of median algebra Tma is axiomatized by the following axioms.
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(1) ⟨a, a, b⟩ = a.
(2) ⟨a, b, c⟩ = ⟨a, c, b⟩ = ⟨b, a, c⟩.
(3) ⟨⟨a, x, b⟩, x, c⟩ = ⟨a, x, ⟨b, x, c⟩⟩.

Construction 2.2. Every distributive lattice induces a median algebra by defining

⟨a, b, c⟩ = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

This gives a forgetful functor from the category of distributive lattices to the
category of median algebras, which would also mean that every homomorphism
between distributive lattices is also a homomorphism between median algebras.

Here we specify a type of median algebra which will be useful in the next sub-
section.

Definition 2.3 (Discrete Median Algebra). A median algebra M is discrete when
for every a, b ∈ M , [a, b] is finite.

2.2. The Graph Structure. The main objective of this subsection is to introduce
the following bijection.

{Discrete Median Algebras} Γ−⇀↽−
Π

{Median Graphs}

Definition 2.4 (Median Graph). In a graph G, for three vertices a, b, c, their
median is a vertex m(a, b, c) such that belongs to a shortest path between every
pair of a, b, c.

In other words, using the graph metrics d, a median of a, b, c is a vertex m
satisfying

(1) d(a, b) = d(a,m) + d(m, b)
(2) d(b, c) = d(b,m) + d(m, c)
(3) d(c, a) = d(c,m) + d(m, a).

A graph G is a median graph when for every three vertices a, b, c, there is a
unique median m(a, b, c) of a, b, c.

Proposition 2.5. If G = (V,E) is a median graph, then the set of vertices V and
the graph theoretic median m : V 3 → V satisfies Tma.

Define Π(G) to be (V,m), the median algebra induced from the median graph
G by the above proposition. This provides the map from median graphs to median
algebras. (Moreover, we shall see that the image of the map falls entirely within
the discrete median algebras.)

We now provide the other map Γ, from discrete median algebras to median
graphs.

Definition 2.6 (Interval). Given a median algebra M and a, b ∈ M , an interval
[a, b] is defined as a subset {x ∈ M |⟨a, x, b⟩ = x}.

Definition 2.7 (Edge). An interval [a, b] is an edge if [a, b] = {a, b}.

Definition 2.8. Given a median algebra M (not necessarily discrete), define the
graph structure of M as the graph Γ(M) = (V,E), where V = M and E =
{(a, b)|[a, b] is an edge}.
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Proposition 2.9. When

Γ : {Median algebras} → {Graphs}

is restricted to discrete median algebras, it becomes a bijection

Γ : {Discrete Median algebras} → {Median Graphs}.

Proof. See [1, Theorem 4.3]. □

Proposition 2.10. Γ−1(G) is defined by the median algebra induced by median
graph G. In other words Γ−1 = Π

Proof. We argue that Γ(Π(G)) = G. If E(a, b) in G, then for any x ∈ [a, b] in Π(G),
m(a, x, b) = x in G. Thus, x is on a shortest path between a and b, so x ∈ {a, b}, so
[a, b] is an edge. Otherwise, there is at least one shortest path between a, b having
more than two points, so [a, b] is not an edge. Thus, Γ(Π(G)) = G.

Then, we have Π(G) = Γ−1(G). □

Thus, we have proved that Γ and Π give the following isomorphism

{Discrete Median Algebra} ⇌ {Median Graph}.

We will be referring to this isomorphism constantly and sometimes implicitly,
both for the proofs and intuition.

Moreover, we have the following results on automorphisms of median algebra
and median graphs.

Proposition 2.11. For each median algebra M , every automorphism f of M ,
by forgetting the median operation, corresponds to an automorphism Γ(f) on the
vertices of Γ(M). We claim that Γ(f) is a graph automorphism. This gives a group
isomorphism:

Γ : Aut(M) ∼= Aut(Γ(M)).

Proof. Let f ∈ Aut(M). Then f automatically gives a bijection on the vertices of
Γ(M). If [a, b] is an edge, then because f is an automorphism, [f(a), f(b)] is also
an edge. Conversely, if [f(a), f(b)] is an edge, then [a, b] is also an edge. Thus, f
gives rise to a graph automorphism of Γ(M). Let this automorphism be denoted
as Γ(f).

It is easy to prove that Γ : Aut(M) → Aut(Γ(G)) is a graph homomorphism. It
is also easy to prove that it is injective, so we now prove it is surjective. Suppose
there is a graph automorphism g ∈ Aut(Γ(M)). Then g gives a bijection on the
underlying set of M . We need only to argue that g would preserve the median
operation. Because Γ and Π are inverses, the median operation on M is the same
as the graph-theoretic median on Γ(M). Then, because g is a graph automorphism,
it preserves the metric on the graph, so g preserves the graph-theoretic median.
Thus, g is the image of an element of Aut(M). Thus, Γ is bijective. □

This allows us apply results on automorphism group of graphs to median alge-
bras.
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2.3. Convex sets.

Definition 2.12. Given a median algebra M , a subset A is convex if for every
a, b ∈ A, we have [a, b] ⊆ A.

Notice that because {⟨a, b, c⟩} = [a, b]∩ [b, c]∩ [c, a], a convex subset is naturally
a median subalgebra. However, not every median subalgebra is a convex subset.

Notice that convexity of a subset is relative to the median algebra the subset is
in. If A is a convex subset of B, we say A ≤ B.

We now give some lemmas concerning convexity.

Lemma 2.13. For median algebras A,B,C,

(1) If A ⊆ B ⊆ C, and if A ≤ B and B ≤ C, then A ≤ C.
(2) If A ⊆ B ⊆ C, and if A ≤ C, then A ≤ B;
(3) If A,C ⊆ B and A ≤ B, then A ∩ C ≤ C.

Proof. (1): Obvious.
(2): For a, b ∈ A and x ∈ B if ⟨a, x, b⟩ = x in B, then because B ⊆ C, the same

equation holds in C, so because A ≤ C, we have x ∈ A.
(3): Assume there is x, y ∈ A ∩ C and z ∈ C such that ⟨x, z, y⟩ = z. Then by

definition of convexity z ∈ A, so z ∈ A ∩ C. Thus, A ∩ C ≤ C. □

Proposition 2.14. Given a median algebra M , for any finite convex subset I, and
an element p ∈ M of distance 1 to I, there exists a convex subset I ′ ⊆ I, and a
finite convex set J disjoint from I such that

(1) p ∈ J ;
(2) J ∼= I ′ as median subalgebras;
(3) J ∪ I ′ = I ′ × 2 as median subalgebras;
(4) I ∪ J = I ⊔I′ (I ′ × 2) is also a convex set in M .

Proof. See [8, Lemma 6.8] □

The above propositions gives us a controlled way of expanding a convex subset
in a median algebra. If M is finite, then starting with any finite convex subset M0

(say, a subset of a single point), we can expand M0 step-by-step according to the
above process, namely by “duplicating a convex subset.” Because M is finite,
we can have a finite chain of inclusion

M0 ⊂ M1 ⊂ ... ⊂ Mn = M.

Notice that because every Mi is convex in M , by the lemma, each Mi is convex
in Mi+1.

Moreover, because every convex subset is a median subalgebra, the above chain
of subsets can also be viewed an inclusion chain of median algebras. This can be
expressed with the following proposition.

Proposition 2.15. For every finite median algebra M such that |M | ≥ 2, there is
a finite convex subset N such that |N | < |M |, and M is constructed by duplicating
a convex subset of N according to the proposition.

This proposition allows us to make argument on the class of all finite median
algebras by inducting on the number of elements. In other words, if we want to
prove every finite median algebra has property P , we need only to prove that

(1) The trivial median algebra of one element has property P ;
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(2) if M has property P , then every M ′ which expands M by duplicating a
convex subset of M also has property P .

The following lemma is an example of this technique.

Lemma 2.16. Every finite median algebra can be embedded inside a hypercube
median algebra 2n for some n(which is the median algebra induced by the boolean
algebra 2n by the forgetful functor).

Proof. The trivial median algebra of one element first obviously can be embedded
in any 2n. Suppose M can be embedded in 2n by a map f , i.e. for every element
a ∈ M , we assign it f(a) a 01-string of length n. Suppose M is expanded to N by
duplicating an ideal I. Denote the “new point” as a1, ..., am and the corresponding
old points as b1, ..., bm. Then, we define g : N → 2n+1 as follows: for x ∈ M ,

g(x) = f(x) ⌢ 0

and for ai where i = 1, ...,m, we have

g(ai) = f(bi) ⌢ 1.

Thus, we have constructed an embedding of N into 2n+1. Thus, by induction, every
finite median algebra can be embedded into 2n for some n. □

3. Duality Theory

This section is a brief digresssion to the duality theory of distributive lattices.
Duality theory is able to realize abstract lattices as concrete, topological construc-
tions, which can in some cases greatly simplify the discussion of lattices.

Even for median algebras induced from distributive lattices, not every median
algebra automorphism is a lattice homomorphism. Nevertheless, duality theory for
distributive lattice is still useful, because for the universal homogeneous median
algebra and its automorphisms, enough many of them are lattice automorphisms,
meaning that duality theory still simplify a large enough part of the discussion.

We now dive into the topological counterparts of the distributive lattice.

Definition 3.1 (Bounded Priestley Space). A bounded Priestley space is a 4-tuple
(X,≤, 0, 1) composed of a Stone space, a partial order and the lowest and highest
points of the partial order satisfying the following condition.

• If x ̸≤ y, then there is a clopen up-set U such that x ∈ U and y ̸∈ U .

A morphism between Priestley space is defined as a continuous map preserving
the order, 0 and 1. Denote the category of Bounded Priestley spaces as BPSpace.

Construction 3.2. Define a functor F : BPSpace → DLatop as follows. (Notice
that DLat is the category of distributive lattice in general, i.e. not necessarily
bounded.)

For each bounded priestley space X, define

F(X) := {clopen low-sets of X}
with join and meet defined as union and intersection.

F(f), where f is a morphism between Priestley spaces, is defined by f−1 on the
clopen sets.

Define G : DLatop → BPSpace as follows. For each distributive lattice D,
define

G(D) := {f : D → 2 is a homomorphism} ⊆ 2D
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with the order defined by f ≤ g ⇔ f−1(0) ⊆ g−1(0), and topology defined as the
subspace of 2D (with product topology and 2 given the discrete topology).

G(f), when f is a morphism between distributive lattices, is defined by taking
− ◦ f on the set of homomorphisms to 2.

Theorem 3.3 (Priestley Duality). F and G form an equivalence of category be-
tween BPSpace and DLatop.

Proof. See [4, Theorem 2.5] □

4. First Kind of Universal Homogeneous Structure

Consider the Cantor set C, which is a subspace of the real interval [0, 1]. Let ≤
be the weakest partial order on C such that 0 is the unique ≤-lowest element and 1
is the unique ≤-highest element. In other words, 0 ≤ x and x ≤ 1 for every x ∈ C,
and for any x, y ∈ C \ {0, 1}, x, y are incomparable.

Construction 4.1. Define M as the median algebra induced by the distributive
lattice which the dual of the Priestley space (C, 0, 1,≤).

In other words,

M = {A ⊆ C|A is clopen and 0 ∈ A, 1 ̸∈ A}
and the median operation is defined as

⟨a, b, c⟩ := (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a).

Now we state the theorem.

Theorem 4.2 (Main Theorem 1). M satisfies the follows:

(1) M is universal, i.e. every finite median algebra embeds into M;
(2) M is homogeneous;
(3) |M| = ℵ0.

Thus by Fräıssé’s Theorem M is the unique countable, universal, homogeneous
median algebra.

The proof for |M| = ℵ0 can be done easily by a point-set topological argument.
We notice that every finite partition of C into clopen sets induces a subalgebra

of M. For a partition P , we call the resulting subalgebra MP . Explicitly, when
P = {c0, ..., cn} is a partition of C into clopen sets, where 0 ∈ c0 and 1 ∈ cn, we
have

MP =

{
A ⊂ C

∣∣∣∣∣A = c0 ∪
⋃
i∈S

ci, S ⊆ {1, ..., n− 1}

}
∼= 2n−1.

We thus can prove universality.

Proof of Universality. By Lemma 2.16, every finite median algebra embeds into a
median algebra 2n−1 for some n. Because MP

∼= 2n−1 is a subalgebra of M for P a
partition of C into n clopen subsets, we conclude that every finite median algebra
embeds into a median algebra. □

We now begin the proof of homogeneity. We again apply the construction of
finite partition.

Lemma 4.3. Given a finite partition P of C, every automorphism of MP extends
to an automorphism of M.
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In order to prove this, we need the two following lemmas.

Lemma 4.4. (1) Every automorphism of C which preserves 0 and 1 induces
an automorphism of M.

(2) For a clopen subset A ⊆ C \ {0, 1}, X 7→ X ⊕A gives an automorphism of
M.

The proof of lemma is straightforward. (1) is a direct application of Priestley
duality, and (2) is clear by some boolean-algebraic calculations.

Lemma 4.5. The automorphism group of a hypercube is generated by

(1) flipping along a coordinate;
(2) Permutation of coordinates.

Proof. See [6]. □

Proof of Lemma 4.2. Let P = {c0, ..., cn} be a partition. By Proposition 2.11, we
have Aut(MP ) = Aut(2n−1) isomorphic to the automorphism group of the hyper-
cube graph. Then, by Lemma 4.5, Aut(2n−1) is generated by flipping a coordinate
or permutation of coordinates. Thus, Aut(MP ) is generated by

(1) the dual of an automorphism of C which permutes c1, ..., cn−1 (this auto-
morphism of C exists because every clopen subset of C is homeomorphic to
C);

(2) X 7→ X ⊕ ci for i = 1, ..., n− 1.

Both type of automorphisms can be extended to an automorphism of M by Lemma
4.4. Thus, every automorphism of MP extends to an automorphism of M. □

Now we extends Lemma 4.2 to isomorphism between two subalgebras MA,MB

given by two different partitions A,B of C into the same finite number of clopen
subsets.

Lemma 4.6. Given two finite partitions A,B of C into the same number of clopen
sets, if we have an isomorphism g : MA → MB, then f extends to an automorphism
f of M such that f |MA

= g.

Proof. Because every clopen subset of C is isomorphic to C, there is an automor-
phism on C taking partition A to partition B. Let the dual of this automorphism
be f1. Then, f1 restricts to an isomorphism f1|MB

: MB → MA.
Then, by Lemma 4.2, we have can extend f1|MB

◦ g (which is an automorphism
of MA)to an automorphism of M. Let this automorphism be f2. Then, we have
f1|MB

◦ g = f2|MA
and thus g = (f−1

1 ◦ f2)|MA
. Thus, g extends to f−1

1 ◦ f2 which
is an automorphism of M. □

Now, we generalize the result to isomorphism between two finite subalgebras in
general, which is one of the most technical parts of the paper.

Proof of Homogeneity. For f : A → B isomorphism of finite subalgebras of M. We
shall choose two subalgebras CA and CB that come from finite partitions of C which
contain A and B respectively, so that there is an isomorphism g : CA → CB that
extends f . Then we can apply Lemma 4.6.

We try to construct an invariant on ordered, median subalgebras of M of n
elements.
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Let A have a canonical order a1, ..., an. Notice that each ai is a clopen subset
of the Cantor set containing 0 and excluding 1. Consider the coarsest partition of
the Cantor set into clopen subsets c0, ..., cm, such that each ai us a disjoint union
of (ci)

m
i=0. Then, define the matrix form of A with respect to the partition as

m(A)i,j =

{
1 if cj ⊆ ai

0 if cj ̸⊆ ai

Then, define character of A, ch(A) ⊆ 2n/¬ (i.e. 2n modulo negation operation)
as

ch(A) = {columns of m(A) modulo ¬} ⊆ 2n/¬.
Notice that the character is not dependent upon the partition, since all partitions

(such that every ai is a disjoint union of segments) are finer than c1, ..., cm, and all
finer partitions would yield the same character.

First, if ch(A) = ch(B), then the coarsest partition of Cantor set would (modulo
some splitting of segments) give CA and CB and an isomorphism between CA to
CB would bring A to B.

Thus, we need only to prove that if A ∼= B (suppose an order on both is preserved
by the isomorphism), then ch(A) = ch(B). We shall prove this by strong induction
on number of elements.

We will index the elements of A and B by natural numbers, and naturally an
order is induced on both.

Let A = {a1, ..., an}, B = {b1, ..., bn} such that A ∼= B (the isomorphism pre-
serves the index) and ch(A) = ch(B). Suppose (without loss of generality) the
indices 1, ..., k give convex sets in both A and B. Assume A′ = {a1, ..., an+k}, B′ =
{b1, ..., bn+k} are extended from A,B by duplication of the convex set, where
an+i, bn+i correspond to ai, bi, and naturally there is isomorphism A′ ∼= B′.

Assuming ch(A) = ch(B), we shall argue that ch(A′) = ch(B′): we need only
to argue that ch(A′) depends only on the median algebra structure of A′, without
any arbitrary selection.

Assume {c0, ..., cm} is the coarsest partition of C corresponding to A. Assume
0 ∈ c0 and 1 ∈ cm so for every ai, c1 ⊆ ai and cm ̸⊆ ai. Then we now argue that

an+i ∩ cj = ai ∩ cj for i = 1, ..., k and j = 1, ...,m− 1.

The statement is automatically true for m = 1. Assume m ≥ 2. Then, we would
have n ≥ 2. Select l ∈ {1, ..., n} such that al ∩ cj ̸= ai ∩ cj . l must exist since
(cj)

m
j=0 is the coarsest partition and n ≥ 2. Notice that aj ∩ cj , ai ∩ cj both are

either cj or empty.
By property of convex set we know ⟨al, ai, an+i⟩ = ai. Thus, an+i ∩ cj = ai ∩ cj

for every i = 1, ..., k and j = 1, ...,m − 1. Thus, (c1, ..., cm−1) is still the coarsest
partition of part of the Cantor set (C \ (c0 ∪ cm)) when an+1, ..., an+k are added.

Now, we have determined an+i ∩ cj for j = 1, ...,m− 1, we shall now determine
an+i ∩ c1 and an+i ∩ cm.

Notice that for any i, j ∈ 1, ..., k, we have ⟨ai, an+i, an+j⟩ = an+i. Thus, we have

(an+i ∩ c1) ∪ (an+j ∩ c1) = ⟨c1, an+i ∩ c1, an+j ∩ c1⟩ = an+i ∩ c1

meaning that

an+j ∩ c1 ⊆ an+i ∩ c1.
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Since the above equation applies to all i, j, we see that an+j ∩ c1 = an+i ∩ c1 for
all i, j = 1, .., k and the same applies to cm.

Thus, we can partition c0 into c′0 = an+i ∩ c0 and its complement c′′0 in c0 and
partition cm into c′m = an+i ∩ cm and its complement c′′m in cm. Thus, we have
reached a partition for a1, ..., an+k. Then, we conclude

ch(A′) =

{
i 7→

{
1 if i ≤ n
0 if i > n

}}
∪

{
i 7→

{
a(i) if i ≤ n

a(i− n) if i > n

∣∣∣∣∣ a ∈ ch(A)

}
Thus, we have proved that ch(A′) depends entirely upon the median algebra

structure on A′. □

Thus, by Fräıssé’s Theorem, M is the unique Fräıssé’s Limit of all finite median
algebras.

5. Second Kind of Universal Homogeneous Structure

We now prove the second main result of this paper, i.e. constructing the unique
median algebra that is universal and homogeneous for convex sets.

Construction 5.1. We construct an infinite series of median graphs/median alge-
bras in the following iterated process.

(1) Start with a point.
(2) For every finite convex set x1, ..., xn in the current median algebra, duplicate

the finite convex set as y1, ..., yn so that xi is connected to yi by an edge,
and y1, ..., yn are connected with each other in the same way as x1, ..., xn.

(3) Repeat the above process.

The initial, trivial median algebra is denoted as M0. The median algebra cor-
responding to the median graph reached by the n-th iteration of the above process
is called Mn. The union of all Mn is M.

We now state the second main theorem.

Theorem 5.2 (Main Theorem 2). M is the unique median algebra that satisfies
the following.

(1) Every finite median algebra embeds into M as a convex subset.
(2) M is ultrahomogeneous only for convex subsets. In other words, for two

convex subsets A,B, any isomorphism between A,B extends to an auto-
morphism of M.

(3) M has cardinality ℵ0.
(4) For every finite subset A ⊆ M, the convex hull cl(A) of A is finite.

Definition 5.3 (Convex Hull). Given a median algebra M and a subset A ⊆ M ,
define the convex hull cl(A) of A to be the smallest convex sets containing A, i.e.
intersection of all convex sets containing A.

The cardinality is trivial. We first prove the closure finiteness of M.

Proof of Closure Finiteness. Given a finite set A ⊂ M, because A is finite, there is
n such that A ⊆ Mn. We now prove that Mn is a convex subset of M.

Suppose for contradiction that Mn is not convex in M. Then there is a ∈ M
witnessing the non-convexity of Mn (i.e. ⟨p, a, q⟩ = a for some p, q ∈ Mn). Then
there is Mm such that m ≥ n and a ∈ Mm. By Proposition 2.13 and Lemma 2.12,
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Mn is convex in Mm, but this contradicts that ⟨p, a, q⟩ = a for some p, q ∈ Mn.
Thus, Mn is convex in M. □

We then prove the universality.

Proof of Universality. Let A be a finite median algebra. Let {∗} = A0 ⊂ .... ⊂
An = A be a sequence of expansion reached by applying Proposition 2.13.

Then by Proposition 2.13 and the construction of M, we have Ai ⊆ Mi for
i = 0, ..., n and each Ai is a convex subset of Mi. Thus, A is a convex subset of
M. □

We now prove the homogeneity of M. For this purpose, we now switch to an
axiomatic treatment of M. Notice that from now on we rely heavily on the graph-
theoretic perspective.

Construction 5.4. Let Tgma be the theory given by the following axioms.

(1) The axioms of median algebra.
(2) For every convex set x1, ..., xn, xn+1, ..., xn+k where x1, ..., xn is a smaller

convex set, there exist y1, ..., yn disjoint from the points xn+1, ..., xn+k such
that (∧

i

E(xi, zi)

)
∧

∧
i,j

(E(xi, xj) ↔ E(zi, zj)


and such that {x1, ..., xn+k, z1, ..., zn} is also a convex set.

Here E(x, y) denotes there is an edge between x, y in the graph structure.
In other words:

E(x, y) := ¬∃a((⟨x, a, y⟩ = a) ∧ (a ̸= x) ∧ (a ̸= y)).

Theorem 5.5 (Homogeneity). (1) M |= Tgma

(2) For every countable model N |= Tgma and finite convex sets B ⊆ N and
A ⊆ M and an isomorphism g : A → B of median algebras, there exists
an embedding f : M → N such that f |A = M, and Im(f) is a connected
component of N (when N is considered as a graph).

(3) M is homogeneous for convex sets.

Proof. (1) We need only to check the axiom (scheme) 2 of Tgma. For convex set
I = {x1, ..., xn, ..., xn+k} and I ′ = {x1, ..., xn}, there is m such that I ⊆ Mm.
Then, I and I ′ are convex in Mm by Lemma 2.13. Then, Mm+1 contains the
duplicated I ′ as stated in the axiom scheme 2 of Tgma. Thus, M |= T .

(2) We first consider the case when A ∼= B is one single point x0. Because for
every vertex of N , the edge degree is ω, we argue that every connected component
of N can be traversed in a similar way as Construction 5.1.

For each vertex, we give a well-order on vertices connected to x. Then consider
the following process which traverses a connected component of N .

(1) Begin with a point x0 of N . Put it into the queue.
(2) Select the lowest-ordered vertex connected to the front of the queue, that

has not yet been traversed. Add it to the back of the queue. Remove the
vertex in the front of the queue, and add it to the back of the queue.

(3) Repeat the above process.
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By induction on the distance to x0, We can argue that the traversing process
covers the entire connected component of x0.

Let the vertex selected at the i-th step be xi. We now construct an isomorphism
from Mg to N as follows.

Recall that the median graph reached by the i-th step of Construction 5.1 be
Mi. Let M0 be mapped to x0. Then we shall construct the rest of the isomorphism
inductively.

Suppose we have already constructed map from Mi−1 into N . Then in the i-th
step of the traversing process, if xi is already is already in the image Mi−1, then
skip this step (we can only skip finitely many steps in a row, so the whole process
is still pseudo-finite). If not, then let xi be of distance 1 to Mi−1. Then, by Prop
2.14, we can include xi by duplicating a finite convex set of Mi−1.

Thus, we force xi to be contained in the duplication of a finite convex set of
Mi−1 in the construction of Mi (and the rest of the map of Mi into N is easy to
construct). Thus, we have given an embedding of Mi into N , and xi ∈ Mi. Induc-
tively, we have given an embedding of M into N . Because the traversing process
covers one entire connected component of N , Im(f) is a connected component of
N .

We now consider the case when A ∼= B is a nontrivial finite convex subset. The
proof is basically the same, but in the beginning, for a small n such that A ⊆ Mn,
we start with a certain function f |Mn

: Mn → N which takes A to B according to
the isomorphism. We then begin the traversing process with every vertex of Mn

inside the queue. In this way, we would eventually yield an embedding from of M
into N .

(3) Evident by applying part (1) and (2) when we let N = M. □

We now prove the uniqueness.

Theorem 5.6 (Uniqueness). (1) Every model satisfying (1) and (2) of Theo-
rem 5.2 models Tgma.

(2) M is the unique model of Tgma satisfying (3) and (4) of Theorem 5.2.

Proof. (1) Evident by applying homogeneity and universality.
(2) Suppose N is a model of Tgma satisfying (3) and (4). Because N satisfies

(4), and because for each a, b ∈ N , [a, b] is a convex set, every [a, b] is finite, so
N is a discrete median algebra, so by Proposition 2.9 and 2.10, N is induced from
a median graph, which is always connected. Thus, N has only one connected
component, which is N itself. Thus, by Theorem 5.5, N ∼= M. □

Remark 5.7. M is an example of a kind of construction called Hrushovski’s con-
struction, when we take the closed subsets in the construction to be convex subsets.
Lemma 2.14 ensures that the axioms of closed subsets are satisfied. In this way,
the uniqueness can also be proved by referring to Proposition 2.2 of [10].
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