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Hardy-Littlewood Circle Method

1 Introduction

Recent work of Browning & Heath-Brown explored the density of rational points on the biprojective
hypersurface of bidegree (1, 2) in 8 variables cut out by the equation

x1y
2
1 + x2y

2
2 + x3y

2
3 + x4y

2
4 = 0

in P3 × P3.
Specifically, they, in [1], proved a modified Manin conjecture for this Fano variety, where a

removal of a “thin subset” of problematic points , which yields a greater density of rational points
than predicted by the Manin conjecture, is allowed. Indeed, “points tend to accumulate on thin
subsets which are images of non-trivial finite morphisms” (Peyre, [6]).

We wish to follow a similar line of reasoning for an infinite family of biprojective hypersurfaces
of bidegree (1, k) in Ps−1 × Ps−1 cut out by equations of the form

x1y
k
1 + ⋅ ⋅ ⋅ + xsy

k
s = 0,

and prove the modified Manin conjecture for all s ≥ 2k + 1.
This would extend a result of Hu ([5]), which established the conjecture for biprojective hyper-

surfaces of bidegree (1, 2) for s ≥ 26, to s ≥ 5 for diagonal equations, of the type investigated for
s = 4 by [1], and to biprojective hypersurfaces of bidegree (1, k) given by diagonal equations for all
integers k > 2, holding for s ≥ 2k + 1.

Working towards a resolution of a modified Manin conjecture for these varieties, we apply the
Hardy-Littlewood circle method to establish an asymptotic formula for integer solutions to these
forms, and establish a result for G(k).

We must note that the circle method produces answers for a high number of variables in com-
parison to the exponent, so that, in general, s≫ k. We establish specific functions of k, which we
call s0(k) and s1(k), for the convergence and positivity of the singular series, but our asymptotic
formula holds when s > 2k.

To establish notation, in this paper we say that

F (x)≪ G(x), or G(x)≫ F (x)

if there are constants c ∈ R>0 and x0 ∈ R such that

∣F (x)∣ ≤ cG(x)

for all x ≥ x0.
We divide this paper into 3 sections. In section 1 we gave basic introduction and prove an

asymptotic for our Waring’s problem. In section 2, we analyzed the convergence criteria for the
singular series. In Section 3 we prove a lower bound for the number of solutions under weaker
conditions.

Part I

Define

Tj(α) =
P

∑
y=1

e(αxjy
k) =

P

∑
y=1

e2πiαxjy
k

.

We wish to study the equation

x1y
k
1 + ... + xsy

k
s = 0, (1)

for s > s0(k), which is a certain function of k, and yj ≤ Q for j ∈ N, where j ≤ P . Following the
Hardy-Littlewood circle method, we notice that the number of solutions of the above is precisely:

∫
1

0
T1(α)T2(α)...Ts(α)dα. (2)

Since the xjs are in fact variants instead of constants in the equations, we wish to evaluate major
and minor arcs, as well as their errors, in terms of the xjs.

Lemma 1.1. (Weyl’s Inequality) Let fj(x) be polynomial of degree k with top coefficient αxj.
Suppose that α has rational approximation a/q:

(a, q) = 1, q > 0, ∣α −
a

q
∣ ≤

1

q2
,
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then for any ϵ > 0, we have

∣
P

∑
x=1

e(f(x))∣≪ P 1− 1
K + P 1+ϵ(x

1
K
j (q

− 1
K + P −

1
K ) + (

P k

q
)−

1
K ), (3)

where K = 2k−1.

Proof. We seek to prove the case when f(y) = αxjy
k Define

Sk(αxjy
k
j ) =

P

∑
y=1

e(αxjy
k).

The k subscript standing for the degree of the function evaluated inside. We notice from complex
conjugation that

∣Sk(αxjy
k
j )∣

2
=

P

∑
y1=1

P

∑
y2=1

e(αxj(y
k
1 − y

k
2))

= P + 2
1≤y1,y2≤P

∑
y1>y2

Re(e(αxj(y
k
1 − y

k
2)))

= P + 2
P

∑
y=1
∑
yj

Re(e(αxj(∆y(y
k
j )))),

where

∆y(y
k
j ) = (yj + y)

k − ykj ,

and the summation is taking place over yj ’s such that yj + y, yj ∈ N and yj + y, yj ≤ P . One can
thus replace the inside sum by Sk−1(∆y(αxjy

k
j )), and note that

∣Sk(αxjy
k
j )∣

2
≤ P + 2

P

∑
y=1

∣Sk−1(∆y(αxjy
k
j ))∣.

In particular, one sees that, replacing k with k − 1 and summations with appropriate intervals, we
have

∣Sk−1(∆y(αxjy
k
j ))∣

2
≤ P + 2

P

∑
z=1

∣Sk−2(∆y,z(αxjy
k
j ))∣,

where

∆y,z(αxjy
k
j ) =∆y(αxj(yj + z)

k) −∆y(αxjy
k
j ).

In particular, we see that this is polynomial of degree k−2 in yj . Combined, we have the following:

∣Sk(αxjy
k
j )∣

4
≤ [P + 2

P

∑
y=1

∣Sk−1(∆y(αxjy
k
j ))∣]

2

≤ P 2 + 4P
P

∑
y=1

∣Sk−1(∆y(αxjy
k
j ))∣ + 4[

P

∑
y=1

∣Sk−1(∆y(αxjy
k
j ))∣]

2

≤ P 2 + 4P
P

∑
y=1

∣Sk−1(∆y(αxjy
k
j ))∣ + 4P

P

∑
y=1

∣Sk−1(∆y(αxjy
k
j ))∣

2
(Cauchy-Schwartz Inequality)

≪ P 2 + P
P

∑
y=1

∣Sk−1(∆y(αxjy
k
j ))∣ (AM-GM Inequality)

≪ P 3 + P
P

∑
y=1

P

∑
z=1

∣Sk−2(∆y,z(αxjy
k
j ))∣.

One may thus follow through similar process and show that

∣Sk(αxjy
k
j )∣

2υ
≪ P 2υ−1 + P 2υ−υ−1

P

∑
y1,y2...yυ=1

∣Sk−υ(∆y1,y2...yυ(αxjy
k
j ))∣.

Letting υ = k − 1, one sees that

Sk−υ(∆y1,y2...yυ(αxjy
k
j )) = k!αy1...yυxjyj + β,
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where β is a constant. Rearranging, we see that

∣Sk−υ(∆y1,y2...yυ(αxjy
k
j ))∣ =∑

x

e(k!αy1...yυxjyj).

Here we note that

x2−1

∑
x=x1

e(λx)≪
1

∣∣λ∣∣
,

which gives us that, letting υ = k − 1 and K = 2k−1,

∣Sk(αxjy
k
j )∣

K
≪ PK−1 + PK−k+ϵ

xjk!P
k−1

∑
m=1

min (P, ∣∣αm∣∣−1),

where in the last sum we have rearranged into all possible values for k!xjy1...yk−1. Reputting the
summations into blocks of sizes q each, we see that the number of blocks ≪

xjy1...yk−1
q + 1. The rest

follows through the text by Davenport, in which it was proved that:

q−1

∑
r=0

min (P, ∣∣αm∣∣−1)≪ P + q log q.

Therefore we have that

∣Sk(αxjy
k
j )∣

K
≪ PK−1 + PK+ϵ(

xjP
−1

q
+ P −k)(P + q log q).

Taking Kth root gives the result.

Lemma 1.2. (Hua’s inequality) Given any j, we have

∫
1

0
∣Tj(α)∣

2kdα≪ P 2k−k+ϵ.

Proof. Denoting integral on the left as Ik, we prove the theorem through inducting on k. The base
case is trivial: if k = 1, we have

∫
1

0
∣Tj(α)∣

2
dα = ∫

1

0

P

∑
yj=1

e(αxjy
k
j )

P

∑
yj=1

e(−αxjy
k
j ) = P ≪ P 21−1+ϵ.

Suppose case holds for k = v, we show that it also holds for k = v + 1. In particular, we have from
proof of the previous theorem that

∣Tj(α)∣
2v
≪ P 2v−1 + P 2v−v−1

P

∑
z1,z2...=1

R∣Sk−v(∆z1,z2...zv(αxjy
k
j )∣,

where

Sk−v(∆z1,z2...zv(αxjy
k
j ) =∑

yj

e(∆z1,z2...zv(αxjy
k
j ).

Summing over ranges of yj for which yj+∑
n<v
i=1 zi are contained in [1, P ]. After multiplying ∣Tj(α)∣

2v

on both sides and integrating with respect to α from 0 to 1, we obtain:

Iv+1 ≪ P 2v−1Iv + P
2v−v−1

∑
z1...zv

R∫
1

0
Sk−v ∣Tj(α)∣

2v
dα, (4)

the last integral being

∫
1

0
∑
yj

e(∆z1,z2...zv(αxjy
k
j ) ∑

u1,u2...u2v−1
v1,v2...v2v−1

e(αxj(u
k
1 + u

k
2 + ...))e(−αxj(v

k
1 + v

k
2 + ...))dα.

Hence the integral counts the number of solutions to

∆z1...zv(xjy
k
j ) + xju

k
1 + ... − xjv

k
1 = 0. (5)

In particular, we note that the first term is either a strictly increasing or a strictly decreasing
function of yj . Furthermore it is divisible by z1, z2...zv. Thus only one possible yj works for each
choice of parameters. From previous theorem, we have that the number of solutions to (5), denoted
N, has

N ≪ P 2v+v2vϵ = P 2v+ϵ.

Substituting back into (4) along with inductive hypothesis, we have

Iv+1 ≪ P 2v−1P 2v−v+ϵ + P 2v−v−1P 2v+ϵ = P 2v+1−(v+1)+ϵ,

giving the proof.
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With these tools it is possible to evaluate the integral along the minor arcs.

Definition 1.3. Define

Ma,q = {α ∈ [0,1] ∶ ∣α −
a

q
∣ < P −k+δ} ,

for a ≤ q, (a, q) = 1 and 1 ≤ q ≤ P δ for some small δ. Define

M = ⋃
q≤P δ

q

⋃
a=1
(a,q)=1

Ma,q,

m = [0,1]/M.

Here M is our major arc and m is the minor arc.

Lemma 1.4. If s > 2k, then we have

∫
m
∣T1(α)T2(α)...Ts(α)∣dα≪ P s−k−δ′(x1...xs)

(s−2k)/Ks
,

where Tj(α) are defined as before.

Proof. By Holder’s inequality, one has

∫
m
∣T1(α)T2(α)...Ts(α)∣dα≪ (∫

m
∣T1(α)∣

sdα)
1
s ...(∫

m
∣Ts(α)∣

sdα)
1
s ,

so we simply need to evaluate one of these integrals. We note that by Dirichlet’s approximation
theorem, one can find a, q such that

1 ≤ q ≤ P k−δ, ∣α −
a

q
∣ ≤ q−1P −k+δ.

Hence if α ∈m, then necessarily we have q > P δ. In particular, we see that, since ∣α − a
q
∣ ≤ q−2 and

Pk

q > P
δ, we can use Weyl’s Inequality to conclude that for α ∈m,

∣Tj(α)∣≪ P 1+ϵ−δ/Kx
1/K
j .

Thus using Hua’s Inequality, we have

(∫
m
∣Tj(α)∣

sdα)

1/s

= (∫
m
∣Tj(α)∣

s−2kdα)

1/s

(∫
m
∣T1(α)∣

2kdα)

1/s

≪ ((P 1+ϵ−δ/Kx
1/K
j )

s−2k
P 2k−k+ϵ)

1/s

= (P s−k−δ′x
(s−2k)/K
j )1/s.

Combining using Holder’s inequality, we have finally the desired Holder’s Inequality:

∫
m
∣T1(α)T2(α)...Ts(α)∣dα≪ P s−k−δ′(x1...xs)

(s−2k)/Ks
.

In fact this concludes the proof of theorem for the minor arcs. We now seek to evaluate the
expression for the major arcs. The following lemma transforms the summation into easier forms to
handle.

Lemma 1.5. For α in Ma,q, let α = β + a/q, then we have

Tj(α) = q
−1Sxja,qIj(β) +O(P

2δxj),

where

Sxja,q =
q−1

∑
r=0

e(
axj

q
rk), Ij(β) = ∫

P

0
e(xjβu

k)du.

4



Hardy-Littlewood Circle Method

Proof. We see that

Tj(α) =
P

∑
y=1

e(αxjy
k)

=
q−1

∑
r=0

e(
axj

q
rk)∑

b

e(xjβ(bq + r)
k)

= Sxja,q∑
b

e(xjβ(bq + r)
k),

where the summation for b takes place such that bq + r runs over 1,2...P . In particular, we now
seek to replace the second sum by an integral as indicated, and then reevaluate the error terms.
Note that

∫

P
q

0
e(xjβ(yq + r)

k)dy − ∑
0≤b<P

q

e(xjβ(bq + r)
k)

=

⌊P
q
⌋

∑
j=0
∫

j+1

j
e(xjβ(yq + r)

k) − e(xjβ(jq + r)
k)dy.

We note that for ∣y − j∣ ≤ 1
2 , if f is continuously differentiable, then we have:

∣f(y) − f(j)∣ ≤
1

2
max ∣f ′(j)∣,

for j in that region. In particular, after substitution we see that

∫

P
q

0
e(xjβ(yq + r)

k)dy − ∑
0≤b<P

q

e(xjβ(bq + r)
k)

≪

⌊P
q
⌋

∑
j=0

1

2
max

y∈[j,j+1]
∣f ′(y)∣

≪ max
y∈[0,P

q
]

∣f ′(y)∣⌊
P

q
⌋.

where f(y) = e2πixjβ(qy+r)
k
and therefore ∣f ′(y)∣≪ βxjqP

k−1, therefore combining all terms we have

∫

P
q

0
e(xjβ(yq + r)

k)dy − ∑
0≤b<P

q

e(xjβ(bq + r)
k)≪ P δxj ,

since by construction, β ≤ P −k+δ. Multiplying from outside by Sxja,q we obtain the error term

O(P 2δxj). Finally a change of variables in the integral gives the result.

With this it is enough to determine the value along the major arcs

Lemma 1.6.

∫
M
T1(α)...Ts(α) dα = P

s−k C(P )

(x1...xs)
1
k

∑
q≤P δ

q

∑
a=1
(a,q)=1

q−sSax1,q...Saxs,q +O(P
s−k−δ′max(x1...xs)),

where

C(P ) = ∫
γ≤P δ

(∫
1

0
e(γuk) du)

s

dγ.

Proof. Note that

∫
M
T1(α) . . . Ts(α)dα = ∑

q≤pδ
∑
a=1
(a,q)=1

∫
Ma,q

T1(α) . . . Ts(α)dα

= ∑
q≤pδ

q

∑
a=1
(a,q)=1

q−sSx1a,q . . . Sxsa,q ∫
∣β∣<p−k+δ

I1(β) . . . Is(β)dβ

by the definition of the major arcs, where

Ij(β) = ∫
P

0
e(xjβu

k) du.
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Define I to be the right-most integral

I ∶= ∫
∣β∣<p−k+δ

I1(β) . . . Is(β) dβ.

Then we have that

I = ∫
∣β∣<p−k+δ

s

∏
j=1
∫

P

0
e(xjβu

k
j ) duj dβ

= ∫
∣β∣<P−k+δ

s

∏
j=1
∫

x
1/k
j

0
e(βvkjP

k) dvj
P

x
1/k
j

dβ

=
P s

x
1/k
1 . . . x

1/k
s

∫
∣β∣<P−k+δ

s

∏
j=1
∫

x
1/k
j

0
e(βvkjP

k) dvj dβ,

when we set uj = Pvj .
Now, setting γ = βP k, we have

I = P s−k
∫
∣γ∣<P δ

s

∏
j=1
∫

1

0
e(xjγv

k
j ) dvj dγ.

Now, we introduce another change of variables, and set ζ = vkj , and our I now becomes

I = P s−k
∫
∣γ∣<P δ

s

∏
j=1
∫

1

0
e(xjγζ)

dζ dγ

kζ(k−1)/k
.

Another change of variables, setting µ = γζ, yields

I = P s−k
∫
∣γ∣<P δ

s

∏
j=1
∫

γ

0
e(xjµ)

dµ dγ

γkµ(k−1)/kγ(k−1)/k

= P s−k
∫
∣γ∣<P δ

s

∏
j=1

{γ−
1
k k−1∫

γ

0
e(xjµ)

−1+ 1
k dµ} dγ,

and

∣∫
∣γ∣≥P δ

γ−
s
k k−s

s

∏
j=1
∫

γ

0
e(xjµ)µ

−1+ 1
k ∣≪ p(−

s
k
+1)δ.

Finally! We have the desired result:

Theorem 1.7.

∫
1

0
T1(α)...Ts(α) dα = P

s−k C(P )

(x1...xs)
1
k

∑
q≤P δ

q

∑
a=1
(a,q)=1

q−sSax1,q...Saxs,q +O(P
s−k−δ′T ), (6)

where

C(P ) = ∫
γ≤P δ

(∫
1

0
e(γuk) du)

s

dγ, and

T =max((x1...xs)
(s−2k)/sK ,max(x1, ..., xs)).

2 Part II

In this section, we focus on the double series

Ss ∶=
∞

∑
q=1

q

∑
a=1
(a,q)=1

q−sSax1,q...Saxs,q,

which we call the singular series in the tradition of Hardy & Littlewood, and the integral

C(P ) = ∫
γ≤P δ

(∫
1

0
e(γuk) du)

s

dγ.

Let us consider C(P ) first.

6
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Note that if we take the inner integral, we can apply a change of variables ζ = uk, to yield, as
in Davenport,

∫
1

0
e(γuk) du = k−1∫

1

0
ζ−1+

1
k e(γζ) dζ

= k−1γ−
1
k ∫

γ

0
ζ−1+

1
k e(ζ) dζ,

where γ in the last integral is positive.

The above is absolutely convergent at 0. By Dirichlet’s test, we know that k−1γ−
1
k ∫

γ
0 ζ
−1+ 1

k e(ζ) dζ
is a bounded function of γ, so we know that

∣∫
1

0
e(γuk) du∣≪ ∣γ∣−

1
k ,

and so we can extend the integration over γ to infinity to obtain

C(P ) = C +O(P −(
s
k
−1)δ),

where

C = ∫
∞

−∞
(k−1∫

1

0
e(γζ) dζ)

s

dγ,

which we call the singular integral.
This treatment is identical to the one in Davenport.
It suffices for our purpose to just show that C > 0.
We do this as in Davenport, using Fourier’s integral theorem.
Setting ξ = ζ1 + ⋅ ⋅ ⋅ + ζs, define

φ(ξ) = ∫
1

0
⋯∫

1

0
{ζ1 . . . ζs−1(ξ − ζ1 − ⋅ ⋅ ⋅ − ζs−1)}

−1+ 1
k dζ1 . . . dζs−1,

taken over values of ζ1, . . . , ζs−1 such that ξ − 1 < ζ1 + ⋅ ⋅ ⋅ + ζs−1 < ξ.
The application of Fourier’s integral theorem requires certain conditions to be met, and it

suffices for φ(ξ) to be of bounded variation.
To show this, let ζj = ξtj , so that

φ(ξ) = ξ
s
k
−1
∫

1
ξ

0
⋯∫

1
ξ

0
{t1 . . . ts−1(1 − t1 − ⋅ ⋅ ⋅ − ts−1)}

−1+ 1
k dt1 . . . dts−1,

taken over values of t1, . . . , ts−1 such that 1 − 1
ξ < t1 + ⋅ ⋅ ⋅ + ts−1 < 1.

As ξ increases, the region of integration becomes smaller, and since the integrand does not
involve ξ, we see that φ(ξ) is a function of bounded variation, being a product of the power of ξ
and a positive monotonic decreasing function of ξ trivially.

Applying Fourier’s integral theorem for a finite interval, which says that for A < B < D, and
certain conditions that we have already satisfied,

lim
λ→∞
∫

B

A
φ(ξ)

sin(2πλ(ξ −D)

π(ξ −D)
dD = φ(D).

Hence, in our case, we have

ksC = φ(1) = ∫
1

0
⋯∫

1

0
{ζ1 . . . ζs−1(1 − ζ1 − ⋅ ⋅ ⋅ − ζs−1)}

−1+ 1
k dζ1 . . . dζs−1,

with the integral taken over ζ1, . . . , ζs−1 for which 0 < ζ1 + ⋅ ⋅ ⋅ + ζs−1 < 1.
As Davenport states, this integral was explicitly evaluated by Dirichlet to yield

C = (
1

k
)

sΓ( 1k)
s

Γ( sk)
=
Γ(1 + 1

k)
s

Γ( sk)
,

which indeed tells us that C > 0.
We now shift our focus to the singular series Ss.
Recall that our asymptotic formula is

N(P ) = P s−k C(P )

(x1 . . . xs)
1
k

∑
q≤P δ

q

∑
a=1
(a,q)=1

q−sSax1,q . . . Saxs,q +O(P
s−k−δ′T ),

for s > 2k.
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To show that the main term is significant, we wish to work with the double sum

Ss ∶=
∞

∑
q=1

q

∑
a=1
(a,q)=1

q−sSax1,q...Saxs,q,

the singular series, and prove that it is positive, is absolutely convergent for s > 2k.
This singular series is related to the number of solutions to the congruence

x1y
k
1 + ⋅ ⋅ ⋅ + xsy

k
s ≡ 0 (mod pν), 0 ≤ x < pν .

We will show that Ss is always positive, in a similar way to how Davenport does in Chapter 8
of his Analytic Methods for Diophantine Equations and Diophantine Inequalities.

Define

χ(p) = 1 +
∞

∑
ν=1

pν

∑
a=1

(a,pν)=1

p−νsSax1,pν . . . Saxs,pν ,

and consider the fact that

Ss =∏
p

χ(p),

for s ≥ 2k + 1 since

Ss =
∞

∑
q=1

q

∑
a=1
(a,q)=1

q−sSax1,q . . . Saxs,q

=∏
p

{∑
ν=0

pν

∑
a=1

(a,pν)=1

q−sSax1,q . . . Saxs,q}

=∏
p

χ(p),

which follows from the fact that

q1q2

∑
a=1

(a,q1q2)=1

(
Sax1,q1q2 . . . Saxs,q1q2

q1q2
)

s

= (
q1

∑
a=1

(a,q1)=1

(
Sax1,q1 . . . Saxs,q1

q1
)

s

)(
q2

∑
a=1

(a,q2)=1

(
Sax1,q2 . . . Saxs,q2

q2
)

s

),

when (q1, q2) = 1.
In fact, when p > p0 for some p0, then

∏
p>p0

χ(p) ≥
1

2
.

Because of the above, to show that Ss is positive, it suffices to show that χ(p) > 0 for all primes
p.

Define τ(p, k) to be the highest exponent of p which divides k, and define

γ(p, k) =

⎧⎪⎪
⎨
⎪⎪⎩

τ(p, k) + 1 if p > 2

τ(p, k) + 2 if p = 2.

Furthermore, let Cp = p
−γ(s−1) > 0.

To show that χ(p) > 0 for all p, it suffices to show that the form

x1y
k
1 + ⋅ ⋅ ⋅ + xsy

k
s

represents zero p-adically for all p. That is, for all p,

x1y
k
1 + ⋅ ⋅ ⋅ + xsy

k
s ≡ 0 (mod pγ)

has a solution with terms xiy
k
i not all divisible by p. This is also called the congruence condition.

Lemma 2.1. If the congruence condition holds, so that

x1y
k
1 + ⋅ ⋅ ⋅ + xsy

k
s ≡ 0 (mod pγ)

has a solution with terms xiy
k
i not all divisible by p, then

χ(p) > 0.

8
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Proof. It suffices to let

a1b
k
1 + ⋅ ⋅ ⋅ + asb

k
s ≡ 0 (mod pγ)

with a1b
k
1 /≡ 0 (mod p) be a solution, from which we will construct more solutions for ν > γ.

Choose x2y
k
2 , . . . , xsy

k
s arbitrary, but subject to the condition

xiy
k
i ≡ aib

k
i (mod pγ), 0 < xiy

k
i ≤ p

ν .

There are p(ν−γ)(s−1) such choices.
Then choose x1y

k
1 to satisfy

x1y
k
1 ≡ −x2y

k
2 − ⋅ ⋅ ⋅ − xsy

k
s (mod pν).

This is possible since the right-hand side of the congruence is congruent to a1b
k
1 (mod pν) and

a1b
k
1 by the assumption, which means that the congruence

x1y
k
1 ≡ −x2y

k
2 − ⋅ ⋅ ⋅ − xsy

k
s

is soluble for every ν > γ, as we will show at the end of this proof.
Thus the number of solutions of the congruence

x1y
k
1 + ⋅ ⋅ ⋅ + xsy

k
s ≡ 0 (mod pν), 0 ≤ xi < p

ν .

is at least p(ν−γ)(s−1).
To finish the proof, we show that if the congruence

hig
k
i ≡m (mod pγ)

is soluble for m /≡ 0 (mod p), then the congruence

rjs
k
j ≡m (mod pν)

is soluble for all ν > γ. We tackle this exactly as in Davenport.
Let p > 2.
The relatively prime residue classes form a cyclic group of order pν−1(p − 1), and they have as

representatives the powers of a primitive root g modulo pν . In particular, if ν > γ, then g is also a
primitive root modulo pγ .

Let

m ≡ gµ, hig
k
i ≡ g

η, rjs
k
j ≡ g

ξ (mod pν).

The hypothesis that hig
k
i ≡m (mod pγ) is equivalent to

η ≡ µ (mod pγ−1(p − 1)).

FIX THIS LAST PART OF THE PROOF LATER.

Showing χ(p) > 0 is achieved in the literature by showing

M(pν) ≥ Cpp
ν(s−1),

for sufficiently large ν, where M(pν), in our case, denotes the total number of solutions of the
congruence

x1y
k
1 + ⋅ ⋅ ⋅ + xsy

k
s ≡ 0 (mod pν), 0 ≤ yi < p

ν .

We now find an explicit function s1(k) such that

M(pν) ≥ Cpp
ν(s−1),

holds for each prime p when s ≥ s0(k).

Theorem 2.2.

s1(k) = k
2 + 1,

that is, when s > k2 + 1, we have that Ss > 0.

9
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Proof. This follows directly from the analogous result for the form

c1x
k
1 + ⋅ ⋅ ⋅ + csx

k
s = 0,

where c1, . . . , cs are given integers, not all of the same sign if k is even.
This proof is given in “Homogeneous additive equations” (Davenport & Lewis, [4]).

Finally, we show absolute convergence for the singular series for s > s0(k) = 2k.
To show that the singular series is absolutely convergent for s > 2k, we show that

∣
q

∑
a=1
(a,q)=1

q−sSax1,q . . . Saxs,q∣≪ q1−
s
k ,

which is directly implied by each of the terms Saxi,q being bounded:

∣Saxi,q ∣≪ q1−
1
k ,

and this latter estimate is the one we show.

Theorem 2.3.

∣Saxi,q ∣≪ q1−
1
k

for (a, q) = 1.

Proof. Let

T (axi, q) = q
−1+ 1

kSaxi,q.

We show that T (axi, q) is bounded, independently of q, so that ∣Saxi,q ∣≪ q1−
1
k will hold.

By the multiplicativity property of Sax1,q . . . Saxs,q we discuss above in the above discussion of
the product form of the singular series,

T (axi, q) = T (a1xi, p
ν1
1 )T (a2xi, p

ν2
2 ) . . . ,

for q = pν11 p
ν2
2 . . . , and for suitable a1, a2, . . . , with each aj subject to (aj , p

νj
j ) = 1.

Since when νj > k and aj /≡ 0 (mod pj) for some j it holds that

S
ajxi,p

νj
j

= pk−1j S
ajxi,p

νj−k
j

,

we have that

T (ajxi, p
νj
j ) = (p

νj
j )
−1+ 1

kS
ajxi,p

νj
j

= (pνj )
−1+ 1

k pk−1j S
ajxi,p

νj−k
j

= p
−νj+k+

νj
k
−1

j S
ajxi,p

νj−k
j

= (p
νj−k
j )−1+

1
kS

ajxi,p
νj−k
j

= T (ajxi, p
νj−k
j ),

which tells us that T (ajxi, p
νj
j ) is bounded independently of p

νj
j for νj > k.

On the other hand, supposing that νj ≤ k for all j, since when aj /≡ 0 (mod p), we have that

∣Sajxi,pj ∣ ≤ ((k, pj − 1) − 1)
√
pj

it holds that

T (ajxi, pj) ≤ k
√
pjp
−1+ 1

k
j ≤ kp

− 1
6

j .

Furthermore, since when aj /≡ 0 (mod pj) and pj ∤ k, for νj ≤ k, we have that

Sajxi,pνj
= p

νj−1
j ,

it is the case that

T (ajxi, p
νj
j ) = p

νj−1pνj(−1+
1
k
) ≤ 1.

10
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Therefore

T (ajxi, p
νj
j ) ≤ 1,

except in the case that pj ≤ k
6 and νj = 1.

Combining the two results above for νj ≤ k, we have that

T (axi, q) ≤ ∏
pj≤k6
(kp

− 1
6

j ),

thus T (axi, q) is bounded independently of q, as desired, exactly as in the case for the singular
series for Waring’s problem.

Lastly, for this proof, it remains to check that indeed if aj /≡ 0 (mod pj), that we have

1. ∣Sajxi,pj ∣ ≤ ((k, pj − 1) − 1)
√
pj ,

2. if p ∤ k and νj ≤ k, then Sajxi,p
νj
j

= p
νj−1
j , and

3. if νj > k, then Sajxi,p
νj
j

= pk−1j S
ajxi,p

νj−k
j

.

We start with 1. In the following proof of 1., sums are always over a complete set of residues
mod p. We have that

Saxi,p =∑
r

e(
axi
p
r(k,p−1)).

Letting χ be a primitive character of order (k, p − 1) modulo p, the number of solutions to rδ ≡
t (mod p) is 1 + χ(t) + ⋅ ⋅ ⋅ + χ(k,p−1)(t), so that

Saxi,p =∑
t

{1 + χ(t) + ⋅ ⋅ ⋅ + χ(k,p−1)−1(t)}e(
axi
p
t).

Let ψ denote any one of χ, . . . , χ(k,p−1)−1. The Gauss sum

T (ψ) =∑
t

ψ(t)e(
axi
p
t)

is such that ∣T (ψ)∣ =
√
p, since

∣T (ψ)∣2 =∑
t
∑
u

ψ(t)ψ(t)e(
axi
p
(t − u))

=∑
v
∑
u≠0

ψ(v)e(
axi
p
u(v − 1))

with a change of variables t ≡ vu (mod p). If v = 1, then

∑
u≠0

ψ(1)e(
axi
p
u(1 − 1)) = 1,

and if v ≠ 1, then

∑
u≠0

ψ(v)e(
axi
p
u(v − 1)) = −ψ(v),

so that

∣T (ψ)∣2 = pψ(1) −∑
v

ψ(v) = p.

Since in

∑
t

{1 + χ(t) + ⋅ ⋅ ⋅ + χ(k,p−1)−1(t)}e(
axi
p
t)

there are (k, p − 1) − 1 non-zero terms in the bracket, we have that

∣Saxi,p∣ ≤ ((k, p − 1) − 1)
√
p.

11
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For 2., note that

Saxi,pν =
pν−1−1
∑
r=0

p−1

∑
z=0

e(
axi
pν

rk +
axi
p
krk−1z),

and with a change of variables r = pw, we have

Saxi,pν = p
pν−2−1
∑
w=0

e(
axi
pν−k

wk),

where all of the terms are 1 if ν ≤ k, so that

Saxi,pν = p
ν−1,

as desired.
Finally, for 3., taking the sum above when p ∤ k, if ν > k, we have a period function in w of

period pν−k, so that

Saxi,pν = p
k−1Saxi,pν−k .

If instead we have p ∣ k, consider k = pτ(p,k)k0, and note

ν > pτ(p,k)k0 ≥ 2
τ(p,k) ≥ τ(p, k) + 1,

so, in particular ν ≥ τ(p, k) + 2.
Parallel to the above case when p ∤ k, we have

Saxi,pν =
pν−τ(p,k)−1−1
∑
r=0

pτ(p,k)+1−1
∑
z=0

e(
axi
pν

rk −
axi
p
k0r

k−1r)

= pτ(p,k)+1
pτ(p,k)+1−1
∑
w=0

e(
axi
pν−k

wk)

= pτ(p,k)+1pk−τ(p,k)−2Saxi,pν−k

= pk−1Saxi,pν−k .

Thus, we have proved the following.

Theorem 2.4.

s0(k) = 2k + 1.

That is, the singular series Ss is absolutely convergent for s > 2k.

Lastly, in this section, we make a note about G(k).
We define G(k) to be the smallest value for s such that infinite solutions exist for the equation

with yi’s bounded by P .
From the above 2 sections, we know that G(k) ≤ 2k + 1, but we wish to obtain tighter bounds.
It suffices to study solutions to the form

x1y
k
1 + . . . xsy

k
s =M.

This is the topic of the following section.

3 Part III

In this section we give an upper bound for G(k), the smallest number for s for which infinite
solutions exists for the equation with yi’s bounded by P

x1y
k
1 + x2y

k
2 + ... + xsy

k
s = 0, (7)

as P approaches infinity. From Part II we note that to solve for the number of solutions to the
form

x1y
k
1 + x2y

k
2 + ... + xsy

k
s =M.

it suffices if

M ≡ 0 (mod pγ(p,k))

for all primes p less than some fixed p0 not depending on M . For such choices of M , we note from
Part II that the singular series is guaranteed to be positive.
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Definition 3.1. We define major arcs to be

Ma,q = {α ∶ ∣qα − a∣ ≤
1

2kP k−1max ∣xj ∣
},

M =⋃Ma,q for 1 ≤ a ≤ q, (a, q) = 1, q ≤ P
1
2 ,

and we define minor arcs to be the complement of major arcs:

m = [0,1]/M.

We will make use of the following lemma

Lemma 3.2. (Van der Corput) Let f be twice differentiable function. Suppose we have:

0 ≤ f ′(x) ≤
1

2
and f ′′(x) ≥ 0.

Then the following holds:

∑
A≤n≤B

e(f(n)) = ∫
B

A
e(f(x))dx +O(1).

Proof. We can start by assuming that A and B are both integers and that the difference between
the summation and the integral is real by replacing f(x) with f(x) + c if necessary.
Define Ψ(x) = x − [x] − 1

2 , then we note that

∫
n+1

n
Ψ(x)F ′(x)dx =

1

2
(F (n + 1) + F (n)) − ∫

n+1

n
F (x)dx.

Thus following such procedure, we have

∑
A≤n≤B

F (n) = ∫
B

A
Ψ(x)F ′(x)dx + ∫

B

A
F (x)dx +O(1),

noting that F (x) = e(f(x)), which we can then replace, since the difference can be made real
between the second integral and the sum, with cos 2πf(x). It remains to show that

I = ∫
B

A
Ψ(x)F ′(x)dx

is bounded in absolute value.
Quoting results from Fourier analysis, we have

Ψ(x) = −
∞

∑
v=1

sin 2πvx

πv
.

We note that this series is absolutely convergent

I = ∫
B

A
Ψ(x)F ′(x)dx

= −
∞

∑
v=1
∫

B

A

sin 2πvx

πv
{cos 2πf(x)}′dx

=
∞

∑
v=1

2

v
∫

B

A
sin (2πvx) sin (2πf(x))f ′(x)dx

=
∞

∑
v=1

1

v
∫

B

A
f ′(x){cos 2π(vx − f(x)) − cos 2π(vx + f(x))}dx.

We will show that

∣∫
B

A
f ′(x) cos 2π(vx ± f(x))dx∣ ≤

1

π(2v − 1)
,

from which the convergence of the series immediately follows. Rewriting ϕ(x) = sin 2π(vx ± f(x)),
we can reformulate the integral as

1

2π
∫

B

A

f ′(x)

v ± f ′(x)
ϕ′(x)dx.

We note that integral for the second term is bounded above by 2, and the first term is monotone,
since its derivative is

vf ′′(x)

v ± f ′(x)
≥ 0,

and since the first term is bounded by 1
2v−1 , we conclude the proof.
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Remark: the theorem also holds in the case

1

2
≤ f ′(y) ≤ 0 and f ′′(y) ≤ 0.

As in Part I, define

Tj(α) =
P

∑
yj=1

e(αxjy
k
j ).

Then we have the following approximation on major arcs:

Lemma 3.3. For α in Ma,q, we have

Tj(α) = q
−1Sxja,qIj(β) +O(q),

where (as before)

Sxja,q =
q

∑
z=1

e(axjz
k/q),

and

Ij(β) = ∫
P

0
e(βxjη

k)dη.

Proof. We see that after rewriting α = a
q + β, we have

Tj(α) =
q

∑
z=1

e(axjz
k/q)∑

y

e(βxj(qy + z)
k),

where the summation is over y for which 0 ≤ qy + z ≤ P . In particular, let f(y) = βxj(qy + z)
k, then

we note that for xj and β of the same sign we have

f ′(y) = kβxjq(qy + z)
k−1 ≤ kxjq

1

2kqP k−1max∣xj ∣
P k−1 ≤

1

2
,

and the same holds for β and xj of different sign. In particular, we see that we can replace this
inner sum with

∫
0≤qy+z≤P

e(βxj(qη + z)
k)dη +O(1),

by lemma 3.2. A simple change of variables lead to Lemma 3.3.

We now seek to evaluate integral along the major arcs. Denote s0 as the smallest possible value for
s such that the associated singular series in Part I converges. We have the following lemma:

Lemma 3.4. Suppose s ≥ s0, then for

1

5
P k ≤M ≤ P k,max ∣xj ∣

2s
k
−1 ≪ P 1−ϵ,

we have

∫
M
T1(α)T2(α)...Ts(α)e(−Mα)dα≫ P s−k.

Proof. We first try to find error terms associated: from Part II we have that

q−1∣Saxj ,q ∣≪ ∣xj ∣
1
k q−

1
k

and we also have:

Ij(β)≪min(P,β−
1
k ∣xj ∣

− 1
k )

Where P comes from the trivial estimate, and the second estimate comes from change of coordinates
u = βxjη

k, giving:

Ij(β) = k
−1β−

1
kx
− 1

k
j ∫

βxjP
k

0
e(u)u−1+

1
k du

14
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Where by the definition of the integral we can assume that βxjP
k is positive. In particular, we

note that the integral is bounded: note that

∫
∞

0
e2πiuu−1+

1
k du = ∫

1

0
e2πiuu−1+

1
k du + ∫

∞

1
e2πiuu−1+

1
k du.

In particular the first integral is bounded. For the second integral, we have

∣∫
∞

1
e2πiuu−1+

1
k du∣ = ∣

∞

∑
n=1
∫

n+1

n
e2πiuu−1+

1
k du∣

≪ ∣
∞

∑
n=1
∫

n+1

n
u−1+

1
k de2πiu∣

≪ ∣
∞

∑
n=1

(n + 1)−1+
1
k − n−1+

1
k + (−1 +

1

k
)∫

n+1

n
e2πiuu−2+

1
k du∣

≪ ∣
∞

∑
n=1

n−2+
1
k ∣ + ∣∫

∞

1
e2πiuu−2+

1
k du∣,

which converges and hence the integral converges. This gives the estimate for the size of the main
term:

q−1Sxja,qIj(β)≪ ∣xj ∣
1
k q−

1
k min(P,β−

1
k ∣xj ∣

− 1
k ).

In particular, we note that error term q doesn’t exceed either of these inside min, since

q1+
1
k ≤ P ∣xj ∣

1
k and q1+

1
k ≤ β−

1
k

By our construction. Thus we have (assuming ∣xs∣ is smallest among all x′is.)

T1(α)T2(α)...Ts(α) = q
−sSx1a,q...Sxsa,qI1(β)...Is(β)+

O(q∣x1∣
1
k ...∣xs−1∣

1
k q−

s−1
k min(P, ∣x1∣

− 1
kβ−

1
k )...min(P, ∣xs−1∣

− 1
kβ−

1
k ))

Once we integrate over (−∞,∞) with respect to β, we have the error term being bounded:

≪ q1−
s−1
k ∣x1∣

1
k ...∣xs−1∣

1
k ∫

∞

−∞
min(P, ∣β∣−

1
k ∣x1∣

− 1
k )...min(P, ∣β∣−

1
k ∣xs−1∣

− 1
k )dβ

By Holder’s inequality, we have:

∣∫
∞

−∞
min(P, ∣β∣−

1
k ∣x1∣

− 1
k )...min(P, ∣β∣−

1
k ∣xs−1∣

− 1
k )dβ∣ ≤

s−1

∏
j=1

(∫
∞

−∞
∣min(P, ∣β∣−

1
k ∣x1∣

− 1
k )∣s−1dβ)

1
s−1

In particular, for each term in the product, we have

∫
∞

−∞
∣min(P, ∣β∣−

1
k ∣x1∣

− 1
k )∣s−1dβ

≤ ∫
(∣xj ∣P

k)
−1

−(∣xj ∣Pk)
−1 P

s−1dβ + ∫
∞

(∣xj ∣Pk)
−1 ∣xj ∣

− s−1
k β−

s−1
k dβ + ∫

−(∣xj ∣P
k)
−1

−∞
∣xj ∣
− s−1

k ∣β∣−
s−1
k dβ

≪ P s−1−k∣xj ∣
−1 + ∣xj ∣

− s−1
k ((∣xj ∣P

k)
−1
)
1− s−1

k

= ∣xj ∣
−1P s−1−k

Thus we have the entire error term bounded by, after integrating:

∣∫
∞

−∞
min(P, ∣β∣−

1
k ∣x1∣

− 1
k )...min(P, ∣β∣−

1
k ∣xs−1∣

− 1
k )dβ∣≪ q1−

s−1
k ∣x1x2...xs−1∣

1
k
− 1

s−1P s−k−1

Summing over all possible values of a, which is at most q, and q ≤ P
1
2 , we have

P s−k−1∣x1...xs−1∣
1
k
− 1

s−1∑
q

q2−
s−1
k ≪ P s−k−1∣x1...xs−1∣

1
k
− 1

s−1

since the series converges.
Summing over all possible values of a and q and integrate along the major arcs we have

∑

q≤P
1
2

q

∑
a=1
(a,q)=1

q−sSx1a,qSx2a,q...Sxsa,q ∫
β≤(2kqmax ∣xj ∣)

−1P 1−k
I1(β)...Is(β)e(−Mβ)dβ
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In particular, note that

∑
q
∑
a

q−sSx1a,q...Sxsa,q ∫
β≥(2kqmax ∣xj ∣)

−1P 1−k
I1(β)...Is(β)e(−Mβ)dβ

≪∑
q

q∣x1...xs∣
1
k q−

s
k ∫

β≥(2kqmax ∣xj ∣)
−1P 1−k

∣x1...xs∣
− 1

kβ−
s
k dβ

≪∑
q

q1−
s
k q

s
k
−1max ∣xj ∣

s
k
−1P (1−k)(1−

s
k
)

≪max ∣xj ∣
s
k
−1P s−k−1

Consider

∫
∞

−∞
I1(β) . . . Is(β)e(−Mβ) dβ,

where

Ij(β) = ∫
P

0
e(βxjη

k) dη,

where η = Pu.
Therefore,

Ij(β) = ∫
1

0
e(βxjP

kuk)P du.

Thus,

∫
∞

−∞
I1(β) . . . Is(β)e(−Mβ) dβ = P s

∫
∞

−∞

s

∏
j=1
∫

1

0
e(βxjP

kukj ) duj e(−Mβ) dβ

= P s
∫
∞

−∞

s

∏
j=1
∫

1

0
e(γxju

k
j ) duj e(

M

P k
γ)

dγ

P k

= P s−k
∫
∞

−∞

s

∏
j=1
∫

1

0
e(γxju

k
j ) duj e(

M

P k
γ) dγ

where γ = βP k, and thus dγ = dβP k.
Setting ζj = u

k
j , so that dζj = ku

k−1
j duj .

We have

∫
∞

−∞
I1(β)...Is(β)e(−Mβ) dβ

= P s−k
∫
∞

−∞
{

s

∏
j=1
∫

1

0
e(γxju

k
j )duj}e(−γ

M

P k
)dγ

= P s−k
s

∏
j=1
∫
∞

−∞
{∫

1

0
e(γxjζj)k

−1ζ
1
k
−1

j dζj}e(−γ
M

P k
) dγ (ζj ∶= u

k
j )

=
P s−k

ks
∫
∞

−∞
∫

1

0
...∫

1

0
(ζ

1
k
−1

1 ...ζ
1
k
−1)e(γ(x1ζ1 + ... + xsζs −

M

P k
)) dγ dζ

=
P s−k

ks
lim
λ→∞
∫

1

0
...∫

1

0
(ζ

1
k
−1

1 ...ζ
1
k
−1

s )∫
λ

−λ
e(γ(x1ζ1 + ... + xsζs −

M

P k
)) dγ dζ (Dominated Convergence Theorem)

=
P s−k

ks
lim
λ→∞
∫

1

0
...∫

1

0
(ζ1...ζs)

1
k
−1

sin (2πλ(x1ζ1 + ... + xsζs −
M
Pk ))

π(x1ζ1 + ... + xsζs −
M
Pk )

dζ.

Define z = x1ζ1 + ...xsζs, we have

=
P s−k

ks
lim
λ→∞
∫

1

0
...∫

1

0
∫

x1ζ1+...+xs−1ζs−1+xs

x1ζ1+...+xs−1ζs−1
(ζ1...ζs−1)

1
k
−1(

z − x1ζ1 − ... − xs−1ζs−1
xs

)
1
k
−1

sin (2πλ(z − M
Pk ))

π(z − M
/

′
P k)

x−1s dz dζ

=
P s−k

ks
lim
λ→∞
∫

x1+...xs

0

sin (2πλ(z − M
Pk ))

π(z − M
Pk )

ψ(z) dz,

where

ψ(z) = ∫
1

0
...∫

1

0
(ζ1...ζs−1)

1
k
−1(z − x1ζ1...xs−1ζs−1)

1
k
−1x

− 1
k

s dζ1...dζs−1,

with the integration taking place for z −xs ≤ x1ζ1 + ...+xs−1ζs−1 ≤ z. In particular we see that with
the Fourier Integral Theorem, we have that

P s−k

ks
lim
λ→∞
∫

x1+...xs

0

sin (2πλ(z − M
Pk ))

π(z − M
Pk )

ψ(z)dz

=
P s−k

ks
ψ(

M

P k
)

=
P s−k

ks
∫

1

0
...∫

1

0
(ζ1...ζs−1)

1
k
−1(

M

P k
− x1ζ1... − xs−1ζs−1)

1
k
−1x

− 1
k

s dζ1...dζs−1.
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In particular, we have that since M
Pk − x1ζ1 − ... − xs−1ζs−1 ≤ x1 and 1

k − 1 ≤ 0 where the integral is
taking place, we have that

∫
∞

−∞
I1(β) . . . Is(β)e(−Mβ) dβ >>

P s−k

max ∣xj ∣

Lemma 3.5. Define Ul(X) the number of natural numbers M up to X that can be written in the
form

M = x1y
k
1 + ...xly

k
l .

Then we have:

Ul(X)≫ (x1...xs)
− 1

k−1 (1 − λl), λ = 1 −
1

k
.

Proof. We prove the lemma through inducting on l. For l = 1, we note that

U1(X) = x
− 1

k
1 X

1
k ≫ (x1)

− 1
k−1X1−λ.

For the inductive step, suppose the lemma holds for l − 1. We show that it holds for l. Consider
integers of the form z + xly

k
l where z = x1y

k
1 + ...xl−1y

k
l−1 for a certain choice of xi’s and yi’s, and

also subject to the conditions

x
− 1

k−1
l (

1

4
X)

1
k < yl < x

− 1
k−1

l (
1

2
X)

1
k ,

and

0 < z <
1

2
X1− 1

k .

In particular, we show that such representations are unique. Suppose that we have satisfying
z1 > z2, y1, y2 such that

z1 + xly
k
1 = z2 + xly

k
2 .

Then we have the following inequalities:

xly
k
2 − xly

k
1 ≥ xlky

k−1
1 > k(

1

4
X)

k−1
k >

1

2
X1− 1

k ,

meanwhile

z1 − z2 < z1 <
1

2
X1− 1

k .

This gives us a contradiction. Hence such representations are unique. In particular, we also have
for such choices of z, yl

z + xly
k
l <

1

2
X1− 1

k + x
1− k

k−1
l (

1

2
X) =

1

2
X1− 1

k + x
− 1

k−1
l (

1

2
X) <X.

We thus have, using inductive hypothesis:

Ul(X)≫ Ul−1(
1

2
X1− 1

k )x
− 1

k−1
l X

1
k

≫X(1−
1
l
)(1−λl−1)(x1...xl−1)

− 1
k−1x

− 1
k−1

l X
1
k

≫ (x1...xs)
− 1

k−1X1−λl

,

concluding the proof.

We thus have the following corollary that will prove to be helpful:

Corollary 3.5.1. Define

R1(α) = ∑
u< 1

4
Pk

e(αu), (8)

where u ranges over integers less than 1
4P

k that can be written in the form:

u = x1y
k
1 + ... + xly

k
l .

Then we have the following asymptotic bound:

∫
1

0
∣R(α)∣2dα = R(0)≪ (x1...xl)

1
k−1P −k(1−λ

l)R2(0).

17
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Proof. The first equality is obvious. For the second one, note thatR(0) = Ul(
1
4P

k)≫ (x1...xl)
− 1

k−1P k(1−λl).
The second inequality immediately follows.

The next lemma, due to Vinogradov, also plays an important role.

Lemma 3.6. Let X0, Y0 be the size of 2 sets of different integers running over interval of length
X,Y , respectively. Let α = a

q +O(q
−2), then we have

∣∑
x
∑
y

e(αxy)∣
2
≪X0Y0

log q

q
(q +X)(q + Y ),

where the summation is over x, y of the distinct 2 sets.

Proof. By Cauchy-Schwartz, we have

∣∑
x
∑
y

e(αxy)∣
2
≤ (∑

x

1)(∑
x

∣∑
y

e(αxy)∣2)

≤X0

x1+X

∑
x=x1

∑
y1

∑
y2

e(αx(y1 − y2))

≤X0∑
y1

∑
y2

min(X, ∣∣α(y1 − y2)∣∣
−1) (Part I, Lemma 1.1)

≪X0Y0 ∑
∣t∣≤Y

min(X, ∣∣αt∣∣−1)

≪X0Y0(
Y

q
+ 1)

t1+q

∑
t=t1+1

min(X, ∣∣
at

q
+O(q−1) + τ ∣∣−1) (Part I, Lemma 1.1)

≪X0Y0(
Y

q
+ 1)( ∑

1≤u≤ 1
2
q

q

u
+X)

≪X0Y0
log q

q
(q +X)(q + Y ).

Corollary 3.6.1. Denote

S(α) =∑
y
∑
v

e(αykv),

where it is summed over 1 ≤ y ≤ P
1
2k and 1 ≤ z ≤ 1

4P
k− 1

2 , where z has the form x1y
k
1 + ... + xly

k
l . In

addition, if we have α = a
q +O(q

−2) and P
1
2 ≤ q ≤ 2max ∣xj ∣kP

k−1, then we have

∣S(α)∣≪ S(0)(x1...xs0)
1

2(k−1)P −
1
2
(k− 1

2
)(1−λl)− 1

4k
+ϵA,

where

A =max(2max ∣xj ∣kP
k−1,

1

4
P k− 1

2 ).

Proof. Following Vinogradov’s theorem, we have

X =
1

4
P k− 1

2 , X0 = Ul(
1

4
P k− 1

2 ),

Y = P
1
2 , Y0 = P

1
2k .

Therefore,

∣S(α)∣2 ≪X0Y0
log q

q
(q +X)(q + Y )

=X0P
1
2k (P

1
2 + q)(

1

4
P k− 1

2 + q)
log q

q

≪X0P
1
2kA logP,

where we define

A =max(2max ∣xj ∣kP
k−1,

1

4
P k− 1

2 ).

In particular, since

S(0)≫ P
1
2kX0,

18
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we have

∣
S(α)

S(0)
∣
2
≪X−10 P −

1
2k
+ϵA,

and from lemma 3.5 we have

X0 ≫ P (k−
1
2
)(1−λ)l(x1...xl)

− 1
k−1 .

We thus conclude that

∣S(α)∣≪ S(0)(x1...xs0)
1

2(k−1)P −
1
2
(k− 1

2
)(1−λl)− 1

4k
+ϵA.

To come to the main idea of the proof, we consider the form

0 = x1y
k
1 + ...xs0y

k
s0 + u1 + u2 + y

kv,

subject to the conditions that 1 ≤ yj ≤ P , u1, u2 runs through numbers less than 1
4P

k that’s also

of the form xs0+1y
k
s0+1
+ ... + xs0+ly

k
s0+l

and respectively for u2, 1 ≤ y ≤ P
1
2k and 1 ≤ z ≤ 1

4P
k− 1

2 such

that z is of the form ∑xs0+2l+jy
k
s0+2l+j

. In particular we see that 0 is represented in the desired
form with s = s0 + 3l. We have all the tools we need to analyze the function along the minor arcs.
stead of positive ones to ensure that the top integral actually converges.

Lemma 3.7. (Minor Arc)

∫
m
T1(α)...Ts0(α)R1(α)R2(α)S(α)dα≪ (xs0+1...xs0+3l)

1
2(k−1)P s0−

1
2
(k− 1

2
)(1−λl)− 1

4k
+ϵ−k(1−λl)R1(0)R2(0)S(0)A

Where the expressions are clearly defined as in Part III.

Proof. The proof follows directly once we apply corollary 3.6.1,3.5.1 and using the trivial bound
that ∣Tj(α)∣ ≤ P .

Theorem 3.8. If we have

max ∣xj ∣
1+ 3l

2(k−1) ≤ P
3
2
kλl− 1

4k
−ϵ

max ∣xj ∣ ≤ P
k

s0−k−ϵ

for natural number l, provided that l ≥ 2k log 3k, then the expression

x1y
k
1 + ...xs0+3ly

k
s0+3l = 0

has infinitely many solutions.

Proof. We note that all the expressions previously suggested before Lemma 3.7 satisfy such result.
Denote such number r, then we have

r = ∫
1

0
T1(α)...Ts0(α)R1(α)R2(α)S(α)dα

In particular we see that for the major arc we have

∑
u1

∑
u2

∑
y
∑
v
∫
M
T1(α)...Ts0(α)e(α(−u1 − u2 − y

kv))dα

Using the constraints suggested before Lemma 3.6, we see that they satisfy the criteria for Lemma
3.4, and thus we have major arc contribution bounded below:

∫
M
T1(α)...Ts0(α)R1(α)R2(α)S(α)dα≫ R1(0)R2(0)S(0)

P s0−k

max ∣xj ∣

One could also check that the minor arc is bounded above by

∫
m
T1(α)...Ts0(α)R1(α)R2(α)S(α)dα≪ R1(0)R2(0)S(0)

P s0−k−ϵ

max ∣xj ∣

In particular, we see that infinite solutions exist provided that the constraints are satisfied.
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