
University of Michigan, Summer 2022 REU Report

Miles Kretschmer
Mentor: Matthew Harrison-Trainor

July 2022

Contents

1 Introduction 1
1.1 Model Theory . 2
1.2 Computable Model Theory . 2
1.3 Infinitary Languages . 2

2 Relative Decidability 4
2.1 Decidability of Computable Models . 4
2.2 Uniform Relative Decidability in n Turing Jumps . 8
2.3 Computability of Fragments of the Diagram . 9

3 Infinitary Logic 11
3.1 Semantic Tests: n = 0 and n = 1 . 12
3.2 Preservation by Chains: n = 2 . 13
3.3 Digression: Longer Chains . 14
3.4 Morleyization: n = 3 . 16
3.5 Digression: Consistency Properties and Interpolation . 17
3.6 n-Elementary Extensions, n = 4 . 18
3.7 The n = 5 Case . 21
3.8 Forcing . 24

3.8.1 The Strong Forcing Relation . 25
3.8.2 Generic Structures . 26
3.8.3 The Weak Forcing Relation . 27
3.8.4 Definability . 29

3.9 The General Case . 31

1 Introduction

In this document, we will present several results in computable model theory and infinitary logic. In this
section, we will review the major concepts from model theory, computability theory, and infinitary logic that
we will use. In Section 2, we will focus on variations on the computable model theoretic property of relative
decidability. We will construct examples which separate various notions of relative decidability for theories
and structures, and give a characterization of the property of uniform relative decidability in n Turing jumps,
in terms of quantifier elimination. This will require a result in infinitary model theory. In Section 3, we will
prove a number of special cases of this, which will introduce necessary ideas for the proof of the general case.
We will also present partial results from two unsuccessful approaches to the general case, in digressions.
Having introduced the necessary ideas, we will define a notion of forcing, which we will then use to prove
the general case.

1

1.1 Model Theory

In this section, we briefly go over the notion of a diagram in model theory, which will be of importance
throughout later sections.

For A an L-structure, we define the diagram of A, denoted D(A), as follows. Let LA be L together with
new constants naming the elements of A. A is then a LA-structure in a natural way. We let D(A) be the
set of LA sentences true in A. This encodes the structure of A, in the following way. If B |= D(A), we
can define an embedding A ↪→ B by mapping each element of A to the interpretation of the corresponding
constant.

The elementary diagram of A, denoted E(A), is the theory of A in the language LA. This encodes
substantially more information about A. For instance, the embedding defined above is an elementary em-
bedding, if B |= E(A). When working with diagrams, we will habitually identify models of D(A) and E(A)
with superstructures and elementary extensions of A respectively. In this way, the embeddings defined above
will be construed as inclusions.

1.2 Computable Model Theory

In computable model theory, we study the computability theoretic properties of countable structures in
countable languages. We will identify countable structures with ω-presentations, i.e, with structures whose
domain is the natural numbers, ω. Using Gödel numbering, we can assign numbers to formulas in a countable
language. Using this, we can for a structure A identify D(A) and E(A) with sets of natural numbers, as
follows. We identify D(A) with the set of codes for pairs (n,m) where φn is atomic, m codes a tuple k and
A |= φ(k). We identify E(A) with the set of codes for pairs (n,m) where φn is any formula, m codes a tuple
k and A |= φ(k).

In this formulation, D(A) encodes the functions, constants, and relations of A as a set of natural numbers,
so computations relative to this set can be thought of as functions that make use of the constants, functions,
and relations of A. We will now go over a few definitions of computable model theoretic properties which
consider. For a more detailed introduction, see [CMS21].

We say that a structure A is computable if D(A) is computable. That is, if the interpretation of the
language in A is computable. We say that A is decidable if E(A) is computable. As it stands, decidability
implies computability. We say that a structure A is relatively decidable if E(A) ≤T D(A). That is, if we
can decide formulas in A using its functions and relations. We will want to get at truly structural properties
of structures, that is, properties of isomorphism types of structure. One such property is if we can decide
formulas in a uniform way in isomorphic copies of a structure. We say that a structure is uniformly relatively
decidable if there is a Turing functional Φ such that for any B ≃ A, ΦD(B) computes E(B).

We can also define associated properties of theories, in terms of their countable models. We say that a
theory T is relatively decidable if for every countable model A |= T , E(A) ≤T D(A). That is, all of its
models are relatively decidable. We say that T is uniformly relatively decidable if there is a Turing functional
Φ such for any countable A |= T , ΦD(A) computes E(A). Note that this is stronger than requiring that
every model of T us uniformly relatively decidable, as we want the effective procedure we use to be uniform
in the theory.

1.3 Infinitary Languages

In Section 2, we will characterize certain relative decidability properties using quantifier elimination prop-
erties. As an intermediate stage in these characterizations, we will use formulas in an infinitary language.
In Section 3, we will prove a result concerning the relationship between finitary and infinitary languages.
In this section, we introduce these infinitary languages, and the notions of complexity of formulas that our
theorems will use.

Let κ be an infinite cardinal. We define the language Lκ,ω by the following recursive clauses.

1. If ψ is an atomic formula of Lω,ω, ψ ∈ Lκ,ω.

2

2. If ϕ ∈ Lκ,ω, then ¬ϕ ∈ Lκ,ω

3. If ϕ(y) ∈ Lκ,ω, then ∀yϕ(y) ∈ Lκ,ω and ∃yϕ(y) ∈ Lκ,ω.

4. If Φ ⊂ Lκ,ω and |Φ| < κ, then
∨∨
ϕ∈Φ

ϕ ∈ Lκ,ω and
∧∧
ϕ∈Φ

ϕ ∈ Lκ,ω

In other words, Lκ,ω differs from the finitary language Lω,ω in that it allows conjunctions and disjunctions
over infinite sets, with cardinality bounded by κ. Of particular importance will be Lω1,ω, which allows
countable conjunctions and disjunctions.

By a formula of L∞,ω, we mean a formula of Lκ,ω for some κ. Formulas of L∞,ω are closed under taking
conjunctions and disjunctions of arbitrary sets. Of course, L∞,ω is not a set, so in practice, we will work
with fragments. This need also arises when working in an infinitary language, when one seeks to bound the
cardinality of the set of formulas under consideration. For our purposes it will suffice to define a fragment
A to be a set of formulas of L∞,ω with the following properties.

1. If ψ ∈ A, ¬ψ ∈ A.

2. If ψ ∈ A, every subformula of ψ is in A.

We define the subformulas of ψ by recursion, as follows.

1. If ψ is atomic, ψ is the only subformula of ψ.

2. If ψ = ¬ϕ, then ψ and the subformulas of ϕ are subformulas of ψ.

3. If ψ = ∀yϕ(y) or ψ = ∀yϕ(y), then ψ and the subformulas of ϕ are subformulas of ψ.

4. If ψ =
∨∨
ϕ∈Φ

ϕ or ψ =
∧∧
ϕ∈Φ

ϕ, then ψ is a subformula of ψ, as are any subformulas of ϕ for ϕ ∈ Φ.

Starting with a formula ψ ∈ Lκ+,ω and closing under negations and subformulas, we obtain a fragment A
containing ψ, of cardinality at most κ.

Formulas of Lκ,ω can be coded for by labelled well founded trees, in which each node has fewer than
κ extensions. We say that a formula of Lω1,ω is computable if the corresponding labelled countable tree
is computable. We will define two notions of complexity for infinitary formulas. We say that an infinitary
formula is Πn if it is equivalent to a formula of the form∧∧

i1

∀x1
∨∨
i2

∃x2 . . . CinQxnθi(x)

where each θi is a finitary quantifier free formula, C is an infinite conjunction or disjunction, and Q is
a universal or existential quantifier, respectively, depending on if n is odd or even. In other words, a Πn

formula begins with an infinite conjunction of universal quantifiers, and alternates between these and infinite
disjunctions of existential quantifiers n times. A Σn formula is one of the form∨∨

i1

∃x1
∧∧
i2

∀x2 . . . CinQxnθi(x)

We say that a formula of Lω1,ω is Σcn (Πc
n respectively) if it is computable and Σn (Πn respectively). For a

more detailed exposition of these classes of formulas, see [Mon21].
We will also define a less sensitive notion of complexity. We denote these classes of formulas ∀n and ∃n.

We define them as above, except that we do not count alternations of connectives and quantifiers together,
and instead count quantifier alternations alone. As an illustration, a formula

∀x
∨∨
i

θi(x)

3

is Π2, but ∀1. This notion of complexity will ultimately allow us to obtain stronger results in the conclusion
of Section 3. For finitary formulas, these notions of complexity coincide, and we will not distinguish between
them.

Finally, we reserve the symbols Π0
n and Σ0

n for the Borel hierarchy, and the lightface Π0
n and Σ0

n for
the arithmetic hierarchy. When we describe a formula as Π0

n or Σ0
n, it will be a formula in the language of

arithmetic, which we will call an N-formula.

2 Relative Decidability

In this section, we will go through several results concerning relative decidability properties. We will construct
examples separating a few different relative decidability properties, and characterize the property of uniform
relative decidability in n Turing jumps by a syntactic condition.

2.1 Decidability of Computable Models

We will first show that the decidability of countable models of a theory does not imply relative decidability
of a theory.

Theorem 2.1. There is a c.e. theory T such that every computable model of T is decidable, but T is not
relatively decidable.

Proof. We will construct T using a tree T ⊂ 2<ω with the following properties.

1. T is computable.

2. T is infinite, so has infinite paths.

3. T has no computable infinite path.

For a construction of a tree with these properties, see [Bau06]. One essentially diagonalizes against every
possible computable path, allowing each program to run for a bounded period of time when evaluating a
finite string, corresponding to the string’s length.

Let L be the language containing binary relation E and for each n ∈ ω a unary relation Pn. T has the
following axioms.

1. E is a symmetric, irreflexive relation.

2. For each σ ∈ 2<ω \ T, the statement

(∀x)

((∃y)E(x, y)) → ¬

 ∧
σ(n)=1

Pn(x) ∧
∧

σ(n)=0

¬Pn(x)


3. For each n, the statement

(∀x)((∀y)¬E(x, y) → ¬Pn(x))

Any model A of T is then a graph in which every vertex is labelled by an infinite binary sequence, whose nth
digit is given by Pn. If a vertex is not connected to any other vertex, its sequence is the constant sequence
with value 0, and if a vertex is connected to another vertex, its sequence is a path through T.

For any vertex in A, its sequence can be computed from D(A), so if A is computable, these sequences
must be computable. Because T has no computable paths, A must have no edges. Any instance of a formula
φ(x) can then be decided by replacing all instances of E and Pn with the truth value false, reducing the
formula to a formula in the language containing only =.

On the other hand, because T has plenty of noncomputable paths, any graph G is the reduct of some
model of T . Let π ∈ 2ω be a path through T. We can construct a model of T which is not relatively decidable

4

as follows. Consider the graph G containing for each natural number n, vertices un and vn, as well a distinct
vertex w. Every vertex un and vn is connected to w, and all vertices are labelled with π. Consider the
formula φ(x) = (∃y)(∃z)(y ̸= z ∧E(x, y)∧E(x, z)). We will construct G so that the set Y = {n|G |= φ(un)}
is not computable from D(G). This set is computable from E(G), so this will imply that G is not relatively
decidable.

Let ΦXe be the eth program relative to a set X. We add edges to G in stages so as to satisfy the following
requirements.

Re: Φ
D(G)
e (e) ̸= Y (e)

We rank these by priority in order R1, R2, . . . We say that Re requires attention at stage s if Φ
D(Gs)
e (ne)

halts in less than s steps. At a given step s, let Re be the highest priority requirement among the first s

that requires attention, if one exists. Reserve the part of the diagram used in the computation of Φ
D(Gs)
e (e).

If Φ
D(Gs)
e (e) halts with output 0, then choose m, large enough so that E(ue, vm) and ¬E(ue, vm) are outside

of any reserved part of the diagram, and outside of the first e sentences with constants naming the elements
of G. Add an edge connecting ue to vm, adding e to Ys+1. If it halts with any other value, add no edges.

In the limit, all requirements will be satisfied, so G will fail to be relatively decidable. The G constructed
above has diagram computable in π. A path through T can be computed in 0′, so T has models which fail
to be relatively decidable that are computable in 0′.

Elaborating on this, we can obtain a complete theory with this property.

Theorem 2.2. There is a complete, computable theory T such that every computable model of T is decidable,
but T is not relatively decidable.

Proof. We will use T as in the previous theorem. Let L be the language containing a binary relation R,
unary relations U and Q, and for each n unary relations Pn and Ln. T has the following axioms:

1. (∀x)(∀y)(R(x, y) → (U(x) ∧ ¬U(y)))

2. For each m ≥ n, the sentence (∀x ∈ U)(Lm(x) → Ln(x))

3. For each σ ∈ 2<ω \ T of length n, the sentence

(∀x ∈ U)

Ln(x) → ¬

 ∧
σ(i)=1

Pi(x) ∧
∧

σ(i)=0

¬Pi(x)


4. (∀y ̸∈ U)(∃!x ∈ U)(R(x, y))

5. For each n, the sentences
(∀x ∈ U)(Ln(x) → (∃≥ny ̸∈ U)R(x, y))

and
(∀x ∈ U)(¬Ln(x) → (∃<ny ̸∈ U)R(x, y))

6. (∀x ∈ U)(∃<2y ̸∈ U)(R(x, y) ∧Q(y))

7. (∀x ∈ U)¬Q(x)

8. For each n, the sentence (∀y ̸∈ U)(¬Ln(x) ∧ ¬Pn(x))

9. Any finite combination of Ln and Pn consistent with axioms (2) and (3) is realized by infinitely many
x ∈ U . For infinitely many of these, there is some y with R(x, y) and Q(y), and for infinitely many,
there is no such y.

5

Any model of T consists of an infinite set U , each element x of which is labelled with an infinite binary
sequence whose nth digit is given by Pn(x). Each x ∈ U satisfies either all Ln up to LN for some N , and
none above it, in which case we say that it has length N , or satisfies all Ln, in which case we say that
it has infinite length. If x has length n, the first n digits of its sequence are a string in T, and if it has
infinite length, its sequence is a path through T. For each x ∈ U , there is an associated subset of U c, whose
cardinality is given by the length of x. These subsets partition U c, and each contains at most one element
satisfying Q.

We will first show that T is satisfiable. Any finite subset S of T contains only finitely many instances
of axiom scheme (9), and uses finitely many of the Pn and Ln. This finite subset asserts that some finite
combinations of these Ln and Pn consistent with axioms (2) and (3) are realized at some finite number of
times. We can construct a finite structure realizing this, containing an element of U for instance of each
combination we need to realize, of length no more than prescribed by the Li. Each of these can be labelled
by the prescribed combination of the Pi, and we interpret all unused Pi as empty. For each element of U , we
have a set of elements of U c of cardinality given by the element’s length. If the combination we are realizing
is prescribed to have an associated element satisfying Q, we let the first element of its associated subset
satisfy Q. This is then a model of S. The compactness theorem implies that T is satisfiable.

We will now show that T is computable and complete. Because the axioms are a computable set of
sentences, it suffices to show that is complete. For this, it suffices to show that for any finite subset F ⊂ L,
any countable models A and B of T are elementarily equivalent as F-structures. We will show that any such
A and B have isomorphic elementary extensions, as F-structures. It suffices to consider F of the form

{U,L0, . . . , LN , P0, . . . , PN , Q,R}

Let σ be a length N binary sequence in T. In both A and B, there are infinitely many elements of U , of
arbitary length, such that the first N digits of the binary sequence labelling them is σ. Infinitely many of
these have an associated element satisfying Q, and infinitely many do not. By the compactness theorem,
there are countable elementary extensions A′ and B′ of A and B with the following properties. Each contains
infinitely many x ∈ U for which there are infinitely many y ̸∈ U satisfying R(x, y). For a binary sequence
of length N in T, infinitely many of these xs are labelled with it. For infinitely many of these, one of the
associated y satisfies Q, and for infinitely many, none of the associated y satisfy Q.

We can then construct partial F-isomorphisms between A′ and B′, by mapping an x ∈ UA to an x′ in
UB of the same length, labelled with the same string, and which has an associated y satisfying Q if and only
if x does. The ys associated to x can be mapped to y′s associated to x′. We can similarly construct partial
isomorphisms from B′ to A′. We have countably many options to chose from in each structure, so we can
use the back and forth method to construct an isomorphism A′ ≃ B′. We conclude that T is a computable,
complete theory. The effective completeness theorem then implies that T has decidable models.

We will now show that any computable model A of T is decidable. The binary sequence assigned to any
x ∈ U can be computed from D(A), so because T has no computable paths, each such x must have finite
length. Let a ∈ A. We define the neighborhood of a, N(a), as follows. If a ∈ UA, N(a) = {a} ∪ {b|A |=
R(a, b)}. If a ∈ A \ UA, there is a unique b ∈ UA such that A |= R(b, a). We let N(a) = N(b). For a a
tuple in A, we define N(a) to be the union of N(ai) over each entry ai of a. Because each element of UA

has finite length, N(a) is a finite subset of A for any tuple a. We can think of N(a) as a finite substructure
of A. Consider the atomic diagram D(N(a)).

Any model of D(N(a)) + T is a model of T containing N(a) as a substructure. For any countable such
models, and finite fragment F of the language, we can as above construct isomorphic elementary extensions
of the models as F-structures. This shows that T (a), the set of consequences of D(N(a)) + T is a complete
theory. For any element of A \ UA, we can effectively search for the unique element of UA to which it is
associated. We can effectively compute the length of an element of UA, and effectively search for elements of
its neighborhood. As such, N(a) can be computed uniformly in a, so D(N(a)) can be as well. Therefore, T (a)
is uniformly computable in a, so for any formula φ(x) and tuple a, we can computably decide if A |= φ(a).
Consequently, E(A) computable, so A is decidable.

We will now show that T has models which are not relatively decidable. Let A be any countable model
of T . We will construct a model A∗ that is not relatively decidable, which extends A. Add countably many

6

new elements, u1, u2, . . . to A, which will satisfy U in A∗. For each un, add countably many new elements
vn,1, vn,2, vn,3, . . . , which will satisfy ¬U . Extend R by letting A∗ |= R(un, vn,i) for each i. Let each un have
infinite length, and label all of them with some path π in T. Because A |= T , A∗ as constructed so far is a
model of T . Let φ(x) be the formula (∃y)(R(x, y)∧Q(y)). Let Y be the set {n|A∗ |= φ(un)}. We will define
the relation Q on the new elements vn,i so as to make Y not computable from D(A∗), which will imply that
A∗ is not relatively decidable, because Y is computable from E(A∗). Let A∗

s and Ys be A∗ and Y as defined
at the sth stage of the construction. Let ΦXe be the eth program relative to a set X. We will satisfy the
requirements

Re: Φ
D(A∗)
e (e) ̸= Y (e)

which we rank by priority R1, R2, R3, As in the previous theorem, we say that Re requires attention at

step s if Φ
D(A∗

s)
e (e) halts in less than s steps. At step s, let Re be the requirement among the first s of highest

priority that requires attention, if one exists. Reserve the part of the diagram used in the computation of

Φ
D(A∗

s)
e (e). If Φ

D(A∗
s)

e (e) halts with value 0, choose i large enough so that Q(ve,i) and ¬Q(ve,i) lie outside of
any part of D(A∗) that has been reserved so far, and outside of the first e sentences with constants naming
the elements of A∗. Let A∗

s+1 |= Q(ve,i), adding e to Ys+1.
In the limit, all requirements are satisfied, so Y is not computable from D(A∗). For each e, there is at

most one i such that A∗ |= Q(ve,i), so A∗ is still a model of T , which fails to be relatively decidable. The
model A∗ constructed above is computable in D(A) ⊕ π. Taking A to be a decidable model of T , and π to
be a path computable in 0′, A∗ is computable in 0′.

A variation on the construction of the previous theory can be used to prove a lower bound on the
complexity of the property of a theory that all its computable models are decidable. We will need the
following result.

Theorem 2.3. Let Te be the eth computable subtree of 2<ω. The set {e|Te has a computable path} is Σ0
3

hard.

Proof. Let φ(w) = ∃x∀y∃zθ(w, x, y, z) be a Σ0
3 predicate. Because {e|We is infinite} is Π0

2 complete, there
is a computable function f such that Wf(w,x) is infinite if and only if ∀y∃zθ(w, x, y, z).

For σ0σ1 . . . σℓ = σ ∈ 2<ω, let σ∗ be the string σ01σ11 . . . 1σℓ1 Let T∗ be the tree obtained by closing
the set {σ∗|σ ∈ T} under initial segments. T∗ is computable because T is, and any path in T∗ computes a
path in T, so T∗ has no computable path. We say that a string τ is a branch off of T∗ if τ is of the form
σ01σ11 . . . 1σℓ0 for σ ∈ T. Because T is computable, we can effectively enumerate the branches off T∗ in
lexicographic order. Let τn be the nth branch off T∗.

For e a natural number, we will construct a computable tree Tg(e) such that Tg(e) has a computable path
if and only if φ(e) is true. We construct Tg(e) in stages, as follows. Tg(e) contains T∗ as a subtree. For each
n, we construct a copy of T above τn, one layer at a time. If at stage s, a new element is enumerated into
Wf(e,n), we stop building the copy of T over τn at the sth layer, and begin building a new one over the
leftmost node in this layer.

Suppose φ(e) is true. Then, for some n, infinitely many elements are enumerated into Wf(e,n). Our
construction of trees over τn will then be interrupted infinitely often, so Tg(e) has exactly one path going
through τn, which passes through the leftmost node at each stage we are interrupted. Because Tg(e) is
computable, the unique path through τn can be computed.

Suppose φ(e) is false. A path through Tg(e) is either a path through T∗, which is uncomputable, or passes
through some branch τn off of T∗. In this case, ∀y∃zθ(e, n, y, z) is false, so Wg(n,e) is finite. Therefore, all
paths passing through τn are, up to a finite initial segment, paths though a copy of T, so are uncomputable.

Theorem 2.4. The set {e|every computable model of the eth computable complete theory is decidable} is Π0
3

hard.

7

Proof. Let φ be as in the previous theorem. We will construct a complete computable theory The, uniformly
in e, such that every computable model of The is decidable if and only if φ(e) is false. We construct The
exactly as in Theorem 2, with Tg(e) replacing T. Tg(e) shares all the properties of T that imply that the
resulting theory is computable and complete, namely, that it is computable and infinite.

As in Theorem 2, we see that if φ(e) is false, them Tg(e) has no computable path, so every computable
model of The is decidable. If φ(e) is true, then Tg(e) has a computable path. In Theorem 2, we showed that
the theory has a model which is not relatively decidable that is computable relative to a path in the tree.
In this case, this implies that The has a computable model which is not decidable.

2.2 Uniform Relative Decidability in n Turing Jumps

Recall that a theory T is uniformly relatively decidable if there is a Turing functional Φ such that for any
countable A |= T , ΦD(A) computes E(A), the elementary diagram of A. That is, Φ represents a uniform
procedure for deciding formulas in models of T relative to their diagrams. Chubb, Miller, and Solomon gave
the following characterization of uniformly relatively decidable c.e. theories.

Theorem 2.5. [CMS21] The following are equivalent, for T a c.e. theory.

1. T is model complete.

2. T is uniformly relatively decidable

3. T has effective quantifier elimination down to Σc1 formulas.

4. T has effective quantifier elimination down to finitary Σ1 formulas

This theorem shows that uniform relative decidability always has a structural reason for showing up, in
the form of a quantifier elimination property. We can extend this theorem, characterizing weaker quantifier
elimination properties in terms of weaker computability properties, as follows.

Theorem 2.6. The following are equivalent, for T a c.e. theory.

1. There is a Turing functional Φ such that for any countable A |= T , ΦD(A)(n)

computes E(A).

2. T has effective quantifier elimination down to Σcn+1 formulas.

3. T has effective quantifier elimination down to finitary Σn+1 formulas.

We will need two main tools to prove this theorem. The first is the following theorem, which provides
a connection between relative computability and definability in infinitary logic. We say that a relation
R ⊂ An is uniformly relatively intrinsically Σ0

n if there is a Σ0
n N-formula ψ(x, Ẋ) such that ψ(x,D(B))

defines RB ⊂ Bn(= ωn) for any B ≃ A.

Theorem 2.7 (Ash, Knight, Manasse, Slaman, and Chisholm). [AKMS89][Chi90] A relation R ⊂ An is
uniformly relatively intrinsically Σ0

n if and only if R is definable by a Σcn in A. In fact, if R is defined in
every copy B ≃ A by a Σ0

n N-formula ψ(y,D(B)), then R is definable in A by a Σcn formula

λ(x) = ∃q
∨

k∈|q|n

(
x = q(k) ∧ Forceψ(k,Ẋ)(q)

)
where ∃q is shorthand for an infinite disjunction over all possible lengths of q, and Forceψ(k,Ẋ) is a Σcn
formula uniformly computable in ψ.

For the details of the formula λ(x), see [Mon21], Chapter 7. For our purposes, all we need to know about
it is that it does not depend on the structure A and that it is uniformly computable in ψ. The second tool
we will need bridges the gap between definability in infinitary logic and definability in finitary logic, while
preserving the complexity of formulas.

8

Proposition 2.8. Let T be a finitary theory. Let ψ be an infinitary Πn formula which is equivalent to a
finitary formula φ in all models of T . Then, ψ and φ are equivalent to a finitary Πn formula in all models
of T .

In Section 3, we will prove a number of special cases of this proposition, culminating in a proof of a more
general statement. With these tools, we can proceed with our proof of Theorem 2.6.

Proof. We will first show that (1) implies (2). If T satisfies (1), and φ(x) is a (finitary) formula in the
language of T in m free variables, φ defines a relation R ⊂ Am for any countable A |= T . R is uniformly
computable from E(A), so is uniformly computable from D(A)(n). By Post’s theorem, R is thus uniformly
relatively intrinsically Σ0

n+1, so by Theorem 2.7, is definable in A by the Σcn+1 formula

λ(x) = ∃q
∨

k∈|q|n

(
x = q(k) ∧ Forceψ(k,Ẋ)(q)

)
We then have that λ is equivalent to φ in any model A |= T . Moreover, the N-formula ψ defining R can be
computed uniformly from φ, and the Turing functional Φ. As such, T has effective quantifier elimination to
infinitary Σcn+1 formulas.

We will now show that (2) implies (3). If T has quantifier elimination to infinitary Σcn+1 formulas,
applying Proposition 2.8 to each formula (using negation to switch between Σn+1 and Πn+1) implies that T
has quantifier elimination to finitary Σn+1 formulas. Moreover, because T is c.e. we can for any φ effectively
search for a Σn+1 formula and a proof of its equivalence to φ from T , so this quantifier elimination is effective.

Finally, we will show that (3) implies (1). In order to compute E(A), we need to decide formulas in A.
To decide a formula φ, we first find Σn+1 formulas ∃yθ(xy) and ∃yη(xy) equivalent to φ and ¬φ respectively
over T , where θ and η are Πn. To decide if A |= φ(a), we search tuples b and c of elements of A, checking if
A |= θ(ab) or if A |= η(ac) using D(A)(n). One of the Σn+1 formulas is true, so this search will eventually
terminate, at which point we can determine if A |= φ(a).

2.3 Computability of Fragments of the Diagram

Before embarking towards a proof of Proposition 2.8, we will demonstrate a few more distinctions between
relative decidability properties.

For A a structure, EΠn
(A) (EΣn

(A)) is the set of Πn (Σn) sentences in the elementary diagram of A. For
any structure, EΣn(A) ≡T EΠn(A) uniformly, so (uniform) computability of one is equivalent to (uniform)
computability of the other. We will switch between them as convenient. We will use the convention that
0(n) is represented by EΣn

(N).

Theorem 2.9. Let T be a c.e. theory. Suppose there is a Turing functional Φ such that for A a countable
model of T , ΦD(A) computes EΠ1

(A). Then T is uniformly relatively decidable.

Proof. It suffices to show that T has quantifier elimination to Σ1 formulas. We will prove by induction of n
that any Πn formula is equivalent over T to a Σ1 formula.

Let φ(x) be a Π1 formula with n free variables. For A a countable model of T , the set R ⊂ An defined
by φ can be uniformly computed from EΠ1

(A), and so can be uniformly computed from D(A). Therefore, R
is uniformly relatively intrinsically c.e, so by the Ash-Knight-Manasse-Slaman-Chisholm theorem, is defined
in A by a Σc1 formula ψ(x), which is independent of the structure A. That is, φ and ψ are equivalent in any
countable model of T , so by the downward Löwenheim-Skolem theorem, in any model of T .

Suppose A and B are models of T , A ⊂ B, and a ⊂ A such that A |= φ(a). Then, A |= ψ(a), so because
ψ is Σc1, B |= ψ(a), which implies that B |= φ(a). Because this holds for any models A and B of T , φ is
equivalent to a finitary Σ1 formula η over T .

Suppose that any Πn formula is equivalent over T to a Σ1 formula. Let φ be a Πn+1 formula. Then,
¬φ(x) is equivalent to a Σn+1 formula ∃yθ(x, y), for θ a Πn formula. Let η be a Σ1 equivalent to θ. Then,
¬φ(x) is equivalent to ∃yη(x, y), which is Σ1. Hence, φ is equivalent to a Π1 formula, which is in turn

9

equivalent to a Σ1 formula. We conclude that every formula is equivalent over T to a Σ1 formula, so T is
uniformly relatively decidable.

The analogous statement for copies of a single structure is not true in general.

Theorem 2.10. There is a countable structure A and a Turing functional Φ such that ΦD(B) computes
EΣ1(B) for any B ≃ A, but A is not relatively decidable.

Proof. Let L consist of the language of arithmetic {0, 1,+,×, <}, together with new constants cn for each
n ∈ ω, and new unary relations P , W0, and W1. Let the domain of A be the disjoint union of two copies of
ω, ω0, the interpretation of W0, and ω1, the interpretation of W1. On ω0, let the symbols in the language of
arithmetic have the standard interpretation. Let the cn label the elements of ω1, and let P be interpreted
as {cn|n ∈ 0′}. If a ∈ ω1, then for any b, let a+ b = a× b = b+ a = b× a = c0.

Consider a fixed B ≃ A. Any Σ1 formula in m free variables φ(x) = ∃y1, . . . , ynθ(x, y), for θ quantifier
free, is equivalent to the formula∨

σ∈2m

(
x1 ∈Wσ(1) ∧ · · · ∧ xm ∈Wσ(m) ∧

∨
σ′∈2n

∃y1 ∈Wσ′(1) . . . ∃yn ∈Wσ(n)θ(x, y)

)
so to decide an instance of φ(x), it suffices to decide each existential disjunct of the above formula. Writing
θ in disjunctive normal form, it suffices to consider the case in which θ is a conjunction of literals. For each
term τ(x, y), whether τ is in ω0 or ω1 depends only on its syntactic form and on whether the xi and the yi
lie in ω0 and ω1. A term in ω1 is either a variable ranging over ω1, a constant ci, or an expression always
equal to c0, which can be replaced with c0. We may thus assume such terms contain only variables ranging
over ω1. Likewise, terms in ω0 contain only variables ranging over ω0.

Atomic sentences of the form W1(τ) and W2(τ) can be replaced with their truth values. An atomic
sentence P (τ) can be replaced with the truth value false whenever τ ∈ ω0, as can atomic sentences involving
< with terms in ω1 and equations between terms in different parts of the structure. As such, it suffices to
consider θ of the form

ρ(x, y) ∧ λ(x, y)

where ρ is in the language of arithmetic and contains only variables ranging over ω0, and λ is in the language
{P, c1, c2, . . . } and contains only variables ranging over ω1. Because they contain disjoint sets of variables,
the quantified formula is equivalent to the conjunction of the quantifiers applied to ρ and to λ separately, so
it suffices to decide each of these. The case of λ can be decided because the theory of W1 in the language
language {P, c1, c2, . . . } is complete, as any two countable models have isomorphic elementary extensions,
each containing countably many elements not equal to any ci satisfying P , and countably many satisfying
¬P . This theory is axiomatized by the atomic sentences in D(B), so is computable from it.

In the case of ρ, we need to decide a Σ0
1 arithmetic formula, plugging in elements b in B for x. We may

assume all of b satisfy W0, so lie in the copy of ω0. We can effectively search for terms 1+ · · ·+1 equal to each
bi, and thus turn the formula into a Σ0

1 sentence in the language of arithmetic. We can decide this sentence
by computing its Gödel number i, and checking if P (ci) ∈ D(B). This describes a uniform procedure to
compute EΣ1(B) from D(B).

A is not relatively decidable, because

E(A) ≥T Th(N) >T 0′ ≥T D(A)

We can replace 0′ with 0(n) in the above construction. In order to decide a Σn formula, we carry out
the same procedure of converting it to prenex normal form, then considering all possible combinations of
Wi that the variables can lie in. This reduces the problem of deciding the formula, as above, to deciding
a Σ0

n sentence about W0 in the language of arithmetic, for which we use 0(n), and deciding a sentence in
the language {P, c1, c2 . . . } about W1. Using the fact that Th(N) >T 0(n) for any n, we have the following
generalization.

10

Theorem 2.11. For any n, there is a countable structure A and Turing functional Φ such that ΦD(B)

computes EΣn(B) for any B ≃ A, but A is not relatively decidable.

Using a variation on the above construction, we can realize all of these properties in the same structure.

Theorem 2.12. There is a countable structure A such that for each n, there is a Turing functional Φn such

that Φ
D(B)
n computes EΣn

(B) for B ≃ A, but A is not relatively decidable.

Proof. The idea is as follows. We will include a copy of 0(n) in the structure for each n, each of which can be
read off of the diagram using a distinct “key.” We let L consist of the language of arithmetic, together with
new constants ci,k for natural numbers i, k, and unary relations W0, W1 and P . A consists of the disjoint
union of two sets. One is a copy of ω, the interpretation of W0, on which the language of arithmetic has its
standard interpretation. The other is a copy of ω2, the interpretation of W1.

The elements of this are labelled by the constants ci,k. For each n, we will define a distinct kn. We will
also define a set N ⊂ W1, which can thought of as “noise” that we add to the diagram, disjoint from the
rows corresponding to the kn. We interpret P as {ci,kn |i ∈ 0(n)} ∪N . We extend the language of arithmetic
to W1 as in the previous theorem, so that if a ∈W1, a+ b = b+ c = a× b = b× a = c0,0 for any b.

For any n, we can decide Σn formulas in any B ≃ A exactly as in the previous theorem, with one
modification. When we compute the Gödel number i of a Σ0

n arithmetic sentence we need to decide, we
check if P (ci,kn) ∈ D(B). Using kn, we can thus define a uniform procedure to compute EΣn

(B) from D(B)
for any B ≃ A.

We will now show that N and the kn can be chosen so that A is not relatively decidable. In particular,
we will show that they can be chosen so that Th(N) is not computable from D(A). Let ΦXe be the eth Turing
functional relative to a set. We will define the kn and N in stages. Let D(As) be the diagram of A at stage
s. At step 0, set k1 = 1, N to be the empty set. At step s, we will have defined k1 < k2 < · · · < ks, and put
only finitely many elements into N . D(As) is thus computable from 0(s), so Th(N) is not computable from
it. We will show that there must be an i such that one of the following holds.

1. Φ
D(A∗)
s (i) ↑ for any A∗ obtained from As by adding elements to P in rows above ks.

2. There is an i, and a finite extension of P above row ks so that Φ
D(A∗)
s (i) ↓ and Φ

D(A∗)
s (i) ̸= Th(N)(i).

If for all i, both (1) and (2) fail, then we can compute Th(N) from D(As) as follows. For any i, we search

finite extensions P above ks until we find one so that Φ
D(A∗)
s (i) converges, which must exist because (1)

fails. The computation must have output Th(N)(i), because (2) fails. This is a contradiction, so there must
be some i satisfying (1) or (2).

If i satisfies (1), then because in the remainder of the construction we will only add elements to P

above row ks, this ensures that Φ
D(A)
s will not compute Th(N). We can then choose ks+1 to be ks + 1,

and move to step s + 1. If i satisfies (2), then we extend N to realize the finite extension of P so that
ΦDs (A∗)(i) ̸= Th(N)(i), and choose ks+1 to be large enough so that changes to rows ≥ ks+1 do not change

the part of the diagram used in the computation of Φ
D(A∗)
s (i). This ensures that Φ

D(A)
s will not compute

Th(N).

In the limit, we have defined A so that for all e, Φ
D(A)
e does not compute Th(N). On the other hand,

Th(N) is computable from E(A), so this implies that A is not relatively decidable.

3 Infinitary Logic

In this section, we go about proving Proposition 2.8. We will examine each case up to n = 5 separately, at
which point we will have the necessary ideas to prove the general case.

11

3.1 Semantic Tests: n = 0 and n = 1

We can extract, from the definition of model completeness, the following semantic test for Π1 formulas.

Theorem 3.1. Let φ be a finitary formula and T be a finitary theory. The following are equivalent.

1. φ is equivalent to a Π1 formula over T .

2. If A ⊂ B are models of T , a ∈ A, and B |= φ(a), then A |= φ(a). That is, φ is preserved by
substructures.

Proof. If φ is equivalent to ψ(x) = ∀yθ(xy), then if a ∈ A, and B |= φ(a), we have that B |= ψ(a). For any
b ∈ A, b ∈ B, so B |= θ(ab). Then, A |= θ(ab) because A ⊂ B. Thus, A |= ψ(a), so A |= φ(a).

Suppose, conversely, that φ is not equivalent to any Π1 formula over T . Adding constants c for the free
variables of φ, let Γ be the set of Π1 consequences of T + φ(c). If T + Γ ⊢ φ(c), then for some finite subset
S ⊂ Γ, T + S ⊢ φ(c). Letting ψ(c) be the conjunction of S, we would have that ψ(x) is Π1, and because c
does not appear in T , T ⊢ ∀x(φ(x) ↔ ψ(x)), contradicting our assumption. As such, T + Γ ̸⊢ φ(c), so there
is some A |= T + Γ + ¬φ(c). We claim that T + φ(c) + D(A) is satisfiable. For any finite R ⊂ D(A), let
θ(ac) be the conjunction of R. If T + φ(c) +R is not satisfiable, T + φ(c) ⊢ ∀y¬θ(yc). Then, ∀y¬θ(yc) ∈ Γ,
which is contradicted by the fact that A |= Γ and θ(ac) ∈ D(A). Let B |= D(A) + T + φ(c). Then, A ⊂ B
are models of T , B |= φ(c), and A |= ¬φ(c), so φ does not satisfy (2).

We can use this test to prove the n = 1 case.

Corollary 3.2. If a finitary formula φ is equivalent to an infinitary Π1 formula ψ in all models of T , a
finitary theory, φ is equivalent to a finitary Π1 formula over T .

Proof. It suffices to show that ψ satisfies the criterion (2) of the previous theorem, as this implies that φ
does as well. If ψy =

∧∧
i ∀yθi(xy), A ⊂ B, and B |= ψ(a) for a ∈ A, then for any i and b ∈ A, b ∈ B, so

B |= θi(ab). As such, A |= θi(ab). We conclude that A |= ψ(a).

As we have define the classes Πn, Π0 formulas are already finitary, so the proposition is trivial there.
However, there is a semantic test for quantifier free formulas which can be used to prove an analogous
statement for quantifier free infinitary formulas. We can also observe that we could include more infinitary
connectives in Π1 formulas in the preceding corollary. We will ultimately more general results that embrace
both of these observations, but for the rest of the special cases, we will retain the classes Πn for simplicity.

Theorem 3.3. Let φ be a finitary formula, and T be a finitary theory. The following are equivalent.

1. φ is equivalent to a finitary quantifier free formula over T .

2. B, and C are models of T , A ⊂ B, and A ⊂ C, then for a ∈ A, B |= φ(a) if and only if C |= φ(a).

Proof. We will use finitary, quantifier free sentences ⊤ and ⊥ standing for true and false respectively in the
case that φ is a sentence, for otherwise the language may lack quantifier free sentences. This is a technicality
that does not add to the language’s expressive power, and if the language has a constant c, we can replace
these with c = c and c ̸= c respectively. Otherwise, if φ is not equivalent to ⊤ or ⊥ over T , there are models
B |= T + φ and B |= T + ¬φ, and we can take A to be empty.

If θ is quantifier free, A ⊂ B, A ⊂ C, B and C are models of T and a ∈ A, then B |= θ(a) if and only
A |= θ(a) if and only if C |= θ(a). If φ is equivalent over T to θ, then this implies that B |= φ(a) if and only
if C |= φ(a).

Suppose conversely that φ is not equivalent to any quantifier free sentence formula T . Let Γ be the set of
quantifier free consequences of T +φ(c) and Γ′ be the set of quantifier free consequences of T +¬φ(c), for c
new constants. We claim that Γ+Γ′ is satisfiable. If not, then for some finite S ⊂ Γ′, Γ+S is not satisfiable.
Let θ(c) be the conjunction of S. Then, in models of T , φ(c) ⊢ θ(c) ⊢ ¬¬φ(c). Because c does not appear
in T , this implies that φ and θ are equivalent, contradicting our assumption. Let A′ be a model of Γ + Γ′,

12

and A ⊂ A′ be the substructure generated by the denotations of closed terms. Then, D(A) is just the set of
atomic sentences true in A. We claim that D(A) + T + φ(c) and D(A) + T + ¬φ(c) are satisfiable. If not,
say D(A) + T + φ(c), then for some finite subset R ⊂ D(A), R + T + φ(c) is not satisfiable. Letting η be
the conjunction of R, we then have that T + φ(c) ⊢ η, so η ∈ Γ. This contradicts the fact that A′ |= Γ. The
case of ¬φ(c) follows for the same reason. We thus have B |= D(A) + T + φ(c) and C |= D(A) + T + ¬φ(c).
This shows that φ does not satisfy (2).

Corollary 3.4. If ψ is infinitary, and quantifier free, φ is a finitary formula, and T is a finitary theory,
such that ψ and φ are equivalent in all models of T , then φ and ψ are equivalent to a finitary quantifier free
formula over T .

Proof. It suffices to show that ψ satisfies condition (1) of Theorem 3.3, as this will imply that φ satisfies it
as well. We will prove this by induction on the complexity of ψ.

If ψ is atomic, then because A ⊂ B and A ⊂ C, B |= ψ(a) if and only if A |= ψ(a) if and only if C |= ψ(a).
Suppose ψ = ¬ϕ. Then, B |= ψ(a) if and only B ̸|= ϕ(a). Appealing to induction, this is true if and only if
C ̸|= ϕ(a), or equivalently, C |= ψ(a).

Suppose ψ =
∨∨
ϕ∈Φ

ϕ. Then, B |= ψ(a) if and only if for some ϕ ∈ Φ, B |= ϕ(a). Appealing to induction,

this is true if and only if C |= ϕ(a) for some ϕ ∈ Φ, which is true if and only if C |= ψ(a). Likewise, if
ψ −

∧∧
ϕ∈Φ

ϕ, B |= ψ(a) if and only if for every ϕ ∈ Φ, B |= ϕ(a). Appealing to induction, this is true if and

only if for every ϕ ∈ Φ, C |= ϕ(a), which is true if and only if C |= ψ(a).

3.2 Preservation by Chains: n = 2

The use of semantic tests to characterize complexity classes of formulas will prove to be fruitful. Originating
in [Cha59] and [LS55], the following test characterizes Π2 formulas.

Theorem 3.5. Let T ⊂ Lω,ω be a theory, and φ ∈ Lω,ω be a formula. The following are equivalent.

1. φ is equivalent to a (finitary) Π2 formula over T .

2. If A0 ⊂ A1 ⊂ . . . is a chain of models of T , and Aω =
⋃
n<ω An is a model of T , then if a ∈ A0, and

An |= φ(a) for every n, we have that Aω |= φ(a).

Proof. We will first show that finitary Π2 formulas satisfy (2). Suppose φ(x) = ∀y∃zθ(xyz), and A0 ⊂ A1 ⊂
. . . is a chain of structures with Aω =

⋃
nAn, and An |= φ(a) for a ∈ A0, for all n. Let b ∈ Aω. Then,

b ∈ An for some n. As such, there is a c ∈ An such that An |= θ(abc). Then, Aω |= θ(abc). We conclude
that Aω |= φ(a).

Next we will show that this characterizes Π2 formulas. Let c be a tuple of new constants. Let Γ be
the set of Π2 sentences in the expanded language which are entailed by T + φ(c). We will show that
T + Γ ⊢ φ(c). Suppose M |= T + Γ, and let ThΣ2

(M) be the set of Σ2 sentences true in M . We claim that
T + ThΣ2

(M) + φ(c) is satisfiable. If it is not, then for some finite subset of S ⊂ ThΣ2
(M), T + S + φ(c) is

not satisfiable. Let ψ be a Σ2 equivalent of the conjunction of the elements of S. Then, T + φ(c) ⊢ ¬ψ, so
¬ψ is equivalent to a Π2 consequence of T + φ(c), which then is an element of Γ. However, M |= ψ, which
contradicts the assumption that M |= Γ.

Let N |= T + ThΣ2
(M) +φ(c). Let EΠ1

(M) be the set of Π1 sentences in the elementary diagram of M .
We now claim that Th(N) +EΠ1

(M) is satisfiable. It suffices to show that any finite set of Π1 formulas true
of elements of M can be satisfied in N . Taking the conjunction of this set, it suffices to show that any Π1

formula β(y) true of elements of M can be satisfied in N . In this case, M |= ∃yβ(y), which is Σ2 so because
N |= ThΣ2(M), N |= ∃yβ(y).

Let N1 |= Th(N) + EΠ1(M). We may take N1 ⊃ M , interpreting the constants in EΠ1(M) as the
respective elements of M . Further, N1 ≡ N . We will now show that there is a structure M1 such that
M1 ≻M and M1 ⊃ N1. M1 will be a model of E(M) +D(N1), where the constants used to name elements

13

of M in E(M) are identified with those used to name elements of M in D(N1). It suffices to show that
for any finite subset S ⊂ D(N1), E(M) + S is satisfiable. Taking the conjunction of S, it suffices to show
that E(M) + α(d, e) is satisfiable, where α is quantifier free formula, d are constants naming elements of M
and so appear in E(M), and e are constants naming elements of N1 \M . If this is not satisfiable in M ,
interpreting d as the respective elements m of M , then M |= ∀y¬α(m, y), so ∀y¬α(d, y) ∈ EΠ1

(M). Because
N1 |= EΠ1

(M), N1 |= ∀y¬α(d, y), which contradicts the fact that α(d, e) occurs in D(N1). We conclude that
E(M) + α(d, e) is satisfiable, so E(M) +D(N1) is satisfiable. Taking a model of this, we have M1.

Because M1 ≻M and N1 ≡ N , N1 |= ThΣ2(M) = ThΣ2(M1). Using this, we can iterate the constructions
of M1 and N1 above to obtain a chain of structures

M ⊂ N1 ⊂M1 ⊂ N2 ⊂M2 ⊂ . . .

such that N1 ≡ N2 ≡ N3 . . . and M ≺ M1 ≺ M2 Consider M∗ = ∪nMn = ∪nNn. By the elementary
chain theorem, M∗ ≻ M , so M∗ |= T . Because each Nn |= φ(c), M∗ |= φ(c), so M |= φ(c). We conclude
that T + Γ ⊢ φ(c).

By the compactness theorem, T+S ⊢ φ(c), for S a finite subset of Γ. Taking a Π2 sentence η(c) equivalent
to the conjunction of the sentences in S, we have that T ⊢ φ(c) ↔ η(c). The constants c do not occur in T ,
so T ⊢ ∀x(φ(x) ↔ η(x)).

Corollary 3.6. If a finitary formula φ is equivalent to an infinitary Π2 formula ψ in all models of T , a
finitary theory, φ is equivalent to a finitary Π2 formula over T .

Proof. We will show that infinitary Π2 formulas satisfy the semantic test of the previous theorem. Let

ψ(x) =
∧∧
i

∀y
∨∨
j

∃zθi,j(xyz)

. Suppose that A0 ⊂ A1 ⊂ . . . is a chain of structures, a ∈ A0, and that for each n, An |= ψ(a). Let
Aω =

⋃
nAn. Then, for any i, and b ∈ Aω, b ∈ An for some n. Then, there is a j and a c such that

An |= θi,j(abc). Consequently, Aω |= θi,j(abc). We conclude that Aω |= ψ(a).

3.3 Digression: Longer Chains

One might hope to generalize the semantic test used for the n = 2 case by considering other kinds of chains
of structures. This approach, however, fails for the following reasons. First, if an ordered set I has cofinality
ω, one can modify any ω-chain (An)n<ω to obtain an I indexed chain, by choosing a cofinal subset of I and
filling in the gaps above An with copies of An. This shows that any formula preserved by I indexed chains
is also preserved by ω indexed chains, and so we don’t get a characterization of a larger class of formulas.
If we consider chains with cofinality greater than ω, they preserve too many formulas to give us a useful
characterization. In particular, suitable ω1 indexed chains preserve all Lω1,ω formulas.

A family of structures (Aα)α<ω1
is an ω1-chain if it has the following properties.

1. For each α < ω1, Aα is countable.

2. For α ≤ β < ω1, Aα ⊂ Aβ .

3. For limit β < ω1, Aβ =
⋃
α<β

Aα.

For an ω1-chain (Aα)α<ω1
, we define Aω1

as
⋃

α<ω1

Aα. Aω1
may be uncountable.

Theorem 3.7. Suppose that (Aα)α<ω1
is an ω1-chain, and φ is a sentence of Lω1,ω such that Aω1

|= φ.
Then, the set {α < ω1|Aα |= φ} is cofinal in ω1.

14

Proof. Let Φ be the set of subformulas of φ and their negations. Note that Φ is countable. For any ψ ∈ Φ,
a ⊂ Aω1 such that Aω1 |= ∃yψ(a, y), let fψ(a) be a tuple of length y such that Aω1 |= ψ(a, fψ(a)). For

convenience, we think of the fψ as partial functions on Aω1
.

Suppose β < ω1. We will show that there is an α such that β ≤ α < ω1 and Aα |= φ. For γ ≥ β, let
Fγ be the set of elements of tuples fψ(a) for a ⊂ Aγ , and ψ ∈ Φ. Because Aγ and Φ are countable, Fγ is

countable, so Aγ = Fγ ∪ Aγ is countable. The set {α < ω1|Aγ ∩ (Aα+1 \ Aα) ̸= ∅} is then countable, so is
not cofinal in ω1. Therefore, there is some γ′ < ω1 which is larger than any element of this set, in which
case Aγ′ ⊃ Aγ .

Let β0 = β, and βn+1 = β′
n. Let δ = sup{βn|n < ω}. Then, δ < ω1. We claim that Aδ =

⋃
n
Aβn

. One of

the following is true of the sequence (βn).

1. For some n, βn = βn+1.

2. βn < βn+1 for each n.

In case (1), βN = βn for all N ≥ n, so δ = βn, and Aδ = Aβn
=
⋃
n
Aβn

. In case (2), δ is a limit

ordinal, so Aδ =
⋃
α<δ

Aα =
⋃
n
Aβn . We now claim that Aδ ⊃ Fδ. Suppose a ⊂ Aδ, and ψ ∈ Φ, such that

Aω1
|= ∃yψ(a, y). Then, a ⊂ Aβn

for some n, so fψ(a) ∈ Fβn
⊂ Aβn+1

⊂ Aδ.
We will now show that for any θ ∈ Φ and a ∈ Aδ, Aω1

|= θ(a) if and only if Aδ |= θ(a), by induction on
the complexity of θ. If θ is quantifier free, this is true because Aδ ⊂ Aω1

. If θ = ¬η and this is true for η,
it follows for θ because A |= θ(a) if and only if A ̸|= η(a). Suppose that this is true for θi for i ∈ I, where
I is countable. If θ =

∧∧
i∈I θi, then Aω1 |= θ(a) if and only if Aω1 |= θi(a) for each i ∈ I, if and only if

Aδ |= θi(a) for each i, if and only if Aδ |= θ(a). If θ =
∨∨

i∈I θi, then ¬θ is equivalent to
∧∧

i∈I ¬θi, in which
case this follows from the previous two cases.

Suppose this is true for η. If θ = ∃yη(y) and Aω1
|= θ(a), then Aδ |= θ(a) because fη(a) ∈ Aδ. If

Aδ |= θ(a), then Aω1
|= θ(a) because Aδ ⊂ Aω1

. If θ = ∀yη(y), then ¬θ is equivalent to ∃y¬η(y), so this
follows from the previous case and the case of negation. Φ is well founded when ordered by containment of
subformulas, so by induction, this is true for any θ ∈ Φ.

Because φ ∈ Φ and Aω1 |= φ, we conclude that Aδ |= φ. Moreover, δ ≥ β. This completes the proof that
{α < ω1|Aα |= φ} is cofinal.

Theorem 3.8. Suppose that φ is a sentence of Lω1,ω and (Aα)α<ω1 is an ω1-chain such that for all suffi-
ciently large α, Aα |= φ. Then Aω1

|= φ.

Proof. Suppose Aω1 |= ¬φ. By the previous theorem, {α < ω1|Aα |= ¬φ} is cofinal, contradicting our
hypothesis.

We can apply this theorem to prove the following.

Theorem 3.9. Suppose X is a countable structure. Either the Lω,ω theory of X is not countably categorical,
or the Lω1,ω theory of X has an uncountable model.

Proof. Suppose that the Lω,ω theory of X, Th(X) is countably categorical. We will first show that X has a
proper elementary embedding into itself. By the upward Löwenheim-Skolem theorem, X has an uncountable
elementary extension Y ≻ X. Because Y is uncountable, we can choose some y ∈ Y \ X. Applying the
downward Löwenheim-Skolem theorem, Y has an elementary substructure X ′ containing X ∪ {y}. For any
finitary formula φ and tuple a ⊂ X, if X |= φ(a), then because X ≺ Y , Y |= φ(a), so because X ′ ≺ Y ,
X ′ |= φ(a). We conclude that X ≺ Y . Because y ̸∈ X, X ⊊ Y . Because Y |= Th(X), Y ≃ X. Composing
the elementary embedding X → Y with the isomorphism Y → X, we obtain an elementary embedding
X → X whose image is a proper substructure.

Using this elementary embedding, we can define by recursion an ω1-chain of copies of X such that the
successor of each entry in the chain is a proper elementary extension. For countable limit ordinal β, if we

15

have defined Xα for each α < β, we let Xβ =
⋃
α<β

Xα. This is then a countable elementary extension of X0,

so is a model of Th(X), and thus an isomorphic copy of X. Taking the union of this chain, we obtain a
countable structure Z. By the previous theorem, for any Lω1,ω sentence φ such that X |= φ, Z |= φ.

The above theorem can also be proved by other methods. Assuming that the Lω1,ω theory of X has no
uncountable models, we can conclude that X has an uncountable elementary extension not satisfying the
Scott sentence of X, and apply the downward Löwenheim-Skolem theorem to this, to obtain a countable
structure elementarily equivalent to X, but not isomorphic to it. We could also use the Ryll-Nardzewski
theorem to show that if X has a countably categorical theory, the Scott sentence of X is a conjunction of
finitary sentences, so is true in some uncountable elementary extension of X, which is then back and forth
equivalent to X, and so is a model of its Lω1,ω theory.

3.4 Morleyization: n = 3

Using the method of Morleyization, in which one introduces new symbols to the language to represent
formulas, we can extend the methods used in the n = 2 case to prove the n = 3 case.

Theorem 3.10. Let ψ be an infinitary Π3 sentence in signature L, of the form

ψ =
∧∧
i

∀x
∨∨
j

∃y
∧∧
k

∀zθi,j,k(x, y, z)

where each θi,j,k is finitary and quantifier free. Let T be a finitary L theory, and φ a finitary L sentence.
Suppose φ is equivalent to ψ over all models of T . Then φ is equivalent to some finitary Π3 L sentence over
T .

Proof. Consider the Morelyization of T ∗ with respect to the set of finitary universal formulae, in signature
L∗. L∗ consists of L together with a new relation symbol Rϕ for each universal formula ϕ(x) = ∀yθ(x, y).
This symbol is defined in T ∗ by the sentence

(∀x)(Rϕ(x) ↔ (∀y)θ(x, y))

Note that T ∗ remains finitary. In models of T ∗, ψ, and thus φ, is equivalent to the sentence

ψ∗ =
∧∧
i

∀x
∨∨
j

∃y
∧∧
k

Ri,j,k(x, y)

where Ri,j,k corresponds to the universal formula ∀zθi,j,k(x, y, z). Suppose that

A∗
0 ⊂ A∗

1 ⊂ A∗
2 ⊂ . . .

is a chain of models of T ∗, such that A∗
n |= φ for each n < ω, and such that A∗

ω =
⋃
n<ω

A∗
n is a model of

T ∗. We will show that A∗
ω |= φ. We first note that for each n, A∗

n |= ψ∗, and that it suffices to show that
A∗
ω |= ψ∗. Fix some i, and a ⊂ A∗

ω. a ⊂ A∗
n for some n. Because A∗

n |= ψ∗, there is a j and a b ⊂ A∗
n such

that
A∗
n |=

∧∧
k

Ri,j,k(a, b)

That is, for each k, A∗
n |= Ri,j,k(a, b), so A∗

ω |= Ri,j,k(a, b). Therefore,

A∗
ω |=

∨∨
j

∃y
∧∧
k

Ri,j,k(a, y)

This holds for any a, and any i, so A∗
ω |= ψ∗, which in turn implies that A∗

ω |= φ. We can conclude from
this property of φ that φ is equivalent in all models of T ∗ to a finitary Π2 sentence η∗ in the language L∗.
Let η be the sentence obtained by replacing each symbol Rϕ in η∗ with the formula ϕ. Then, η is a finitary
Π3 L sentence, equivalent to φ is all models of T ∗. Because any model of T can be extended to a model of
T ∗, we conclude that φ and η are equivalent in all models of T .

16

Theorem 3.11. Let ψ(x) be an infinitary Π3 formula, equivalent in all models of a finitary theory T to a
finitary formula φ(x). Then, φ is equivalent to a finitary Π3 formula over T .

Proof. Let c be a tuple of new constants, of length x, and apply the previous theorem to the sentences ψ(c)
and φ(c).

3.5 Digression: Consistency Properties and Interpolation

Viewing the result we wish to obtain as an interpolation theorem, one might attempt to prove this using
methods used to prove other interpolation theorems for infinitary logic. In particular, the method of consis-
tency properties, which has been used to prove Lopez-Escobar’s version of the Craig interpolation theorem
for Lω1,ω appears promising. Unfortunately, we can obtain only a very slight reduction in complexity using
this method. For a full definition of a consistency property, and its use to prove the Craig interpolation for
Lω1,ω see [Mar16].

For a finite set σ of formulas, we define its complexity κ(σ) to be the least n such that every element of
σ is Πn. We say that a sentence is Π†

n if it is of the form
∨∨

i1
∀x1 . . .

∨∨
in
∀xnηi(x), where each ηi is a Σn−1

formula. In other words, Π†
n is the smallest class of formulas containing the Σn−1 formulas and closed under

universal quantification and infinitary disjunction.
Let L be a signature, and L∗ be obtained by adding countably many new constants to L. We define Σ

to be the set of sets of L∗
ω1,ω sentences σ = σ1 ∪ σ2 with the following properties.

1. σ1 is finite.

2. σ2 is a countable set of finitary sentences, containing only finitely many new constants.

3. If σ1 ⊢ ψ, κ(σ1) = n, and ψ is Π†
n then ψ + σ2 is satisfiable.

Lemma 3.12. Σ is a consistency property.

Proof. We will use the following facts. If σ1 ∪ σ2 ∈ Σ, and σ1 ⊢ ϕ, where κ(ϕ) ≤ κ(σ1), then letting
σ′
1 = σ1 ∪ {ϕ}, σ′

1 ∪ σ2 ∈ Σ. Similarly, if σ2 ⊢ ϕ, where ϕ is finitary, then letting σ′
2 = σ2 ∪ {ϕ}, σ1 ∪ σ′

2 ∈ Σ.
In both cases, properties (1) and (2) are preserved, and property (3) is preserved because we need only
consider ψ that are already considered for σ1 ∪ σ2.

We will now show that Σ satisfies requirements (1)-(7) to be a consistency property. We let n = κ(σ1)
throughout.

1. If ϕ,¬ϕ ∈ σ1, then σ1 ⊢ c ̸= c for some c, which is atomic and not satisfiable.

If ϕ,¬ϕ ∈ σ2, then σ1 ⊢ c = c, and c = c+ σ2 is not satisfiable.

If ϕ ∈ σ1, ¬ϕ ∈ σ2 (or vice versa), then ϕ is finitary, κ(ϕ) ≤ κ(σ1) (respectively, κ(¬ϕ) ≤ κ(σ1)), so
letting ψ = ϕ (respectively ψ = ¬ϕ), we see that σ1 ∪ σ2 ̸∈ Σ.

2. This follows from the facts, as ¬ϕ is equivalent to ∼ ϕ, is finitary if and only if ∼ ϕ is, and is equal to
it in complexity.

3. This follows from the facts, as
∧∧

i ϕi ⊢ ϕj for each j, ϕj is finitary if the conjunction is, and ϕj is no
more complex than the conjunction.

4. Suppose
∨
i ϕi ∈ σ2. This disjunction is finitary, because σ2 consists of finitary sentences. Suppose that

for each i, σ1 ∪ (σ2 ∪ {ϕi}) ̸∈ Σ. Then, for each i, there is a Π†
n ψi such that σ1 ⊢ ψi, and ψi + σ2 + ϕi

is not satisfiable. Let ψ =
∧
i ψi. Because this is a finitary conjunction, ψ is Π†

n, and ψ + σ2 is not
satisfiable. This implies that σ1 ∪ σ2 ̸∈ Σ.

Suppose now that
∨∨

i ϕi ∈ σ1. Then, each ϕi is at most Σn−1. If for each i, (σ1 ∪ {ϕi}) ∪ σ2 ̸∈ Σ,
there is a Π†

n ψi such that σ1 + ϕi ⊢ ψi and ψi + σ2 is not satisfiable. Let ψ =
∨∨

i ψi. Then, ψ is Π†
n,

σ1 ⊢ ψ, and ψ + σ2 is not satisfiable. This implies that σ1 ∪ σ2 ̸∈ Σ.

We conclude that property (4) holds by contrapositive.

17

5. This follows from the facts, as (∀x)φ(x) ⊢ φ(c) for each c, φ(c) is less complex than (∀x)φ(x), and one
is finitary if and only if the other is.

6. Suppose (∃x)ϕ(x) ∈ σ1. Then, ϕ(x) is at most Σn−1. Let c be a constant not appearing in σ, and sup-
pose σ1 +ϕ(c) ⊢ θ1(c), for θ(c) a Π†

n formula. Because c does not occur in σ1, σ1 ⊢ (∀x)(ϕ(x) → θ(x)),
which is Π†

n. Furthermore, (∃x)ϕ(x) is Π†
n, so

ψ = (∃x)ϕ(x) ∧ (∀x)(ϕ(x) → θ(x))

is Π†
n. σ1 ⊢ ψ, so ψ + σ2 is satisfiable. ψ ⊢ (∃x)θ(x), so (∃x)θ(x) + σ2 is satisfiable. Because c does

not occur in σ2, this implies that θ(c) + σ2 is satisfiable. Therefore, (σ1 ∪ {ϕ(c)}) ∪ σ2 ∈ Σ.

Suppose that (∃x)ϕ(x) ∈ σ2. Again, let c be a constant not occurring in σ. Suppose σ1 ⊢ θ(c), a
Π†
n sentence. Because c does not occur in σ1, σ1 ⊢ (∀x)θ(x), which is a Π†

n sentence. Therefore,
(∀x)θ(x) + σ2 is satisfiable, in a model M . Interpret c as a witness to (∃x)ϕ(x) in M . Then, M |=
θ(c) + σ2 + ϕ(c). We conclude that σ1 ∪ (σ2 ∪ {ϕ(c)}) ∈ Σ.

7. (a) This follows from the facts, as d = c is atomic and a consequence of c = d.

(b) This follows from the facts, as ϕ(c) follows from c = t and ϕ(t), is no more complex than ϕ(t),
and is finitary if ϕ(t) is.

(c) Let c be a constant not occurring in σ. Suppose σ1 +c = t ⊢ θ(c), a Π†
n sentence. Then, σ1 ⊢ θ(t),

which is Π†
n, so θ(t) + σ2 is satisfiable, in a model M . Interpreting c as tM , we obtain a model of

θ(c) + σ2. Therefore, (σ1 ∪ {c = t}) ∪ σ2 ∈ Σ.

Theorem 3.13 (Π†
n Interpolation). Suppose that ψ is a Πn sentence, and φ is a finitary sentence such that

ψ is equivalent to φ in all models of T , a finitary theory. Then, ψ is equivalent to a Π†
n sentence in all

models of T .

Proof. There is no model of T + ψ + ¬φ, so letting σ1 = {ψ}, and σ2 = T ∪ {¬φ}, σ1 ∪ σ2 ̸∈ Σ. Therefore,
there is a Π†

n sentence θ(c), for c a sequence of new constants, such that ψ ⊢ θ(c), and θ(c) + T + ¬φ is not
satisfiable. Then, in models of T , ψ ⊢ (∀x)θ(x) ⊢ (∃x)θ(x) ⊢ φ ⊢ ψ, so (∀x)θ(x) is a Π†

n sentence equivalent
to ψ.

3.6 n-Elementary Extensions, n = 4

In this case, we will prove the contrapositive of the n = 4 case, which will involve a useful semantic test
for Πn formulas more generally. We say that A is an n-elementary substructure of B, and write A ≺n B if
A ⊂ B and for any ∀n formula φ, and elements a of A, if A |= φ(a), then B |= φ(a). We let E∀n

(A) be the
set of ∀n sentences in the elementary diagram of A. Then, A ≺n B if and only if B |= E∀n

(A), interpreting
constants naming elements of A as the same elements of B. Any model of E∀n

(A) can be replaced with
an isomorphic n-elementary extension of A, replacing the interpretations of constants naming elements of
A with those elements. Under this definition, A ≺0 B if and only if A ⊂ B, and A ≺ B if and only if
A ≺n B for all n. Another way to interpret this definition is that an n-elementary extension is an extension
of structures, after Moreleyizing with respect to finitary Πn formulas.

Let L be countable. Suppose ψ =
∧∧

i ∀u
∨∨

j ∃v
∧∧

k ∀w
∨∨

ℓ ∃xθi,j,k,ℓ(uvwx) is an Lω1,ω sentence and φ
is a Lω,ω sentence not equivalent to any finitary Π4 L sentence over a finitary L theory T . We will attempt
to construct a model of T showing that ψ ̸↔T φ.

Let Γ be the set of Π4 consequences of φ + T in Lω,ω. Because φ is not equivalent to any finitary Π4

sentence over T , Γ +T ̸⊢ φ. Let A0 be a countable model of Γ+T +¬φ. We now claim that φ+T +EΠ3(A)
is satisfiable. If not, then for some ϕ1(c), . . . , ϕn(c) ∈ EΠ3

(A), φ+T ⊢ ¬∃x
∧
i≤n ϕi(x), which is Π4, so is an

element of Γ, contradicting the fact that A0 |= Γ.

18

Let B0
0 |= EΠ3(A) + T + φ, so A0 ≺3 B0

0. Pick an enumeration {(i00, a
0
0), (i01, a

0
1), . . . } of pairs consisting

of an i and a tuple of length u in A0. We start with a00 ∈ B0
0. Consider the tuples b ∈ B0

0 of length v. We
say a pair (j, b) is breakable if there is a kj,b such that for each L there is a cL of length w such that

B0
0 |=

∧
ℓ≤L

∀x¬θi00,j,kj,b,ℓ(a
0
0bcLx)

Otherwise, we say that it is unbreakable.
Suppose all (j, b) are breakable. Then,

E(B0
0) + {∀x¬θi00,j,kj,b,ℓ(a

0
0bcj,b,kx)|(j, b), ℓ}

is finitely satisifiable, where cj,b,k are new constants. This set is then satisifiable, in a model B1
0. Then,

B1
0 ≻ B0

0, and for each (j, b),

B1
0 |= ∃w

∧∧
ℓ

∀x¬θi00,j,kj,b,ℓ(a
0
0bwx)

Moreover, any elementary extension of B1
0 satisfies this, using the same witness for w. We can then iterate

this to construct structures Bn0 ≺ Bn+1
0 , so long as each (j, b) with b ∈ Bn0 is breakable.

Suppose conversely that we get to a Bn0 (maybe B0
0) with an unbreakable (j, b). Then, for every k, there

is an Lk such that for every c of length w,

Bn0 |=
∨
ℓ≤Lk

∃xθi00,j,k,ℓ(a
0
0bcx)

In other words,

Bn0 |=
∧∧
k

∀w
∨
ℓ≤Lk

∃xθi00,j,k,ℓ(a
0
0bwx)

We conclude that for each K,

Bn0 |= ∃v
∧
k≤K

∀w
∨
ℓ≤Lk

∃xθi00,j,k,ℓ(a
0
0vwx)

This is a finitary Σ3 statement, so because A0 ≺3 Bn0

A0 |= ∃v
∧
k≤K

∀w
∨
ℓ≤Lk

∃xθi00,j,k,ℓ(a
0
0vwx)

for each K.
We now have two cases. Either

A0 |= ∃v
∧
k≤K

∀w
∨
ℓ≤Lk

∃xθi00,j,k,ℓ(a
0
0vwx)

for each K, or we construct an infinite elementary chain

B0
0 ≺ B1

0 ≺ B2
0 ≺ . . .

We will deal with the second case first.
Let B =

⋃
n<ω

Bn0 . Then, Bn0 ≺ B for each n. This implies that B |= T + φ. We will show that B |= ¬ψ.

This is equivalent to
∨∨

i ∃u
∧∧

j ∀v
∨∨

k ∃w
∧∧

ℓ ∀x¬θi,j,k,ℓ(uvwx). We will take i00, a00 as witnesses for i and
u. It then suffices to show that

B |=
∧∧
j

∀v
∨∨
k

∃w
∧∧
l

∀x¬θi00,j,k,ℓ(a
0
0vwx)

19

We will consider each pair (j, b), for b ∈ B of length v, one at a time. This b shows up in some Bn0 , and the
pair (j, b) is “broken” in the construction of Bn+1

0 . In doing so, we ensure that because B is an elementary
extension of Bn+1

0 it satisfies

B |= ∃w
∧∧
ℓ

∀x¬θi00,j,kj,b,ℓ(a
0
0bwx)

Thus,

B |=
∨∨
k

∃w
∧∧
ℓ

∀x¬θi00,j,k,ℓ(a
0
0bwx)

This holds for all (j, b), so we conclude that B |= ¬ψ.
We now consider the first case. Let d be new constants of length v.

E(A0) + {
∧
k≤K

∀w
∨
ℓ≤Lk

∃xθi00,j,k,ℓ(a
0
0dwx)|K}

is finitely satisfiable, so satisfiable, in a countable model A1. Then, A1 ≻ A0, and

A1 |= ∃v
∧∧
k

∀w
∨
ℓ≤Lk

∃xθi00,j,k,ℓ(a
0
0vwx)

witnessed by d
A1

. As with A0, A1 |= Γ + T , so there is a B0
1 such that A1 ≺3 B0

1 and B0
1 |= φ+ T .

We can then iterate the entire process, subject to the following modification. Let f : N → N2 be a
bijection, with components g and h, such that g(n) ≤ n for all n, and f(0) = (0, 0). When we construct a
An, choose an enumeration {(in0 , a

n
0), (in1 , a

n
1), . . . } of pairs consisting of an i and a tuple of length u in An.

After constructing An, we use (i
g(n)
h(n), a

g(n)
h(n)) in place of (i00, a

0
0).

We again have two cases. Either at some point, we construct a B such that B |= T + φ + ¬ψ, or we
construct an infinite elementary chain

A0 ≺ A1 ≺ A2 ≺ . . .

Let A =
⋃
n<ω

An. For each n, An |= T + ¬φ, so A |= T + ¬φ. We will show that A |= ψ. Fix some i, a ∈ A.

The pair (i, a) shows up as (i
g(N)
h(N), a

g(N)
h(N)) at some step N , after we have constructed AN . We construct

AN+1 so that

AN+1 |= ∃v
∧∧
k

∀w
∨
ℓ≤Lk

∃xθi,j,k,ℓ(avwx)

Let b be a witness to this. Then, for each k

AN+1 |= ∀w
∨
ℓ≤Lk

∃xθi,j,k,ℓ(abwx)

Because A ≻ AN+1, for each k,

A |= ∀w
∨
ℓ≤Lk

∃xθi,j,k,ℓ(abwx)

which in turn implies that, for each k,

A |= ∀w
∨∨
ℓ

∃xθi,j,k,ℓ(abwx)

Consequently,

A |= ∃v
∧∧
k

∀w
∨∨
ℓ

∃xθi,j,k,ℓ(avwx)

This holds for any i, a, so A |= ψ.
We conclude that there is either a B |= T +φ+¬ψ or an A |= T +¬φ+ψ, so ψ ̸↔T φ. By contrapositive,

we have the following.

Theorem 3.14. Suppose ψ is a Π4 sentence, equivalent to a finitary sentence φ over a finitary theory T in
a countable language. Then, ψ and φ are equivalent to a finitary Π4 sentence over T

20

3.7 The n = 5 Case

We can, with a more elaborate construction, prove the n = 5 case by a similar method to the n = 4 case.
We will first state and prove the general form of the semantic test used in the n = 4 case.

Theorem 3.15. Let φ be a finitary formula, and T be a finitary theory. The following are equivalent.

1. φ is equivalent to a finitary ∀n+1 formula over T .

2. If A ≺n B are models of T , and a ∈ A, then either A |= φ(a), or B |= ¬φ(a). That is, φ is preserved
under n-elementary submodels of models of T .

Proof. Suppose that φ is equivalent to a finitary ∀n+1 formula η over T . It suffices to show that η has
property (2). We may assume that η is in prenex normal form, so that η(x) = ∀yθ(xy), for θ a ∃n formula.
Suppose B |= η(a). Then, for any b ∈ A, b ∈ B, so B |= θ(ab). Because A ≺n B and θ is ∃n, A |= θ(ab). We
conclude that A |= η(a). Therefore, either A |= η(a) or B |= ¬η(a).

Suppose now that φ is not equivalent to any ∀n+1 formula over T . Let c be new constants, and Γ be
the set of ∀n+1 consequences of T + φ(c) in the expanded language. We will show that T + Γ ̸⊢ φ(c).
Otherwise, the compactness theorem implies that for some finite S ⊂ Γ, T + S ⊢ φ(c). Let η(c) =

∧
θ∈S

θ.

Then, η(c) is ∀n+1, and T ⊢ η(c) ↔ φ(c). The constants c do not occur in T , so η and φ are equivalent
over T , contradicting our assumption. Because T + Γ ̸⊢ φ, there is some A |= T + Γ + ¬φ(c). We will
show that T + E∀n

(A) + φ(c) is satisfiable. If not, then for some finite R ⊂ E∀n
(A), T + R + φ(c) is not

satisfiable. Let λ(d) =
∧
ρ∈R

ρ, where d are constants naming elements of A. Then, because the constants ⌈

do not occur in T or φ(c), T + φ(c) ⊢ ∀x¬λ(x). This is a ∀n+1 sentence, so is an element of Γ. However,
A |= ∃xλ(x), which contradicts the fact that A |= Γ. We conclude that T + E∀n(A) + φ(c) is satisfiable.
Let B |= T + E∀n(A) + φ(c). Then, A ≺n B. Let a be the interpretation of c in A. Then, A |= ¬φ(a), and
B |= φ(a), so φ does not satisfy (2).

We will also need the following amalgamation results. Here n ≥ 0.

Lemma 3.16. Suppose A ≺n B and A ≺ A′. There is a B′ such that B′ ≻ B and B′ ≻n B.

Proof. It suffices to show that E(B) + E∀n(A′) is satisifiable, identifying constants naming elements of A
in both sets. Taking a conjunction of a finite subset of E∀n

(A′), it suffices to show that any sentence
α(a, a′) ∈ E∀n

(A′), with a naming elements of A, can be satisfied in B, by choosing interpretations for
a′. In this case, A′ |= ∃yα(a, y), so because A ≺ A′, A |= ∃yα(a, y). This is ∃n+1, so because A ≺n B,
B |= ∃yα(a, y). We conclude that E(B) + E∀n

(A′) is satisfiable. A model of this is the required B′.

Lemma 3.17. If A ≺n+1 B, then there is a C ≻n B with C ≻ A.

Proof. It suffices to show that E(A) + E∀n
(B) is satisfiable, identifying constants naming elements of A

in both sets. Taking a conjunction of a finite subset of E∀n
(B), it suffices to show that any sentence

α(a, b) ∈ E∀n
(B) where a names elements of A can be satisfied in A, by choosing interpretations for b.

In this case, B |= ∃yα(a, y), which is ∃n+1, so because A ≺n+1 B, A |= ∃yα(a, y). We conclude that
E(A) + E∀n(B) is satisfiable. A model of this is the required C.

We now turn to the proof of the n = 5 case.
Suppose

ψ =
∧∧
i

∀u
∨∨
j

∃v
∧∧
k

∀w
∨∨
ℓ

∃x
∧∧
m

∀yθi,j,k,ℓ,m(uvwxy)

and that A0 ≺4 B0. We will construct either an A′ ≻ A0 with A′ |= ψ or a B′ ≻ B0 with B′ |= ¬ψ.

21

By the first amalgamation result, there is a C0 ≻3 B0 with C0 ≻ A0. Fix i0, a0 ∈ A0 and j0, b0 ∈ B0. We
say that a pair (k, c) with c ∈ C0 is breakable if there is an ℓk,c such that for all M there is a dM ∈ C0 such
that

C0 |=
∧

m≤M

∀yθi0,j0,k,ℓk,c,m(a0b0cdMy)

and unbreakable otherwise. Suppose all (k, c) with c ∈ C0 are breakable. Let dk,c be new constants. Then

E(C0) +
{
∀yθi0,j0,k,ℓk,c,m(a0b0cdk,cy)

∣∣(k, c),m}
is finitely satisfiable, so satisfiable, with a model C1. C1 ≻ C0, and for each k, c ∈ C0,

C1 |=
∨∨
ℓ

∃x
∧∧
m

∀yθi0,j0,k,ℓ,m(a0b0cxy)

Moreover, this is true of any elementary extension of C1, using the same witnesses. We can iterate this
process to construct an elementary chain C0 ≺ C1 ≺ . . . so long as all pairs (k, c) with c ∈ Cn are breakable
for each n. Suppose conversely that for some n, there is an unbreakable pair (k, c) with c ∈ Cn. Then for
each ℓ there is an Mℓ such that

Cn |= ∀x
∨

m≤Mℓ

∃y¬θi0,j0,k,ℓ,m(a0b0cxy)

That is, for each L,

Cn |= ∃w
∧
ℓ≤L

∀x
∨

m≤Mℓ

∃y¬θi0,j0,k,ℓ,m(a0b0wxy)

This is a finitary Σ3 formula, so is true in B0 as well, because B0 ≺3 Cn. Let c∗ be new constants. Then

E(B0) +

∀x
∨

m≤Mℓ

∃y¬θi0,j0,k,ℓ,m(a0b0c∗xy)

∣∣∣∣∣∣ℓ


is finitely satisifiable, so satisifiable, with a model B1. B1 ≻ B0, and

B1 |=
∨∨
k

∃w
∧∧
ℓ

∀x
∨

m≤Mℓ

∃y¬θi0,j0,k,ℓ,m(a0b0wxy)

as does any elementary extension of B1, using the same witnesses. Using the second amalgamation result,
we have a new C′

0 ≻3 B1, with C′
0 ≻ C0. We can then iterate this process, to construct an elementary chain

B0 ≺ B1 ≺ . . . so long as for each Bn, there is an associated Cm with an unbreakable pair. For each n, we
fix a jn, bn ∈ Bn. These choices are unconstrained and all structures are countable, so we can choose these
so that every such pair is eventually covered.

We then have two cases. Either we construct an infinite chain

B0 ≺ B1 ≺ . . .

covering all pairs j, b or for some Bn, we construct an infinite chain

Bn ≺3 C0 ≺ C1 ≺ . . .

In the first case, let B =
⋃
n Bn. Then, B ≻ B0, and for each j, b ∈ B, we have that

B |=
∨∨
k

∃w
∧∧
ℓ

∀x
∨

m≤Mℓ

∃y¬θi0,j0,k,ℓ,m(a0bwxy)

so in fact, B |= ¬ψ, witnessed by i0, a0.

22

In the second case, let C =
⋃
n Cn. Then, for each k, c ∈ C,

C |=
∨∨
ℓ

∃x
∧∧
m

∀yθi0,jn,k,ℓ,m(a0bncxy)

so in fact
C |=

∧∧
k

∀w
∨∨
ℓ

∃x
∧∧
m

∀yθi0,jn,k,ℓ,m(a0bnwxy)

We now have two cases. Either for some elementary extension D ≻ C, there is an unbreakable pair (k, d)
with d ∈ D, or for all D ≻ C, every pair (k, d) with d ∈ D is breakable. In the first case, using D ≻3 BN
with an unbreakable pair, we can resume the construction of the chain

B0 ≺ B1 ≺ · · · ≺ BN ≺ BN+1 ≺ . . .

This can be repeated to construct an infinite chain B0 ≺ B1 ≺ . . . as before, or until the second case arises.
In the second case, we let A1 = C. We say that (i0, a0) is witnessed in A1 by (jn, bn). Using the second
amalgamation result, we have a B′

0 ≻ B0 such that B′
0 ≻4 A1.

We can then iterate this process to construct a chain

A0 ≺ A1 ≺ A2 ≺ . . .

so long as at each step, we fail to construct a B. At each step we fix in, an. These choices are unconstrained,
so because each structure is countable, we can choose them so that all are eventually covered. For each n,
(in, an) will be witnessed in An+1 by some (jN , bN).

Let Aω =
⋃
nAn. Then Aω ≻ A0. Consider a pair (i, a) with a ∈ A. This shows up as some (in, an).

Let it be witnessed by (j(i, a), b(i, a)). Because Aω ≻ An+1, every pair (k, c) with c ∈ Aω is breakable with
respect to (i, a), (j(i, a), b(i, a)). We conclude that, for some indices ℓ(i, a, k, c) and new constants d(i, a, k, c),
the set

E(Aω) +
{
∀yθi,j(i,a),k,ℓ(i,a,k,c),m(ab(i, a)cd(i, a, k, c)y)

∣∣(i, a), (k, c),m
}

is finitely satisfiable, so is satisfiable, in a model Aω+1 ≻ Aω. Then for any i, a ∈ Aω, for any k, c ∈ Aω

Aω+1 |=
∨∨
ℓ

∃x
∧∧
m

∀yθi,j(i,a),k,ℓ,m(ab(i, a)cxy)

This holds in any elementary extension of Aω+1. Aω+1 however, in general contains new elements not present
in Aω.

Using the second amalgamation result, there is a Bω+1 ≻4 Aω+1 such that Bω+1 ≻ B0. Any elementary
extension of Bω+1 is then an elementary extension of B0, so we can iterate the construction of Aω+1,
starting with Aω+1 ≺4 Bω+1 with the following modification. Any pairs i, a already given witnesses in the
construction of Aω+1 keep their old witnesses, only new pairs are given new witnesses. Assuming that at no
point we construct a B ≻ B0 with B |= ¬ψ, we construct an infinite elementary chain

A0 ≺ Aω+1 ≺ Aω2+1 ≺ Aω3+1 ≺ . . .

Let Aω2 be the limit of this chain. Then, Aω2 ≻ A0. We will show that Aω2 |= ψ. Fix i, a ∈ Aω2 . This
shows up in some Aωn+1, and receives a witness (j(i, a), b(i, a)) in the construction of Aω(n+1). Now fix
some k, c ∈ Aω2 . This shows up in some Aωn′ with n′ > n+ 1. In the construction of Aωn′+1 we ensure that
because Aω2 is an elementary extension of Aωn′+1,

Aω2 |=
∨∨
ℓ

∃x
∧∧
m

∀yθi,j(i,a),k,ℓ,m(ab(i, a)cxy)

We conclude that Aω2 |= ψ. The only way the construction of Aω2 can fail is if at some point we construct
a B ≻ B0 with B |= ¬ψ.

23

Theorem 3.18. If φ is a finitary sentence equivalent over a finitary countable theory T to an infinitary Π5

sentence ψ, φ is equivalent over T to a finitary Π5 sentence.

Proof. Suppose that φ is not equivalent to any Π5 sentence over T . Then, by Theorem 3.15 we can construct
A0 ≺4 B0, models of T , such that A0 |= ¬φ and B0 |= φ. The above construction yields either a model of
T + ¬φ+ ψ or T + φ+ ¬ψ, contradicting our assumption.

In the n = 5 case, we check if something can be realized in some elementary extension of a structure,
and if so, we realize it. This idea can be isolated and generalized substantially, yielding a method capable
of proving the general case. The next section develops this method.

3.8 Forcing

We will first recall the more general classes of formulas, ∀n and ∃n, which we will use from this point forward.
This will make our ultimate results more general.

In attempting to iteratively construct models of infinitary sentences using elementary chains as in the
n = 4 and n = 5 cases, one is faced with the obstruction that infinitary formulas are not preserved by
elementary extensions, meaning that work that has been done to ensure the truth of a subformula can be
undone in the next extension. In fact, infinitary sentences can be very unstable with respect to elementary
extensions.

Theorem 3.19. There is a sentence ψ ∈ Lω1,ω and a structure A such that for any B ⪰ A with B |= ψ,
there is a C ≻ B with C |= ¬ψ, and for any B ⪰ A with B |= ¬ψ, there is a C ≻ B with C |= ψ.

Proof. Let L consist of a unary relation symbol Q, a binary relation symbol R, and for each natural number,
a unary relation Pn. The structures we will be interested in will be the disjoint unions of certain building
blocks. Think of elements satisfying Q as the roots of a block, and R attaching a number of other elements
to the root. A “standard block” consists of a single element a satisfying Q, and countably many elements
b0, b1, b2, . . . not satisfying Q. We let (a, b0), (a, b1), · · · ∈ R. For each n, bn satisfies Pn, but not Pm for
m ̸= n. A “non-standard block” consists of the same elements but, in addition, one or more “non-standard
elements” b∗ that do not satisfy Pn for any n.

Let A be the disjoint union of countably copies of the standard block. Any elementary extension B of
A is elementarily equivalent to A, and so consists of the disjoint union of infinitely many blocks which are
either standard, or contain non-standard elements.

Let

ψ = ∀x

(
Q(x) → ∃y

(
R(x, y) ∧

∧∧
n

¬Pn(y)

))
The sentence ψ says that every element satisfying Q has an associated non-standard element, so belongs to
a non-standard block.

Let B be an elementary extension of A. If B |= ψ, we obtain C ≻ B by adding a single standard block, in
which case C |= ¬ψ. If B |= ¬ψ, we obtain C ≻ B by adding a single non-standard element to each standard
block, in which case C |= ψ.

To solve the problem that this phenomenon raises for constructing models, we define relations between
structures and infinitary sentences that keep track of our ability to make formulas true in further elementary
extensions. These relations can be thought of as a notion of forcing, where in lieu of forcing conditions, we
use structures, ordered by elementary extension. This is the approach taken by Robinson in [Rob71], and
can be viewed as an extension of those methods to infinitary languages, where all extensions considered are
elementary.

24

3.8.1 The Strong Forcing Relation

Given a structure A, ψ(x) ∈ L∞,ω, and a ∈ A, we define the strong forcing relation A ⊩ ψ(a) by the
following recursive clauses.

1. If ψ is atomic, A ⊩ ψ(a) if and only if A |= ψ(a).

2. If ψ(x) = ¬ϕ(x), A ⊩ ψ(a) if and only if for every B ≻ A, B ̸⊩ ϕ(a).

3. If ψ(x) =
∨∨
ϕ∈Φ

ϕ(x), A ⊩ ψ(a) if and only if for some ϕ ∈ Φ, A ⊩ ϕ(a).

4. If ψ(x) =
∧∧
ϕ∈Φ

ϕ(x), A ⊩ ψ(a) if and only if for every B ≻ A, and ϕ ∈ Φ, there is a C ≻ B such that

C ⊩ ϕ(a).

5. If ψ(x) = ∃yϕ(xy), A ⊩ ψ(a) if and only if for some b ∈ A, A ⊩ ϕ(ab).

6. If ψ(x) = ∀yϕ(xy), A ⊩ ψ(a) if and only if for every B ≻ A and b ∈ B, there is a C ≻ B such that
C ⊩ ϕ(ab).

This diverges from the definition of the satisfaction relation in clauses (2), (4) and (6). For finitary formulas,
this makes no difference.

Lemma 3.20. If ψ is finitary, A ⊩ ψ(a) if and only if A |= ψ(a).

Proof. We will prove this by induction on the complexity of ψ. All cases except those covered by clauses
(2), (4) and (6) are identical to the satisfaction relation. For clause (2), let ψ(x) = ¬ϕ(x). If ϕ is finitary,
then A ⊩ ¬ϕ(a) if and only if for every B ≺ A, B ⊮ ϕ(a). Appealing to induction, this is true if and only if
for every B ≻ A, B |= ¬ϕ(a), which is true if and only if A |= ¬ϕ(a).

For clause (4), let ψ =
∧
ϕ∈Φ ϕ(x), where Φ is finite. A ⊩ ψ(a) if and only if for each ϕ ∈ Φ and B ≻ A,

there is a C ≻ B such that C ⊩ ϕ(a), or appealing to induction, C |= ϕ(a). Because ϕ is finitary, this is true
if and only if for every such B, B |= ϕ(a), or equivalently, if A |= ϕ(a), for each ϕ ∈ Φ. This, in turn, is true
if and only if A |= ψ(a).

For clause (6), let ψ = ∀yϕ(xy). If ϕ is finitary, A ⊩ ∀yϕ(ay) if and only if for every B ≻ A, and every
b ∈ B, there is a C ≻ B such that C ⊩ ϕ(ab). Appealing to induction, this is true if and only if for every
B ≻ A, b ∈ B, there is a C ≻ B such that C |= ϕ(ab). Because ϕ is finitary, this is true if and only if for every
B ≻ A, b ∈ B, B |= ϕ(ab), or equivalently, for every B ≻ A, B |= ∀yϕ(ay). This, in turn, is true if and only
if A |= ∀yϕ(ay).

For infinitary formulas, the relation ⊩ is more stable than the satisfaction relation with respect to
elementary extensions, as Theorem 3.19 and the following lemma demonstrate.

Lemma 3.21. If A ≺ B, and A ⊩ ψ(a), then B ⊩ ψ(a).

Proof. We will prove this by induction on the complexity of ψ. If ψ is atomic, this is trivial. If ψ = ¬ϕ,
and A ⊩ ψ(a), then for any C ≻ B, C ≻ A, so C ̸⊩ ϕ(a). Therefore, B ⊩ ψ(a). If ψ =

∨∨
ϕ∈Φ

ϕ, this follows by

induction. If ψ =
∧∧
ϕ∈Φ

ϕ, and A ⊩ ψ(a), then for any C ≻ B, and ϕ ∈ Φ, C ≻ A, so there is a D ≻ C such

that D ⊩ ϕ(a). Therefore, B ⊩ ψ(a). If ψ(x) = ∃yϕ(xy), and A ⊩ ψ(a), then for some b ∈ A, A ⊩ ϕ(ab).
Appealing to induction, B ⊩ ϕ(ab), so B ⊩ ψ(a). If ψ(x) = ∀yϕ(xy), and A ⊩ ψ(a). Suppose C ≻ B, and
c ∈ C. Then, C ≻ A, so because A ⊩ ψ(a), there is a D ≻ C such that D ⊩ ϕ(ac). Therefore, B ⊩ ψ(a).

Example 3.22. In Theorem 3.19, A ⊩ ψ, so this is true for all elementary extensions of A as well.

25

Proof. Recall that

ψ = ∀x

(
Q(x) → ∃y

(
R(x, y) ∧

∧∧
n

¬Pn(y)

))
Suppose B ≻ A, and a ∈ B. It suffices to show that for some C ≻ A

C ⊩ ¬Q(a) ∨ ∃y(R(a, x) ∧
∧∧
n

¬Pn(y))

In the case that B |= ¬Q(a), we can take C = B, so it suffices to consider the case that B |= Q(a). In
this case, let C be obtained by adding a non-standard element b, in the sense of Theorem 3.19 to the block
corresponding to a. We will show that

C ⊩ R(a, b) ∧
∧∧
n

¬Pn(b)

It suffices to show that C ⊩ R(a, b), and for each n, C ⊩ ¬Pn(b). This is true because C |= R(a, b), and
C |= ¬Pn(b) for each n.

For a structure A, a ∈ A, and a formula ψ, it is immediate from the definition of A ⊩ ¬ϕ(a) that it cannot
be the case that A ⊩ ¬ϕ(a) and A ⊩ ϕ(a). We say that A decides ϕ(a) if either A ⊩ ψ(a) or A ⊩ ¬ψ(a).

Lemma 3.23. For any structure A, a ∈ A, and formula ψ(x), there is a B ≻ A such that B decides ψ(a).

Proof. If A ⊩ ¬ψ(a), we can take B = A. Otherwise, there is some B ≻ A with B ⊩ ψ(a).

3.8.2 Generic Structures

In order to obtain useful information from the forcing relation, we will construct structures in which formulas
we have forced become true. This construction is largely independent of the formula under consideration,
and the necessary property can be defined purely in terms of the forcing relation.

Let A be a fragment of L∞,ω. We say that a structure G is A-generic if for any ψ ∈ A, and a ∈ G, G
decides ψ(a). The next lemma shows that generic structures can be constructed, starting with any structure.

Lemma 3.24. For any structure A and fragment A, there is an A-generic G ≻ A.

Proof. Let C be a structure. We will construct a structure F (C) extending C as follows. Consider the set of
pairs (ψ(x), c) with ψ ∈ A, and c ∈ C of length x. Let {(ψα(x), cα)|α < γ} be a well ordering of this set.
We will define an elementary chain of length γ by transfinite recursion. Let C0 = C. Having defined Cα, we
define Cα+1 as follows. By Lemma 3.23, there is some B ≻ Cα that decides ψα(cα). Let Cα+1 = B. For limit
ordinals β < γ, let Cβ =

⋃
α<β Cα. This defines an elementary chain {Cα|α < γ}.

Let F (C) =
⋃
α<γ Cα. Then, F (C) ≻ C, and for every ψ(x) ∈ A, c ∈ C, F (C) decides ψ(c). Now consider

the elementary chain
A ≺ F (A) ≺ F 2(A) ≺ . . .

Let G =
⋃
n F

n(A). Then, A ≺ G. For any ψ(x) ∈ A, a ∈ G, a ∈ Fn(A) for some n, so Fn+1(A) decides
ψ(a), which implies that G decides ψ(a) because Fn+1(A) ≺ G. Therefore, G is A-generic.

The next lemma shows that generic structures have the desired property, providing models of formulas
we have forced.

Lemma 3.25. Suppose ψ(x) ∈ A, G is A-generic, and a ∈ G. Then, G ⊩ ψ(a) if and only if G |= ψ(a).

26

Proof. We prove this by induction on the complexity of ψ. For ψ atomic, this is true by definition. Suppose
ψ(x) = ¬ϕ(x). Then G ⊩ ψ(a) if and only if G ⊮ ϕ(a), because G is A-generic. Appealing to induction, this
is true if and only if G ̸|= ϕ(a), or equivalently, if G |= ¬ϕ(a). For ψ =

∨∨
ϕ∈Φ

ϕ, or ψ = ∃yϕ(y), the defining

clause of ⊩ is identical to that of the satisfaction relation, and the claim follows by induction.
Suppose ψ =

∧∧
ϕ∈Φ

ϕ. If G ⊩ ψ(a), then for any ϕ, there is a B ≻ G such that B ⊩ ϕ(a). Because G decides

ϕ(a), it must be that G ⊩ ϕ(a), so appealing to induction, G |= ϕ(a). We conclude that G |= ψ(a). Suppose
conversely that G |= ψ(a). Then, for each ϕ ∈ Φ, G |= ϕ(a), so appealing to induction, G ⊩ ϕ(a). For any
B ≻ G, Lemma 3.21 implies that B ⊩ ϕ(a). We conclude that G ⊩ ψ(a).

Suppose ψ(x) = ∀yϕ(xy). If G ⊩ ψ(a), then for every b ∈ G, there is a B ≻ G such that B ⊩ ϕ(ab). In this
case, G ⊮ ¬ϕ(ab), so G ⊩ ϕ(ab). Appealing to induction, G |= ϕ(ab). We conclude that G |= ψ(a). Suppose
conversely that G ̸⊩ ψ(a). Then there is some B ≻ G, and b ∈ B, such that for any C ≻ B, C ̸⊩ ϕ(ab). Let
G′ ≻ B be A-generic. Then, G′ ⊩ ¬ϕ(ab). This implies that G′ ⊩ ∃y¬ϕ(ay), so G ⊩ ∃y¬ϕ(ay). That is, there
is some b ∈ G such that G ⊩ ¬ϕ(ab). In this case, G ̸⊩ ϕ(ab), so appealing to induction, G ̸|= ϕ(ab). Then,
G ̸|= ψ(a).

It may seem as though we are making arbitrary choices about which formulas to force when we construct
a generic extension of a structure A. However, due to elementary amalgamation, these choices can only be
made in one way.

Lemma 3.26. Let A be a structure, a ∈ A, and ψ(x) be a formula. If A ≺ B, and B ⊩ ψ(a), then for every
C ≻ A that decides ψ(a), C ⊩ ψ(a).

Proof. Suppose A ≺ C and C ⊩ ¬ψ(a). By the elementary amalgamation theorem, there is a D such that
B ≺ D, and C ≺ D. Then, Lemma 3.21 implies that D ⊩ ψ(a), and D ⊩ ¬ψ(a), which is a contradiction.

Because of Lemma 3.26, we can regard all the information as to which formulas will be forced by extensions
of a structure A as already present in A. The next section defines a relation that captures this information.

3.8.3 The Weak Forcing Relation

It will be convenient to work with the weak forcing relation, denoted A ⊩∗ ψ(a). This can be defined in a
variety of ways, all of which are equivalent. We will provisionally define A ⊩∗ ψ by the following recursive
clauses.

1. If ψ is atomic, A ⊩∗ ψ(a) if and only if A |= ψ(a).

2. If ψ(x) = ¬ϕ(x), A ⊩∗ ψ(a) if and only if for every B ≻ A, A ⊮∗ ϕ(a).

3. If ψ(x) =
∨∨
ϕ∈Φ

ϕ(x), A ⊩∗ ψ(a) if and only if for some ϕ ∈ Φ, A ⊩∗ ϕ(a).

4. If ψ(x) =
∧∧
ϕ∈Φ

ϕ(x), A ⊩∗ ψ(a) if and only if for every ϕ ∈ Φ, A ⊩∗ ϕ(a).

5. If ψ(x) = ∃yϕ(xy), A ⊩∗ ψ(a) if and only if for some B ≻ A and b ∈ B, B ⊩∗ ϕ(ab).

6. If ψ(x) = ∀yϕ(xy), A ⊩∗ ψ(a) if and only if for every B ≻ A, and b ∈ B, B ⊩∗ ϕ(ab).

The following lemma establishes other equivalent characterizations of the weak forcing relation.

Lemma 3.27. Let ψ be an L∞,ω formula. The following are equivalent.

1. A ⊩∗ ψ(a).

2. A ⊩ ¬¬ψ(a).

3. For some B ≻ A, B ⊩ ψ(a).

27

4. For every B ≻ A that decides ψ(a), B ⊩ ψ(a)

5. If ψ ∈ A, and G ≻ A is A-generic, G |= ψ(a).

Proof. First, we will show that (2) implies (3). If A ⊩ ¬¬ψ(a), then A ̸⊩ ¬ψ(a), so there is a B ≻ A such
that B ⊩ ψ(a). That (3) implies (4) follows from Lemma 3.26.

Now, we will show that (4) implies (5). If ψ ∈ A, and G ≻ A is A-generic, then G ≻ A decides ψ(a). If
(4) holds, G ⊩ ψ(a), so by Lemma 3.25, G |= ψ(a).

Next, we will show that (5) implies (2). Suppose that if ψ ∈ A and G ≻ A is A-generic, G |= ψ(a). By
Lemma 3.25, G ⊩ ψ(a). Suppose B ≻ A. By Lemma 3.23, there is some C ≻ B that decides ψ(a). By Lemma
3.26, C ⊩ ψ(a). Consequently, for all B ≻ A, B ̸⊩ ¬ψ(a), so A ⊩ ¬¬ψ(a).

Finally, to show that (1) and (2) are equivalent, we will show that the relation A ⊩ ¬¬ψ(a) satisfies the
recursive clauses of the definition of ⊩∗. In doing so, we will use the equivalence of (2)-(5).

1. If ψ is atomic, then ¬¬ψ is finitary, so by Lemma 3.20 A ⊩ ¬¬ψ(a) if and only if A |= ¬¬ψ(a) if and
only if A |= ψ(a).

2. If ψ = ¬ϕ, A ⊩ ¬¬ψ(a) if and only if, for every B ≻ A, B ̸⊩ ¬ψ(a). ¬ψ = ¬¬ϕ, so this is true if and
only if for every B ≻ A, B ̸⊩ ¬¬ϕ(a).

3. Suppose ψ =
∨∨
ϕ∈Φ

ϕ, and that A ⊩ ¬¬ψ(a). Then, there is a B ≻ A such that B ⊩ ψ(a). Consequently,

A ⊩ ¬¬ϕ(a). Suppose conversely that A ⊩ ¬¬ϕ(a) for some ϕ ∈ Φ. Then, for some B ≻ A, B ⊩ ϕ(a),
so B ⊩ ψ(a). We conclude that A ⊩ ¬¬ψ(a).

4. Suppose ψ =
∧∧
ϕ∈Φ

ϕ. If A ⊩ ¬¬ψ(a), then for some B ≻ A, B ⊩ ψ(a). Then, for each ϕ ∈ Φ, there

is a C ≻ B such that C ⊩ ϕ(a). C ≻ A as well, so we conclude that A ⊩ ¬¬ϕ(a), for every ϕ ∈ Φ.
Suppose conversely that for every ϕ ∈ Φ, A ⊩ ¬¬ϕ(a). Let A be a fragment containing ψ, and G ≻ A
be A-generic. Then, G |= ϕ(a) for every ϕ ∈ Φ, so G |= ψ(a). We conclude that A ⊩ ¬¬ψ(a).

5. Suppose ψ = ∃yϕ(y), and that A ⊩ ¬¬ψ(x). Then, there is a B ≻ A such that A ⊩ ψ(a), so there
is a b ∈ B such that B ⊩ ϕ(ab). B ⪰ B, so we conclude that B ⊩ ¬¬ϕ(ab). Conversely, if for some
B ≻ A, b ∈ B, B ⊩ ¬¬ϕ(ab), then for some C ≻ B, C ⊩ ϕ(ab). Consequently, C ⊩ ψ(a). Therefore,
A ⊩ ¬¬ψ(a).

6. Suppose that ψ = ∀yϕ(y), and A ⊩ ¬¬ψ(a). If B ≻ A, and b ∈ B, then B ⊩ ¬¬ψ(a), so there
is some C ≻ B such that C ⊩ ψ(a). In this case, there is some D ≻ C such that D ⊩ ϕ(ab). We
conclude that B ⊩ ¬¬ϕ(ab). Suppose conversely that for any B ≻ A, b ∈ B, B ⊩ ¬¬ϕ(a). Let A
be a fragment containing ψ and G ≻ A be A-generic. Then, for any b ∈ G, G ⊩ ¬¬ϕ(ab), so by
Lemma 3.25, G |= ¬¬ϕ(ab). Consequently, G |= ϕ(ab) for every b ∈ G, so G |= ψ(a). We conclude that
A |= ¬¬ψ(a).

From the third characterization of the weak forcing relation, we have the following.

Corollary 3.28. If A ⊩ ψ(a), then A ⊩∗ ψ(a).

We can now establish some useful properties enjoyed by the weak forcing relation.

Lemma 3.29. If A ≺ B, then for any ψ ∈ L∞,ω, a ∈ A, A ⊩∗ ψ(a) if and only if B ⊩∗ ψ(a).

Proof. Suppose that A ⊩∗ ψ(a). Then, if C ≻ B, and C decides ψ(a), C ≻ A, so C ⊩ ψ(a). We conclude that
B ⊩∗ ψ(a). Suppose now that B ⊩∗ ψ(a). Then, for some C ≻ B, C ⊩ ψ(a). C ≻ A, so A ⊩∗ ψ(a).

Lemma 3.30. For any A, a ∈ A, and formula ψ, either A ⊩∗ ψ(a) or A ⊩∗ ¬ψ(a).

Proof. By Lemma 3.23, there is some B ≻ A such that either B ⊩ ψ(a), or B ⊩ ¬ψ(a). In the first case,
A ⊩∗ ψ(a), and in the second, A ⊩∗ ¬ψ(a)

28

This implies that A ⊩∗ ¬ϕ(a) if and only if A ⊮∗ ϕ(a). Observing that recursive clauses (1) through (4)
of the definition of the weak forcing relation are now identical to those of the satisfaction relation, we obtain
the following.

Corollary 3.31. If ψ is quantifier-free, A ⊩∗ ψ(a) if and only if A |= ψ(a).

The following lemma shows that the weak forcing relation respects entailment and equivalence of formulas.

Lemma 3.32. If ψ1 ⊢ ψ2 and A ⊩∗ ψ1(a), then A ⊩∗ ψ2(a).

Proof. Suppose that A ⊩∗ ψ1(a) and A ⊮∗ ψ2(a). By Lemma 3.30, A ⊩∗ ¬ψ2(a). Let A be a fragment
containing ψ1 and ¬ψ2, and let G ≻ A be A-generic. Then, G |= ψ1(a) and G |= ¬ψ2(a), so ψ1 ̸⊢ ψ2.

We can also define generic structures in terms of the weak forcing relation.

Lemma 3.33. G is A-generic if and only if for ψ(x) = ∃yϕ(xy) ∈ A, a ∈ G, if G ⊩∗ ψ(a), there is a b ∈ G
such that G ⊩∗ ϕ(ab).

Proof. Suppose G is A-generic. Let ψ(x) = ∃yϕ(xy) ∈ A, and a ∈ G, If G ⊩∗ ψ(a), then G |= ψ(a), so for
some b ∈ G, G |= ϕ(ab). By Lemma 3.25, G ⊩ ϕ(ab), so G ⊩∗ ϕ(ab).

Conversely, suppose that for any ψ(x) = ∃yϕ(xy) ∈ A, a ∈ G, if G ⊩∗ ψ(a), then for some b ∈ G,
G ⊩∗ ϕ(ab). We will show that G is A-generic. By Lemma 3.30, it suffices to show that if ψ ∈ A, and
G ⊩∗ ψ(a), then G ⊩ ψ(a). We will prove this by induction on the complexity of ψ.

If ψ is atomic, then A ⊩∗ ψ(a) if and only A ⊩ ψ(a) if and only if A |= ψ(a). If ψ = ¬ϕ, and G ⊩∗ ψ(a),
then for every B ≻ G, B ⊮∗ ϕ(a). By Corollary 3.28, for every such B, B ⊮ ϕ(a), so G ⊩ ψ(a). If ψ =

∨∨
ϕ∈Φ

ϕ,

and G ⊩∗ ψ(a), then G ⊩∗ ϕ(a) for some ϕ ∈ Φ. Appealing to induction, G ⊩ ϕ(a), so G ⊩ ψ(a). Likewise, if
ψ =

∧∧
ϕ∈Φ

ϕ and G ⊩∗ ψ(a), then G ⊩∗ ϕ(a) for every ϕ ∈ Φ, so G ⊩ ϕ(a) for every ϕ ∈ Φ, which implies that

G ⊩ ψ(a).
Suppose that ψ(x) = ∃yϕ(xy). If G ⊩∗ ψ(a), then for some b ∈ G, G ⊩∗ ϕ(ab). Appealing to induction,

G ⊩ ϕ(ab), so G ⊩ ψ(ab). Suppose ψ(x) = ∀yϕ(xy), and G ⊩∗ ψ(a). Then, for any B ≻ G, b ∈ B, B ⊩∗ ϕ(ab).
Let C ≻ B decide ϕ(ab). Then, C ⊩ ϕ(ab). We conclude that G ⊩ ψ(a).

The following lemma shows that the weak forcing relation depends only on first order properties.

Lemma 3.34. Suppose (A, a) ≡ (B, b), then, for any formula ψ, A ⊩∗ ψ(a) if and only if B ⊩∗ ψ(b).

Proof. If (A, a) ≡ (B, a), the elementary amalgamation theorem implies that there is a structure C and
elementary embeddings f : A ↪→ C and g : B ↪→ C such that f(a) = g(b). We can then identify A and B
with elementary substructures of C so that a = b. Using Lemma 3.29, we have that A ⊩∗ ψ(a) if and only if
C ⊩∗ ψ∗(a) if and only if B ⊩∗ ψ(b).

3.8.4 Definability

Recall that ψ ∈ L∞,ω is elementary if it is of the form ψ =
∨∨

α

∧∧
β θα,β , for θα,β finitary formulas. Lemma

3.34 shows that the weak forcing relation depends only on first order properties. The next lemma shows
that is can be defined in terms of first order formulas.

Lemma 3.35. For each ψ ∈ L∞,ω, there is an elementary formula Forceψ such that A ⊩∗ ψ(a) if and only
if A |= Forceψ(a). Moreover, if ψ is a ∀n (resp. ∃n) formula, then Forceψ(a) can be taken to be a ∀n (resp.
∃n) formula as well.

Without the last clause, the lemma follows quite simply from Lemma 3.34. Consider the following set
of types T . Let T = {tpA(ā) : A ⊩∗ ψ(ā)}. By Lemma 3.34, B ⊩∗ ψ(ā) if and only if, for some p ∈ T ,
B |= p(ā). Then let

Forceψ(x) =
∨∨

p(x̄)∈T

∧∧
φ∈p(x̄)

φ(x̄).

However, we need a more involved argument if we want Forceψ to have the same quantifier complexity as ψ.

29

Proof. We will define Forceψ by recursion. At each step, we will ensure that Forceψ is at most the complexity
of ψ. If ψ is atomic, let Forceψ = ψ. Suppose ψ = ¬ϕ. By Lemma 3.30, A ⊩∗ ψ(a) if and only if A ⊮∗ ϕ(a).
Let Forceϕ =

∨∨
α

∧∧
β θα,β . Then, A ⊩∗ ψ(a) if and only if A |=∼ Forceϕ(a), the formal negation of Forceϕ.

∼ Forceϕ =
∧∧
α

∨∨
β

∼ θα,β

which is equivalent to ∨∨
f :α7→β

∧∧
α

∼ θα,f(α)

We define Forceψ to be this.
Suppose ψ =

∨∨
ϕ∈Φ

ϕ. We can then define Forceψ as
∨∨
ϕ∈Φ

Forceϕ. Suppose ψ =
∧∧
ϕ∈Φ

ϕ. Then, A ⊩∗ ψ(a) if

and only if for every ϕ ∈ Φ, A |= Forceϕ(a). Let Forceϕ =
∨∨

α

∧∧
β θ

ϕ
α,β . Then, A ⊩∗ ψ(a) if and only if

A |=
∧∧
ϕ∈Φ

∨∨
α

∧∧
β

θϕα,β(a)

This formula is equivalent to ∨∨
f :ϕ7→α

∧∧
ϕ∈Φ,β

θϕf(ϕ),β

We define Forceψ to be this.
Suppose ψ(x) = ∃yϕ(xy). Let Forceϕ =

∨∨
α

∧∧
β θα,β . The following are equivalent.

1. A ⊩∗ ψ(a);

2. For some B ≻ A and b ∈ B, B ⊩∗ ϕ(ab);

3. For some B ≻ A and b ∈ B, B |=
∨∨

α

∧∧
β θα,β(ab);

4. For some B ≻ A, b ∈ B, and α, B |= θα,β(ab) for each β;

5. For some α, the partial type pα(y) = {θα,β(ay)|β} is finitely satisfiable in A;

6.
A |=

∨∨
α

∧∧
Sfinite

∃y
∧
β∈S

θα,β(ay).

We define Forceψ to be this formula. Suppose ψ(x) = ∀yϕ(xy). By Lemma 3.32, A ⊩∗ ψ(a) if and
only if A ⊩∗ ¬∃y¬ϕ(ay), so we can use the rules for existential quantifiers and negations to construct
Forceψ = Force¬∃y¬ϕ(y).

A drawback of this definition is that for a cardinal κ, if ψ ∈ Lκ,ω, Forceψ may not be in Lκ,ω. For instance,
if L is countable, and ψ ∈ Lω1,ω, Forceψ may involve a disjunction over uncountably many formulas. The
next results show that this drawback cannot be avoided.

Lemma 3.36. There is a countable signature L, and a sentence ψ ∈ Lω1,ω such that for any tree T ⊂ ω<ω,
there is a countable L-structure AT , uniformly computable in T , satisfying AT ⊩∗ ψ if and only if T has a
path.

Proof. Let L consist of unary relation symbols Ri,j for i, j ∈ N. Let ψ = ∃x
∧∧

i

∨∨
j Ri,j(x). For a tree

T ⊂ ω<ω, we define AT as follows. For each σ ∈ T , there is an element of AT satisfying exactly the relations
Ri,σ(i) for each i less than the length of σ.

30

If AT ⊩∗ ψ, then for some B ≻ AT , and b ∈ B, B ⊩∗ ∧∧
i

∨∨
j

Ri,j(b). In this case, B |=
∧∧
i

∨∨
j

Ri,j(b).

Then, for some function f ∈ ωω, B |= Ri,f(i)(b) for each i. This implies that the partial type
{
Ri,f(i)

∣∣i < ω
}

is finitely satisfiable in AT , so for every n, there is a a ∈ AT such that AT |= Ri,f(i)(a) for i < n. That
is, f ↾ n ∈ T , for all n, so f is a path in T . Suppose conversely that f is a path in T . Then, the partial
type

{
Ri,f(i)

∣∣i < ω
}

is finitely satisfiable in AT , so for some elementary extension B ≻ AT , there is a b ∈ B
realizing this type. Then, B |=

∧∧
i

Ri,f(i)(B), so B |=
∧∧
i

∨∨
j

Ri,j(b). In this case, B ⊩∗ ∧∧
i

∨∨
j

Ri,j(b), so

AT ⊩∗ ψ.

Let ModL be the set of ω-presentations of L structures. The mapping T 7→ AT witnesses the following.

Corollary 3.37. The set {A ∈ ModL|A ⊩∗ ψ} is Σ1
1 hard.

We conclude that this set is not Borel, so is not the set of models of a Lω1,ω sentence. As such, we cannot
have Forceψ ∈ Lω1,ω.

Remark 3.38 (Structures of Bounded Cardinality). The apparatus built up in the previous sections can be
adapted to consider only structures of cardinality below a particular bound κ. In the recursive definitions of
the strong and weak forcing relations, one replaces elementary extensions in general with those of cardinality
below κ. In order to construct generic structures of cardinality below κ, one also needs that the fragment A
satisfies |A| < κ, and so consists of Lκ,ω formulas. Otherwise, the proofs go through without any changes.
For instance, we can consider only countable structures, and countable fragments of Lω1,ω, as is natural in
applications to computable model theory.

3.9 The General Case

In this section, we use the forcing apparatus to prove the general case of Proposition 2.8.

Theorem 3.39. Let T be a finitary theory. Let ψ be an infinitary (L∞,ω) ∀n formula which is equivalent to
a finitary formula φ in all models of T . Then, ψ and φ are equivalent to a finitary ∀n formula in all models
of T .

To prove this, we will show that from the perspective of the weak forcing relation, ∀n+1 formulas satisfy
the semantic test of Theorem 3.15.

Lemma 3.40. Suppose A ≺n B and a ∈ A. Let ψ be a ∀n+1 formula. Then, either A ⊩∗ ψ(a) or
B ⊩∗ ¬ψ(a).

We will give two proofs of this fact. The first is syntactic, using the formula Forceψ.

Proof. Let Forceψ =
∨∨

α

∧∧
β θα,β , where each θα,β is a finitary ∀n+1 formula. If B ⊮∗ ¬ψ(a), then by

Lemma 3.30, B ⊩∗ ψ(a), so B |= Forceψ(a). Then, for some α, and every β, B |= θα,β(a). Because each
θα,β is a finitary ∀n+1 formula, A |= θα,β(a) for the same α, and every β. Therefore, A |= Forceψ(a), so
A ⊩∗ ψ(a). We conclude that either A ⊩∗ ψ(a), or B ⊩∗ ¬ψ(a).

The second proof uses the recursive definition of the weak forcing relation.

Proof. We will prove this by induction on n, and on the complexity of ψ. For n = 0, we have A ⊂ B.
Because ψ is ∀1, it has one of the following forms.

1. ψ = ¬ϕ, where ϕ is ∃1.

2. ψ =
∨∨

ϕ∈Φ ϕ, where each ϕ ∈ Φ is ∀1.

3. ψ =
∧∧

ϕ∈Φ ϕ, where each ϕ ∈ Φ is ∀1.

4. ψ = ∀yϕ(y), for ϕ(y) a ∀1 formula.

31

5. ψ = ∀yϕ(y), for ϕ(y) quantifier free.

In case (1), Lemma 3.32 allows us to replace ψ with ∼ ϕ, the formal negation of ϕ, which is less complex
than ψ, so we can appeal to induction. In cases (2) and (3), we can similarly appeal to induction. In case
(4), suppose B ̸⊩∗ ¬ψ(a), so that B ⊩ ψ(a). Suppose A′ ≻ A, and b ∈ A′. By Lemma 3.16, there is a B′ ≻ B
such that A′ ⊂ B′. Because B ⊩∗ ψ(a), B′ ⊩∗ ϕ(ab). Appealing to induction, A′ ⊩∗ ϕ(ab). We conclude that
A ⊩∗ ψ(a). Therefore, either B ⊩∗ ¬ψ(a) or A ⊩∗ ψ(a). Case (5) can be handled similarly. Rather than
appealing to induction, we have that because ϕ is quantifier free, B′ ⊩∗ ϕ(ab) if and only if B′ |= ϕ(ab). As
shown in Corollary 3.4, this is true if and only if A′ |= ϕ(ab), which is true if and only if A′ ⊩∗ ϕ(ab). Note
that by taking y to be variables not present in ϕ, and applying Lemma 3.32, case (5) covers quantifier free
formulas as well.

The inductive step is very similar. Suppose ψ is ∀n+1, for n > 0. As before, ψ has one of the following
forms.

1. ψ = ¬ϕ, where ϕ is ∃n+1.

2. ψ =
∨∨

ϕ∈Φ ϕ, where each ϕ ∈ Φ is ∀n+1.

3. ψ =
∧∧

ϕ∈Φ ϕ, where each ϕ ∈ Φ is ∀n+1.

4. ψ = ∀yϕ(y), for ϕ(y) a ∀n+1 formula.

5. ψ = ∀yϕ(y), for ϕ(y) a ∃n formula.

Cases (1) through (4) can be handled by appealing to induction on the complexity of ψ as before. In case
(5), suppose that A′ ≻ A, and b ∈ A′. By Lemma 3.16, there is a B′ ≻ B such that A′ ≺n B′. By Lemma
3.17, there is a C such that B′ ≺n−1 C and A′ ≺ C. Appealing to induction on n, either B′ ⊩∗∼ ϕ(ab), or
C ⊩∗ ¬ ∼ ϕ(ab). In the first case, B ⊩∗∼ ψ(a), so by Lemma 3.32, B ⊩∗ ¬ψ(a). In the second case, Lemma
3.32 implies that C ⊩∗ ϕ(ab), so Lemma 3.29 implies that A′ ⊩∗ ϕ(ab). If this happens for every A′, b, then
A ⊩∗ ψ(a). Otherwise, B ⊩∗ ¬ψ(a).

With Lemma 3.40, we can now prove Theorem 3.39.

Proof. It suffices to consider n ≥ 1, as n = 0 is covered by Corollary 3.4. We will prove the contrapositive.
Suppose that φ is not equivalent to any finitary ∀n formula over T . As shown in Theorem 3.15, this implies
that there are models of T , A ≺n−1 B, and a ∈ A, such that A |= ¬φ(a) and B |= φ(a). By Lemma 3.40,
either A ⊩∗ ψ(a) or B ⊩∗ ¬ψ(a). Let A be a fragment containing ψ. In the first case, let G be A-generic, such
that A ≺ G. In the second, let H be A-generic, such that B ≺ H. In the first case, G |= T + ¬φ(a) + ψ(a),
and in the second, H |= T + φ(a) + ¬ψ(a). We conclude that φ and ψ are not equivalent over T .

Remark 3.41. In addition to the results on relative decidability, this also can be used to connect the com-
plexity of finitary sentences to descriptive set theoretic notions of complexity. Suppose that L is a countable
and φ is a sentence of Lω,ω. By the Löwenheim-Skolem theorem for Lω1,ω, if ψ is a sentence of Lω1,ω and φ
and ψ are equivalent in all countable structures, they are equivalent in all structures. Using Theorem 3.39
and Vaught’s version of the Lopez-Escobar theorem [Vau75], we have that the following are equivalent.

1. φ is equivalent to a finitary ∀n sentence (respectively ∃n).

2. {A ∈ ModL|A |= φ} is Π0
n (respectively, Σ0

n).

32

References

[AKMS89] C. Ash, J. Knight, M. Manasse, and T. Slaman. Generic copies of countable structures. Ann.
Pure Appl. Logic, 1989.

[Bau06] A. Bauer. König’s lemma and the Kleene tree, 2006.

[Cha59] C. C. Chang. On unions of chains of models. Proc. Amer. Math. Soc., 10:120–127, 1959.

[Chi90] J. Chisholm. Effective model theory vs. recursive model theory. Journal of Symbol Logic, 1990.

[CMS21] J. Chubb, R. Miller, and R. Solomon. Model completeness and relative decidability. Archive for
Mathematical Logic, 2021.

[LS55] J. Loś and R. Suszko. On the infinite sums of models. Bull. Acad. Polon. Sci. Cl. III., 3:201–202,
1955.

[Mar16] David Marker. Lectures on Infinitary Model Theory. Lecture Notes in Logic. Cambridge Univer-
sity Press, 2016.

[Mon21] Antonio Montalbán. Computable Structure Theory: Beyond the arithmetic. Unpublished Draft,
2021.

[Rob71] Abraham Robinson. Infinite forcing in model theory. In Proceedings of the Second Scandina-
vian Logic Symposium (Oslo, 1970), pages 317–340. Studies in Logic and the Foundations of
Mathematics, Vol. 63, 1971.

[Vau75] Robert Vaught. Invariant sets in topology and logic. Fund. Math., 82:269–294, 1974/75.

33

	Introduction
	Model Theory
	Computable Model Theory
	Infinitary Languages

	Relative Decidability
	Decidability of Computable Models
	Uniform Relative Decidability in n Turing Jumps
	Computability of Fragments of the Diagram

	Infinitary Logic
	Semantic Tests: n=0 and n=1
	Preservation by Chains: n=2
	Digression: Longer Chains
	Morleyization: n=3
	Digression: Consistency Properties and Interpolation
	n-Elementary Extensions, n=4
	The n=5 Case
	Forcing
	The Strong Forcing Relation
	Generic Structures
	The Weak Forcing Relation
	Definability

	The General Case

