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1. Introduction

The extent and usage of huge datasets have seen significant growth in
the past few decades, along which comes the challenges of preserving
data privacy. Differential privacy is a concept that helps define the way
information is extracted from the dataset such that small changes in
inputs produce similar outputs.

Graph datasets is an area where differentially private algorithms have
started to gather interest. While it is difficult to apply statistical meth-
ods to complicated graph algorithms where the output belongs to a
much more complex probability space, there has been progress in rel-
atively simple statistics release such as counting of edges or certain
subgraphs. We investigate these kinds of algorithms and try to im-
prove upon existing results.

2. Background

Definition 2.1. A randomized algorithm A is ε-differetially private if
given two adjacent datasets B,B′, for any subset S ⊆ ImA,

P[A(B) ∈ S] ≤ eε · P[A(B′) ∈ S].

A randomized algorithm A is (ε, δ)-differetially private if given two
adjacent datasets B,B′, for any subset S ⊆ ImA,

P[A(B) ∈ S] ≤ eε · P[A(B′) ∈ S] + δ.

Remark. Note that B and B′ can be interchanged in the inequality
above, so we actually have

e−ε · P[A(B′) ∈ S] ≤ P[A(B) ∈ S] ≤ eε · P[A(B′) ∈ S]

in the case of ε-differential privacy.

A graph sequence G is a sequence of graphs (G1, G2, . . . , GT ) where each
graph Gt = (Vt, Et) is obtained by applying changes in nodes and edges
on the previous Gt−1 in the sequence. We denote ∂V +

t , ∂V
−
t , ∂E

+
t , ∂E

−
t

1
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as the set of added vertices, deleted vertices, added edges, and deleted
edges at timestep t respectively. With this notation, we can now define
adjacent graph sequences. At t = 1, we have ∂V +

t = V1 and ∂E+
t = E1

and ∂V −t = ∂E−t = ∅.

Definition 2.2. Suppose G,G ′ are two graph sequences characterized
by {∂V +

t , ∂V
−
t , ∂E

+
t , ∂E

−
t } and {∂V

′+
t , ∂V

′−
t , ∂E

′+
t , ∂E

′−
t } respectively.

Let ∂V +
t = ∂V

′+
t and ∂V −t = ∂V

′−
t for all t. Then G,G ′ are edge-

adjacent on e∗ if |G| = |G ′| and one the following conditions hold:

(1) ∂E+
t = ∂E

′+
t for all t, ∂E−t = ∂E

′−
t for all t 6= t∗, and ∂E−t∗ \

∂E
′−
t∗ = {e∗} for t = t∗,

(2) ∂E−t = ∂E
′−
t for all t, ∂E+

t = ∂E
′+
t for all t 6= t∗, and ∂E+

t∗ \
∂E

′+
t∗ = {e∗} for t = t∗.

Example 2.1.

G = , , ;

G ′ = ,
e
,

e
.

We see that G and G ′ are edge-adjacent on e. Notice that in edge-
adjacent graph sequences G and G ′, Gt and G′t are adjacent graphs for
any t.

The definition of node-adjacency is a little more complicated as the dif-
ference in node insertion/deletion also affects edge insertion/deletion.

Definition 2.3. Suppose G,G ′ are two graph sequences characterized
by {∂V +

t , ∂V
−
t , ∂E

+
t , ∂E

−
t } and {∂V

′+
t , ∂V

′−
t , ∂E

′+
t , ∂E

′−
t } respectively.

G,G ′ are node-adjacent on v∗ if |G| = |G ′| and one the following condi-
tions hold:

(1) ∂V +
t = ∂V

′+
t for all t, ∂V −t = ∂V

′−
t for all t 6= t∗, and ∂V −t∗ \

∂V
′−
t∗ = {v∗} for t = t∗,

(2) ∂V −t = ∂V
′−
t for all t, ∂V +

t = ∂V
′+
t for all t 6= t∗, and ∂V +

t∗ \
∂V

′+
t∗ = {v∗} for t = t∗.

In addition, ∂E+
t , ∂E

′+
t and ∂V −t , ∂V

′−
t does not differ other than edges

that are incident from v∗.
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Example 2.2.

G = , , ;

G ′ = , , .

Here G and G ′ are node-adjacent datasets but not edge-adjacent.

3. Related Work

Chan, Shi, and Song [2011] studied the private streaming of statistics.
Fichtenberger, Henzinger, and Ost [2021] has then worked on differen-
tially private algorithms on dynamic graph sequences, where difference
sequence base techniques is used for monotone sequences and SVT
based techniques by Lyu, Su, and Li [2016] in other scenarios.

4. Problem

4.1. p-sum Algorithm. The following noisy p-sum by Fichtenberger
et al. [2021] shows how

Algorithm 4.1 p-sum
Input: Privacy loss ε, global sensitivity Γ, graph sequence G, graph

function f
Output: noisy p-sums a ∈ Rk, released over T time steps
1: function Count(ε,Γ,G, f)
2: f(0)← 0,∆f(0)← 0
3: for each t ∈ {1, . . . , T} do
4: Compute f(t),∆f(t)← f(t)− f(t− 1)
5: Compute real partial sum pi, . . . , pj
6: for ` = i, . . . , j do
7: γ` ← Lap(Γε−1), p̂` ← p` + γ`
8: end for
9: end for

10: Release p̂i, . . . , p̂j
11: end function

Corollary 4.1 (Corollary 2.9 from Chan et al. [2011]). Suppose γi are
independent random variables, where each γi has Laplace distribution
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Lap(bi). Let Y :=
∑

i γi and bM := max bi. Let ν ≥
√∑

i b
2
i . Suppose

0 < δ < 1 and ν > max
{√∑

i b
2
i , bM

√
ln 2

δ

}
. Then Pr

[
|Y | > ν

√
8 ln 2

δ
≤ δ
]
.

Theorem 4.1 (Fichtenberger et al. [2021]). Let f be a graph func-
tion whose difference sequence has continuous global sensitivity Γ. Let
0 < δ < 1 and ε > 0. Let A be a mechanism to estimate f as in
Algorithm 4.1 that releases k noisy p-sums and satisfies the following
conditions:

(1) at any time step the value of a graph function f can be estimated
as the sum of at most y noisy p-sums,

(2) A adds independent noise from Lap(Γ/ε) to every p-sum,

(3) the set P of p-sums computed by the algorithm can be partitioned
into at most x subsets, such that in each partition all p-sums
cover disjoint time intervals.

Then A is (x·ε)-differentially private, and the error is O(Γε−1√y log 1
δ
)

with probability 1− δ.

To realistically implement the algorithm, we need to precompute the
global sensitivity of the graph sequence using graph statistics. Some
global sensitivities are known for graph functions on undirected graphs
with bounded degree.

Lemma 4.1 (Fichtenberger et al. [2021]). Suppose G is a partially
dynamic (undirected) graph sequence with bounded degree D, then for
edge-adjacent graph sequences, we have

(1) Global sensitivity of triangle count is D;

(2) Global sensitivity of k-star count is 2 ·
((
D
k

)
−
(
D−1
k

))
.

4.2. Global Sensitivities on Directed Graph Sequences. For di-
rected graphs, the count certain subgraphs would be more nuanced
since we have edge orientations. We first define these subgraphs of
interest.

Definition 4.1. For a directed graph G,

(1) the sequential triangle count function counts the number of sub-
graphs in form of Figure 4.1;
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Figure 4.1. A sequential triangle

Figure 4.2. An alternate triangle

(2) the alternate triangle count function counts the number of sub-
graphs in form of Figure 4.2;

(3) the k-instar function counts the number of subgraphs where all
the edges of a k-star ends at the center vertex, as shown in
Figure 4.3;

Figure 4.3. A 3-instar

(4) the k-outstar function counts the number of subgraphs where
all the edges of a k-star begin at the center vertex, as shown in
Figure 4.4.

Figure 4.4. A 3-outstar

Lemma 4.2. Suppose G is a partially dynamic directed graph sequence
with bounded in-degree Din and out-degree Dout, then for edge-adjacent
graph sequences, we have

(1) Global sensitivity of sequential triangle count is min{Din, Dout};
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(2) Global sensitivity of alternate triangle count ≤ min{Din, Dout}+
Din +Dout;

(3) Global sensitivity of k-instar count is
(
Din

k

)
−
(
Din−1
k

)
;

(4) Global sensitivity of k-outstar count is
(
Dout

k

)
−
(
Dout−1

k

)
;

Proof. Suppose two graph sequence G and G ′ with a difference on edge
(u, v).

(1) The difference edge (u, v) would contribute to the difference
through the sequential triangles containing u and v. Suppose a
sequential triangle containing u, v, w and (u, v), it should con-
tain edge (v, w) and (w, u). So the number of such node w is
strictly bounded above by the minimum of max in-degree and
out-degree.

(2) The difference edge (u, v) would contribute to the difference
through the alternative triangles containing u and v. Suppose
a sequential triangle containing u, v, w and (u, v), then there
are three scenarios for remaining edges involving vertex w.

(a) (w, u), (w, v).

(b) (u,w), (v, w).

(c) (w, v), (u,w).

The total number of such w’s in case (a) is bounded by the
indegree of u, which is bounded by Din; the total number of
such w’s in case (b) is bounded by the outdegree of u, which
is bounded by Dout; the total number of such w’s in case (c) is
bounded min{Din, Dout}.

(3) The difference edge (u, v) would contribute to the difference
through in-star of vertex v. v may be the center of up to

(
Din

k

)
-

many k-instars with edge added and
(
Din−1
k

)
-many k-instars

without such edge. So the global sensitivity is
(
Din

k

)
−
(
Din−1
k

)
.

(4) The difference edge (u, v) would contribute to the difference
through in-star of vertex u. u may be the center of up to

(
Dout

k

)
-

many k-outstars with edge added and
(
Dout−1

k

)
-many k-outstars

without such edge. So the global sensitivity is
(
Dout

k

)
−
(
Dtou−1

k

)
.

�
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4.3. Batch Update Algorithm.

Definition 4.2. For adjacent graph sequences G,G ′ of length T , the
j-step continuous global sensitivity GSj(f) is the maximum value of∑j

t=1 |∆fG(t)−∆fG′(t)|. That is the global sensitivity as if the graph
sequence only contains the first t elements.

Remark. When j = T the j-step continuous global sensitivity is the
same as continuous global sensitivity for the whole sequence.

Algorithm 4.2 Batch p-sum for partially dynamic graph sequences
Input: Privacy loss ε, graph sequence G, graph function f
Output: noisy p-sums a ∈ Rk, released over T time steps
1: function Count(ε,G, f)
2: f(0)← 0,∆f(0)← 0
3: for each t ∈ {1, . . . , T} do
4: Compute f(t),∆f(t)← f(t)− f(t− 1)
5: Compute real partial sum pi, . . . , pj
6: Calculate the t-step global sensitivity Γt
7: for ` = i, . . . , j do
8: γ` ← Lap(Γt · ε−1), p̂` ← p` + γ`
9: end for

10: end for
11: Release p̂i, . . . , p̂j
12: end function

Theorem 4.2. Let f be a graph function whose difference sequence has
t-step continuous global sensitivity Γt for each t. Let 0 < δ < 1 and
ε > 0. Let A be a mechanism to estimate f as in Algorithm 4.2 that
releases k noisy p-sums, computes sensitivity dynamically, and satisfies
the following conditions:

(1) at any time step the value of a graph function f can be estimated
as the sum of at most y noisy p-sums,

(2) A adds independent noise from Lap(Γt/ε) to every p-sum at
each timestep t,

(3) the set P of p-sums computed by the algorithm can be par-
titioned into at most x subsets, such that in each partition
all p-sums cover disjoint time intervals. Equivalently, for all
Pi ∈ {P1, · · · , Px} and all j, k ∈ Pi, j 6= k, it holds that
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start(j) 6= start(k) and start(j) < start(k) =⇒ end(j) <
start(k).

Then A is (x · ε)-differentially private, and the error is at each time
step t is O(Γtε

−1√y log 1
δ
) with probability 1− δ.

Proof. The error follows from Corollary 4.1 and condition (1). We now
show that the algorithm is differentially private.

Let G = (G1, . . . , GT ),G ′ = (G′1, . . . , G
′
T ) be two adjacent graph se-

quences and denote f(t) = f(Gt), f ′(t) = f(G′t). By definition of
adjacent graph sequences we have f(0) = f ′(0) = f((V0, E0)). At ev-
ery time step the algorithm computes the difference sequence of G and
G ′ by ∆fG(t) = fG(t)− fG(t− 1).

The noisy p-sums computed by A are independent continuous random
variables with joint distribution

p(z) =
k∏
i=1

pi(zi) and p′(z) =
k∏
i=1

p′i(zi)

for sequence G and G ′ respectively.

Let c = (c1, . . . , ck)
T and c′ = (c′1, . . . , c

′
k)
T be the noiseless p-sums

calculated by A on inputs G and G ′, respectively. For each time step
t ∈ {1, . . . , T}, we define δ(t) = ∆fG′(t) − ∆fG(t). We use start(i)
and end(i) to denote the beginning and end of the time interval cor-
responding to the p-sums with index i. For each i ∈ {1, . . . , k}, we
define δi = c′i − ci =

∑end(i)
t=start(i) δ(t). Let I = {i : δi 6= 0} be the indices

of p-sums where the values for the two graph sequences are different.
Now suppose a certain result r = (r1, . . . , rk)

T ∈ Im(A). For any time
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step t, the probability of obtaining the same output

p(s)

p′(s)
=

k∏
i=1

pi(si)

p′i(si)

=
∏
i∈I

pi(si)

p′i(si)

=
∏
i∈I

exp
(
ε(ci−si)

Γt

)
exp

(
ε(ci+δi−si)

Γt

)
=
∏
i∈I

exp

(
ε

Γt
(|ci + δi − si| − |ci − si|)

)
≤
∏
i∈I

exp

(
ε

Γt
· |δi|

)
We use condition 3 and partition I into sets of indices I1, . . . , Ix such
that for all j ∈ {1, . . . , x} the p-sums corresponding to indices in Ij
cover disjoint time intervals. For each set Ij we then have∑

i∈Ij

|δi| ≤
∑
i∈Ij

end(i)∑
t=start(i)

|δ(t)| ≤
T∑
t=1

≤ Γτ ,∀τ ∈ {1, . . . , T}.

The above inequalities combined we have
p(s)

p′(s)
≤
∏
i∈I

exp

(
ε

Γt
· |δi|

)

≤
x∏
j=1

∏
i∈Ij

exp

(
ε

Γt
· |δi|

)

≤
x∏
j=1

exp

 ε

Γt

∑
i∈Ij

|δi|


≤

x∏
j=1

exp

(
ε

Γt
Γt

)
= exp(x · ε).

Hence A is x · ε-differentially private. �

Remark. This error bound is tighter as the t-step global sensitivity
Γt ≤ Γ for all t ∈ {1, . . . , T}.
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5. Experiments

5.1. Method. We use Algorithm 4.1, Algorithm 4.2, and algorithm
that outputs real statistics with no privacy constraints.

5.2. Datasets. We used real world datasets from SNAP [Leskovec and
Krevl, 2014], especially temporal datasets. In addition to the real world
directed graph datasets, the direction is also ignored to make an undi-
rected version.

Math Overflow Database. [Paranjape, Benson, and Leskovec, 2017] This
is a real temporal network of interactions on the stack exchange web-
site Math Overflow. There are three different types of interactions
represented by a directed edge (u, v, t):

• user u answered user v’s question at time t

• user u commented on user v’s question at time t

• user u commented on user v’s answer at time t

Each kind of the edge makes up an individual dataset, and a union of
all three datasets make a full dataset.

EU Mail Database. [Leskovec, Kleinberg, and Faloutsos, 2007] The net-
work was generated using email data from a large European research
institution. For a period from October 2003 to May 2005 (18 months)
we have anonymized information about all incoming and outgoing email
of the research institution.

MOOC(Massive open online course) User Action Dataset. [Kumar,
Zhang, and Leskovec, 2019] This is a real world bipartite graph dataset.
The MOOC user action dataset represents the actions taken by users
on a popular MOOC platform.

5.3. Results.

Lower Empirical Error Bound. Fichtenberger et al. [2021] has shown
that there exists ε-differntially algorithms with O(log3/2 T ) error and
all such algorithms have Ω(log T ) error bound. We observe that the
algorithms exhibits O(log T ) error bound on all datasets that we have
tested.

Theorem 5.1 (Fichtenberger et al. [2021]). Let f be a graph function
whose difference sequence has continuous global sensitivity Γ. Let 0 <
δ < 1 and ε > 0. For each T ∈ N there exists an ε-differentially
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private algorithm to estimate f on a graph sequence which has error
O(Γε−1 · log3/2 T · log δ−1) with probability at least 1− δ.

Corollary 5.1. Let f be a graph function whose difference sequence has
t−step continuous global sensitivity Γt. Let 0 < δ < 1 and ε > 0. For
each T ∈ N there exists an ε-differentially private algorithm to estimate
f on a graph sequence which has error O(Γtε

−1 · log3/2 T · log δ−1) with
probability at least 1− δ.

(a) EU Mail Database (b) Math Overflow Database

Figure 5.1. Triangle count of an undirected version of
graph sequences of length 1000, ε = 1.

(a) Sequential triangle count (b) Alternate triangle count

Figure 5.2. Triangle count of the directed version of
graph sequences from Math Overflow Database of length
1000, ε = 1.

In Figure 5.1 and Figure 5.2, the orange curve indicates the error bound
proposed by Theorem 4.2, while the red curve indicates the error bound
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proposed by Corollary 5.1, with log3/2 T replaced with log T . The blue
line graph indicates the absolute value of the error at each timestep.
As we can see, the O(log T ) error bounds the estimation algorithms
pretty well in real world scenarios.
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