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1. Introduction

In this paper we are interested in class of orthogonal polynomials (OPs). OPs with respect to
the measure dµ(x) are sequences {Pn}∞n=0 of polynomials so that∫ 1

−1

xkPndµ(x) = 0

for k = 0, 1, · · · , n− 1.
Here we are interested only in the case where our measure dµ(x) can be expressed in terms of

some weight function i.e. dµ(x) = w(x)dx. In particular in the case when w(x) is a polynomial. In
the case when w(x) > 0 the OPs will always exist and they will satisfy degPn = n. For a reference
on classical OPs see [2]. In this paper we will be concerned with weight functions of the form

w(x) =
m∏
i=1

(x− zi).

In particular we are interested in how the OPs P q
n with weight w(x) change when we very our zis

as parameters. Previous studies of orthogonal polynomials with polynomial weight functions have
used that we can think of OPs with respect to the measure w(x)dx as the Chistoffel transform (for
more information see the next section) of the Lengendre polynomials (orthogonal polynomials with
respect to the weight function w(x) ≡ 1). In the first section some classsical results and ways of
thinking about OPs are introduced. In the second section we introduce the Chistoffel transform.
In the third section introduce the idea of recurrence relations and give a table of some recurrence
coefficients for w(x) = x−z. In section four we use apply a method that was first used by Magnus in
[4] to derive a set of equations on the recurrence coefficients of for semi-classical OPs. Magnus found
that the equations that recurrence coeffients the semi-classical OPs with weight w(x) = e−x4/4−tx2

on R satisfy the Painlevé IV equation. However, unlike in Magnus’s the paper our string equations
also involve coefficients of our OPs. In sections six to nine we introduced the Riemann-Hilbert
problem (RHP) for OPs with weight function w(x) = x − z and proved uniquess of the solutions
for our RHP. In the final sections we used the RHP for OPs with weight w(x) = x− z and we used
a method similiar to the method used by Celsus et al. in a paper on kissing polynomial to find x
and z differential equations that our OPs satisfy [7].

2. Some Classical Properties of Orthogonal Polynomials

There are other ways to think about this definition of OPs. Firstly we can we can define a
bi-linear form

⟨f, g⟩w :=

∫ 1

−1

f(x)g(x)w(x)dx.(1)

1
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Another way to think about OPs is using Gram-Smchidt algorithm. We can construct a set of OPs
by starting from the basis {1, x, · · · , xn} and constructing a set of OPs using the Gram-Smchidt
procedure

P q
0 (x) := 1,

P q
j (x) := xj −

j−1∑
j=0

⟨P q
i (x), x

j⟩w
⟨P q

i (x), P
q
i (x)⟩w

P q
i (x).

However, because ⟨·, ·⟩w is a bi-linear form and not a an inner product it can happen that ⟨f, f⟩w =
0. When this happens Gram-Schmidt can fail.

A natural question that arises when thinking about OPs is for which values of n do OPs exist
and are they unique. A second way that we can think about this problem is as a linear system of
equations on the coefficients cj (P q

n(x) =
∑n

i=0 cix
i) of our polynomials. If we define

µk =

∫ 1

−1

xkq(x)dx

then we have the equations
µ0c0 + µ1c1 + · · ·+ µncn = 0

µ1c0 + µ2c1 + · · ·+ µn+1cn = 0

...
µn−1c0 + µnc1 + · · ·+ µ2n−1cn = 0.

If we assume that we are looking for a monic polynomial we can set cn = 1 and therefore we can
express our system of equations as

µ0c0 + µ1c1 + · · ·+ µn−1cn−1 = −µn

µ1c0 + µ2c1 + · · ·+ µncn−1 = −µn+1

...
µn−1c0 + µnc1 + · · ·+ µ2n−2cn−1 = −µ2n−1.

From linear algebra this system will have a solution when

det(Dn−1) =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
... ... . . . ...

µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣ ̸= 0.

One example of a set OPs is the Legendre polynomials with weight function w(x) ≡ 1. We will
denote the degree n monic Legendre polynomial by Pn(x).

In the case were w(x) is polynomial function we have a tool call the Chistoffel transform that
can be used to study this problem.

Theorem 1 (Chistoffel [1]). Let {Pn} be the set of monic polynomials orthogonal with respect to
w(x)dx and let

q(x) :=
m∏
j=1

(x− zj),
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be a positive polynomial on [−1, 1]. Then, the polynomials P q
n(x) defined by

Cn,mq(x)P
q
n(x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pn(z1) Pn+1(z1) · · · Pn+m(z1)

Pn(z2) Pn+1(z2) · · · Pn+m(z2)

... ... . . . ...
Pn(zm) Pn+1(zm) · · · Pn+m(zm)

Pn(x) Pn+1(x) · · · Pn+m(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,(2)

where

Cn,m =

∣∣∣∣∣∣∣∣∣∣
Pn(z1) Pn+1(z1) · · · Pn+m−1(z1)

Pn(z2) Pn+1(z2) · · · Pn+m−1(z2)

... ... . . . ...
Pn(zm) Pn+1(zm) · · · Pn+m−1(zm)

∣∣∣∣∣∣∣∣∣∣
,

are orthogonal with respect to q(x)w(x)dx. P q
n has degree n. If the zero xk is repeated, replace the

corresponding rows with successive derivatives evaluated at xk.

For a proof of this see [6].

Theorem 2. The Orthogonal polynomials {P q
n} with weight function q(x) = x− z always exist and

satisfy degP q
n = n if and only if z is not a root of the nth Legendre polynomial.

Proof. In order to prove this fact we can start by noticing that the moments of x− z are given by

µk(z) =

∫ 1

−1

xk(x− z)dx

=

[
xk+2

k + 2
− zxk+1

k + 1

]1
−1

=
1

k + 2
(1− (−1)k)− z

k + 1
(1 + (−1)k).

From this formula we can see that each µk is polynomial of degree at most 1 in z and therefore it
follows that det(Dn−1) is a polynomial of degree at most n. Were Dn−1 is defined by

Dn−1 :=


µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
... ... . . . ...

µn−1 µn · · · µ2n−2

 .

Now suppose that we consider the polynomial p̌n defined by

q(x)p̌n(x) =

∣∣∣∣Pn(z) Pn+1(z)
Pn(x) Pn+1(x)

∣∣∣∣ .(3)

From the definition of p̌n(x) we can see that∫ 1

−1

xkp̌n(x)q(x)dx =

∫ 1

−1

xk(Pn(z)Pn+1(x)− Pn+1(z)Pn(x))dx = 0,
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for k = 0, 1, · · · , n− 1. In addition to this we can notice that the right hand side of (3) as a simply
root at x = z and there is divisible by q(x) = x− z. That’s more if Pn(z) = 0 then we can see that
the degree of p̌(x) will be n− 1 and therefore we don’t have unique OPs of degree n which satisfy
n orthogonality conditions. So it must be the case that det(Dn−1) = 0.

Because det(Dn−1) is a polynomial of degree n and it has root everywhere that Pn(x) has roots.
Because Legendre polynomials have simple roots in (−1, 1) only (for a proof of this see [2]), we can
therefore conclude that det(Dn−1) = cPn(x) were c is some constant. It follows from this not pn(x)
will exist if and only if z is not a root of a Legendre polynomial as desired. □

3. Recurrence Relations for Orthogonal Polynomials

Theorem 3. Suppose that a function w(x) is chosen so that the set of OPs {Pk}n+1
k=0 satisfy degPk =

k for k = 0, 1, · · · , n+ 1. Then there exists sequences complex numbers {αk} and {βk} such that
xPn = Pn+1 + αnPn + βnPn−1.

In our case αn and βn are meromorphic functions of z. The first few recurrence coeffients are
given by

n αn βn

1 5−3z2

15z−45z3
1
3
− 1

9z2

2 −15+6z2+5z4

35z(3−14z2+15z4)
12z2(−3+5z2)
25(1−3z2)2

3 −81+45z2−15z4+35z6

63(−9+105z2−255z4+175z6)
3(−1+3z2)(3−30z2+35z4)

49z2(3−5z2)2

4 −405+108z2+210z4−364z6+315z8

99z(3−30z2+35z4)(15−70z2+63z4)
80z2(−3+5z2)(15−70z2+63z4)

81(3−30z2+35z4)2

What’s more there are some formulas for αn and βn in terms of orthogonal polynomials. The
first set of formulas give αn and βn in terms of inner products of orthogonal polynomials

αn =
⟨xP q

n , P
q
n⟩w

⟨P q
n , P

q
n⟩w

and

βn =
⟨xP q

n , P
q
n−1⟩w

⟨P q
n−1, P

q
n−1⟩w

,

where ⟨·, ·⟩w is defined in (1). In addition to this formula we have that

αn = κ
(n)
n−1 − κ(n+1)

n(4)

βn = κ
(n)
n−2 − κ

(n)
n−1κ

(n+1)
n + (κ

(n)
n−1)

2 − κ
(n+1)
n−1 .(5)

4. String Equations

The idea of determine equations by computing the integrals∫ 1

−1

[(1− x2)(P q
n(x))

2q(x)]′dx

and ∫ 1

−1

[(1− x2)P q
n(x)P

q
n−1(x)q(x)]

′dx

was first introduced by Magnus in [4]. Using this method Celsus et al. [7] found that recurrence
coefficients for OPs with weight q(x) = eiωx which they called kissing polynomials satisfy a string
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equation similiar to the equations found by Magnus with goal of using them to compute OPs
efficiently. This method can also be applied to OPs with weight q(x) = x− z.

The first way of evaluating our integrals is with the fundamental theorem of calculus. Applying
the fundamental theorem of calculus to the first integral gives us

I =

∫ 1

−1

[(1− x)2[P q
n(x)]

2q(x)]′dx = (1− x)2[P q
n(x)]

2q(x)
∣∣∣1
−1

= 0.

What’s more applying the fundamental theorem of calculus to second integral gives us

J =

∫ 1

−1

[(1− x2)P q
n(x)P

q
n−1(x)q(x)]

′dx = (1− x2)P q
n(x)P

q
n−1(x)q(x)

∣∣∣1
−1

= 0.

Now if we expand the derivative in first integral we get

I =

∫ 1

−1

[
(1− x2)[Pn(x)

q]2q(x)
]′
dx = I1 + I2 + I3

where

I1 =

∫ 1

−1

−2x[P q
n(x)]

2qdx

I2 =

∫ 1

−1

(1− x2)P q
n(x)

dP q
n

dx
(x)q(x)dx

I3 =

∫ 1

−1

(1− x2)[P q
n(x)]

2dx.

Now we can compute I1 and I2 using a method that is analogous to the methods used in [7] to get1

I1 = −2

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)P

q
ndx

= −2αnχn.

I2 =

∫ 1

−1

−2xP q
nx

dP q
n

dx
qdx

= −2

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)(nP

q
n − κn

n−1P
q
n−1 + · · · )dx

= −2nαnχn + 2βnκ
n
n−1χn−1.

1Because the notation P q
i (x) is somewhat cumbersome we will will instead write P q

i from now on.
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Where χk := ⟨P q
k , P

k
q ⟩q. However the final integral I3 requires some modifications to compute

consider the expression2

U =
d

dz

∫ 1

−1

(1− x2)(P q
n)

2qdx

= χ̇n −
d

dz

∫ 1

−1

x2(P q
n)

2qdx

= χ̇n −
d

dz

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)

2qdx

= χ̇n − χ̇n+1 −
d

dz
(α2

nχn + β2
nχn−1).

On the other hand we also have that

U =

∫ 1

−1

2(1− x2)P q
nṖ

q
nqdx− I3

= 2

∫ 1

−1

x2P q
nṖ

q
nqdx− I3

= 2

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)(κ̇

(n)
n−1P

q
n + (κ̇

(n)
n−2 − κ̇

(n)
n−1κ

(n)
n−2)P

q
n−1 + · · · )dx− I3

= 2αnκ̇
(n)
n−1χn + 2(κ̇

(n)
n−2 − κ̇

(n)
n−1κ

(n)
n−2)χn−1 − I3.

Now putting all of these together we get the string equation

−2αnχn − 2nαnχn + 2βnκ
(n)
n−1χn−1 + χ̇n − χ̇n+1 +

d

dz
(α2

nχn + β2
nχn−1)

+2αnκ̇
(n)
n−1χn + 2(κ̇

(n)
n−2 − κ

(n)
n−1 − κ

(n)
n−1κ

(n)
n−2)χn−1 = 0.

Next if we expand out the second integral we get

J = J1 + J2 + J3 + J4

where

J1 = −2

∫ 1

−1

xP q
nP

q
n−1qdx

J2 =

∫ 1

−1

(1− x2)
dP q

n

dx
P q
n−1qdx

J3 =

∫ 1

−1

(1− x2)P q
n

dP q
n−1

dx
qdx

J4 =

∫ 1

−1

(1− x2)P q
nP

q
n−1dx.

2We use a . above a variable to denote differentiation with respect to the parameter z.
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If we apply our recurrence formula to J1 we get

J1 = −2

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)P

q
n−1qdx

= −2βnχn−1.

Next we need to evaluate J2 by expanding x2 dP
q
n

dx
= nP q

n−1 + ((n − 1)κ
(n)
n−1 − nκ

(n+1)
n )P q

n + ((n −
2)κ

(n)
n−2 − nκ

(n+1)
n−1 + (n− 1)κ

(n)
n−1)P

q
n−1 + · · · we get

J2 =

∫ 1

−1

dP q
n

dx
P q
n−1qdx−

∫ 1

−1

x2dP
q
n

dx
P q
n−1qdx

= nχn−1 − ((n− 2)κ
(n)
n−2 − nκ

(n+1)
n−1 + (n− 1)κ

(n)
n−1)χn−1.

J3 can be evaluated directly using the orthogonality conditions to get J3 = −(n − 1)χn. Finally
evaluating J4 requires a special trick that is similar to trick that was used to evaluated I3. We will
start by defining

V :=
d

dz

∫ 1

−1

(1− x2)P q
nP

q
n−1qdx.

If we directly evaluate V using the recurrence relation for P q
n we get

V = − d

dz

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)(P

q
n + αn−1P

q
n−1 + βn−1P

q
n−2)qdx

= − d

dz
[αnχn + βnαn−1χn−1] .

If we instead evaluate V by moving d/dz inside our integral we get

V =

∫ 1

−1

(1− x2)Ṗ q
nP

q
n−1qdx+

∫ 1

−1

(1− x2)P q
nṖ

q
n−1qdx−

∫ 1

−1

(1− x2)P q
nP

q
n−1dx

= κ̇
(n)
n−1χn−1 −

∫ 1

−1

x2Ṗ q
nP

q
n−1qdx−

∫ 1

−1

x2P q
nṖ

q
n−1qdx− J4

= κ̇
(n)
n−1χn−1 −

∫ 1

−1

{
κ̇
(n)
n−1P

q
n+1 + (κ̇

(n)
n−2 − κ̇

(n)
n−1κ

(n+1)
n )P q

n

+(κ̇
(n)
n−3 − κ̇

(n)
n−1κ

(n+1)
n−1 − κ̇

(n)
n−2κ

(n)
n−1)P

q
n−1 + · · ·

}
P q
n−1qdx− κ̇

(n−1)
n−2 χn − J4

= κ̇
(n)
n−1χn−1 − (κ̇

(n)
n−3 − κ̇

(n)
n−1κ

(n+1)
n−1 − κ̇

(n)
n−2κ

(n)
n−1)κn−1 − κ̇

(n−1)
n−2 χn − J4.

Therefore it follows that we have

J4 =
d

dz
[αnχn + βnαn−1χn−1] + κ̇

(n)
n−1χn−1 − (κ̇

(n)
n−3 − κ̇

(n)
n−1κ

(n+1)
n−1 − κ̇

(n)
n−2κ

(n)
n−1)κn−1 − κ̇

(n−1)
n−2 χn.

Our second string equation is given by

nχn−1 − ((n− 2)κ
(n)
n−2 − nκ

(n+1)
n−1 + (n− 1)κ

(n)
n−1)χn−1 +

d

dz
[αnχn + βnαn−1χn−1] + κ̇

(n)
n−1χn−1

−(κ̇
(n)
n−3 − κ̇

(n)
n−1κ

(n+1)
n−1 − κ̇

(n)
n−2κ

(n)
n−1)χn−1 − κ̇

(n−1)
n−2 χn = 2βnχn−1 + (n− 1)κ

(n−1)
n−2 χn
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5. A Different Method to Find String Equations

This new method starts with an integral very similar to integral from the previous method except
with q replaced by q2 using this method gives us

U =

∫ 1

−1

[
(1− x2)(P q

n)
2(x− z)2

]′
dx = 0.

On the hand we also have that

U = 2
(∫ 1

−1

(1− x2)(P q
n)

2(x− z)dx−
∫ 1

−1

x(x− z)(P q
n)

2(x− z)dx

+

∫ 1

−1

(1− x2)(x− z)P q
n(P

q
n)

′(x− z)dx
)
.

If we can evaluate each of the three seperately to get∫ 1

−1

(1− x2)(P q
n)

2(x− z)dx = χn − χn+1 − α2
nχn − β2

nχn−1.

For the next term we get∫ 1

−1

(x2 − zx)(P q
n)

2(x− z)dx = −zαnχn + χn+1 + α2
nχn + β2

nχn−1.

And for the final term we have ∫ 1

−1

(−x3 − zx2 + x− z)P q
n(P

q
n)

′(x− z)dx

=

∫ 1

−1

(−x2 − zx+ 1)(P q
n+1 + αnP

q
n + βnP

q
n−1)(P

q
n)

′(x− z)dx

=

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)(c1P

q
n+1 + c2P

q
n + c3P

q
n−1 + · · · )(x− z)dx

= c1χn+1 + c2αnχn + c3βnχn−1,

where

c1 = −n

c2 = (1− n)κ
(n)
n−1 + zn

c3 = n+ z(n− 1)κ
(n)
n−1 − nκ

(n)
n−2.

If we combine these three terms we end up with the equation

−(2 + n)χn+1 + (1 + zαn − 2α2
n + (n− 1)κ

(n)
n−1 + zn)χn

+(n+ z(n− 1)κ
(n)
n−1 − nκ

(n)
n−2 − 2β2

n)χn−1 = 0.

We can apply similar reasoning to

V =

∫ 1

−1

[(1− x2)P q
nP

q
n−1(x− z)2]′dx,
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we get

V = 2

∫ 1

−1

(−x2 + zx)P q
nP

q
n−1(x− z)dx+

∫ 1

−1

(1− x2)(x− z)(P q
n)

′P q
n−1(x− z)dx

+

∫ 1

−1

(1− x2)(x− z)P q
n(P

q
n−1)

′(x− z)dx+ 2

∫ 1

−1

(1− x2)P q
nP

q
n−1(x− z)dx.

For the first term in our integral we have

2

∫ 1

−1

(−x2 + zx)P q
nP

q
n−1(x− z)dx =

2
(∫ 1

−1

−(P q
n+1 + αnP

q
n + βnP

q
n−1)(P

q
n + αn−1P

q
n−1 + βn−1P

q
n−2)(x− z)dx

+z

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)P

q
n−1(x− z)dx

)
= −2αnχn + 2βn(z − αn−1)χn−1.

Now applying fact that our orthogonal polynomials will form a basis when there is no degeneration
to our second term we can write (−x3 + zx2 + x − z)(P q

n)
′ as linear combination of orthogonal

polynomials ∫ 1

−1

(−x3 + zx2 + x− z)(P q
n)

′P q
n−1(x− z)dx

=

∫ 1

−1

(c4P
q
n+2 + c5P

q
n+1 + c6P

q
n + c7P

q
n−1 + · · · )P q

n−1(x− z)dx

= c7χn−1.

were
c4 = −n

c5 = nκ
(n+2)
n+1 + zn+ (1− n)κ

(n)
n−1

c6 = −c4κ
(n+2)
n − c5κ

(n+1)
n + n+ (n− 2)κ

(n)
n−2 + (n− 1)zκ

(n)
n−1

c7 = −c4κ
(n+2)
n−1 − c5κ

(n+1)
n−1 − c6κ

(n)
n−1 − zn+ (n− 3)κ

(n)
n−3 + (n− 2)zκ

(n)
n−2 + (n− 1)κ

(n)
n−1.

Next if we examine the third term we see that∫ 1

−1

(1− x2)(x− z)P q
n(P

q
n−1)

′(x− z)dx

=

∫ 1

−1

(−x3 + zx2)P q
n(P

q
n−1)

′(x− z)dx

Now if we can use the fact that orthogonal polynomials for a basis we can right (−x3 + zx2)(P q
n−1)

′

in terms of orthogonal polynomials as
(−x3 + zx2)(P q

n−1)
′ = (1− n)P q

n+1 + [(n− 1)κ
(n−1)
n−1 + z(n− 2)κ

(n−1)
n−2 − (n− 3)κ

(n−1)
n−3 ]P q

n + · · · .
If we substitute this into our third term we get∫ 1

−1

(1− x2)(x− z)P q
n(P

q
n−1)

′(x− z)dx = [(n− 1)κ
(n−1)
n−1 + z(n− 2)κ

(n−1)
n−2 − (n− 3)κ

(n−1)
n−3 ]χn.
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Finally looking at the fourth term we see that

2

∫ 1

−1

(1− x2)P q
nP

q
n−1(x− z)dx =

2

∫ 1

−1

(P q
n+1 + αnP

q
n + βnP

q
n−1)(P

q
n + αn−1P

q
n−1 + βn−1P

q
n−2)(x− z)dx =

2αnχn + 2χn−1βnαn−1.

If we put all of these terms together we get the equation

χn−1(2zβn + c7) = 0.

If we fully write out c6 and c7 we get

c6 = nκ(n+2)
n − (nκ

(n+2)
n+1 + zn+ (1− n)κ

(n)
n−1)κ

(n+1)
n + n+ (n− 2)κ

(n)
n−2 + (n− 1)zκ

(n)
n−1

c7 = nκ
(n+2)
n−1 − (nκ

(n+2)
n+1 + zn+ (1− n)κ

(n)
n−1)κ

(n+1)
n−1 − (nκ(n+2)

n − (nκ
(n+2)
n+1 + zn+ (1− n)κ

(n)
n−1)κ

(n+1)
n

+n+ (n− 2)κ
(n)
n−2 + (n− 1)zκ

(n)
n−1)κ

(n)
n−1 − zn+ (n− 3)κ

(n)
n−3 + (n− 2)zκ

(n)
n−2 + (n− 1)κ

(n)
n−1.

Therefore we have the string equation

2zβn + nκ
(n+2)
n−1 − (nκ

(n+2)
n+1 + zn+ (1− n)κ

(n)
n−1)κ

(n+1)
n−1 − (nκ(n+2)

n − (nκ
(n+2)
n+1 + zn+ (1− n)κ

(n)
n−1)κ

(n+1)
n

+n+ (n− 2)κ
(n)
n−2 + (n− 1)zκ

(n)
n−1)κ

(n)
n−1 − zn+ (n− 3)κ

(n)
n−3 + (n− 2)zκ

(n)
n−2 + (n− 1)κ

(n)
n−1 = 0.

In the future we hope to be able to use expression like these to compute αs and βs which we
could use to compute OPs using the three term recurrence relation. We would also like to simplify
these string equations in the future perhaps using (4) and (5). Although we explored computing
some integrals inspired by Magnus there are other integral we could have computed for example∫ 1

−1

[(1− x2)(P q
n(x))

2(x− z)r]′dx

were r is some positive integer.

6. The Riemann Hilbert Problem

In addition to the characterizations of as being polynomials that are orthogonal to all polynomials
of degree n for some given. There is another way to characterize OPs. This method is called a
Riemann-Hilbert Problem (RHP) and it was first used as formulation of OPs by Fokas, Its, and
Kitaev in [3]. In addition to formulating the RHP they used to RHP to derive the recurrence relation
(see equation (3.14) in the reference). The RHP for OPs has also been used to obtain asymptotic
information about OPs, for example [5] discusses the asymptotics for Jacobi polynomials which have
weight w(x) = (1+ x)α(1− x)β for α, β > −1. In addition to this RHPs have been applied to prove
results for kissing polynomials (polynomials with weight w(x) = eiωx, ω ∈ R) for more information
about this application see [7]. The RHP is a type of boundary value for matrix valued functions
in the complex plane. In particular the problem is to look for a function Y (u) that satisfies the
following conditions

(1) Y (u) is analytic u = C \ [−1, 1].
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(2) For x ∈ (−1, 1), Y (u) admits boundary values Y±(x) = limϵ→0± Y (x+ iϵ), which are related
by the jump condition

Y+(x) = Y−(x)

[
1 x− z
0 1

]
.

(3) As u → ∞ we have that3

Y (u) = (I +O(1/u))unσ3

were we are using the notation

f(u)σ3 =

[
f(u) 0
0 1/f(u)

]
.

(4) As u → ±1, we have that

Y (u) =

[
O(1) O(log |1∓ u|)
O(1) O(log |1∓ u|)

]
.

In the case were n ̸= 0 the solution to the RHP is given by4

Y (u) =

 P q
n(u)

1
2πi

∫ 1

−1
P q
n(s)(s−z)

s−u
ds

− 2πi
χn−1

P q
n−1(u) − 1

χn−1

∫ 1

−1

P q
n−1(s)(s−z)

s−u
ds

 .(6)

In the n = 0 case we have the special solution

Y (u) =

[
1 1

2πi

∫ 1

−1
w(s)
s−u

ds
0 1

]
.(7)

For more information about the Riemann-Hilbert problem and for a proof that formulas given
above are in fact solutions to Riemann Hilbert see [6].

7. Transformation to Constant Jump

In order to transform our problem into a Riemann-Hilbert problem with constant jumps we make
the substitution

W (u) := Y (u)(u− z)σ3/2.

Making this substitution complicates our problem slightly because we no longer have that W (u) is
analytic on C \ [−1, 1] since W (u) is not analytic on the branch cut of

√
u− z. If we choose the

principle branch of
√
u− z then our contours were we have jumps look like

3O(1/u) is what is know as landau o notation. We say that f(x) = O(g(x)) as x → x0 if for x sufficiently close to
x0 there exists a constant M > 0 such that |f(x)| ≤ Mg(x).

4This holds when degP q
n = n so χn−1 ̸= 0 and

∫ 1

−1

P q
n−1(s)(s−z)

s−u = 1
zn (1 + o(1)).
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Σb

•<

<• •
Σa

Re

Im

−1 1

z

Because we have two different contours we also have two different jump conditions. Across Σa we
have the jump condition

W+(x) = W−(x)

[
1 1
0 1

]
.

Across the contour Σb we have the jump condition

W+(x) = −W−(x).

8. Invertibility of W (u)

Theorem 4. The matrix valued function Y (u) satisfies det(Y (u)) ≡ 1.

Proof. To show this we start by showing that det(Y (u)) is a bounded entire function and then use
our boundary conditions to show that det(Y (u)) → 1 as u → ∞. To show that Y (u) is an entire
function we can apply Morera’s theorem. Because Y (u) is analytic on C \ [−1, 1] we have that
det(Y (u)) is also analytic on C \ [−1, 1]. There if γ ⊂ C is a closed contour that does not enclose
any points from [−1, 1] we have that

∫
γ
det(Y (u))du = 0. Now suppose that γ is a closed contour

that contains of points points of Y (u). Then we can consider integrating over two different contours.
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γ1

γ2

Re

Im

<• •

In this figure γ1 has counter clockwise orientation and γ2 has clockwise orientation. Because our
jump matrix is upper triangular with 1s on the diagonal the limit of det(W (u)) is the same weather
u approaches some point x ∈ (−1, 1) from above or from below. Therefore if we move the curves
γ1 and γ2 closer to [−1, 1] the contributions from the bottom of γ1 and the top of γ2 will cancel out
and therefore we can see that integral of Y (u) over any closed curve is zero and therefore Y (u) is
entire. From condition (3) of the RHP we can see that det(Y (u)) → 1 as u → ∞ and therefore by
Liouville’s theorem we have that det(Y (u)) ≡ 1 as desired. □

Now using this theorem we can write

det(W (u)) = det(Y (u)(u− z)σ3)

= det(Y (u)) det((u− z)σ3)

= 1.

Therefore we also have that det(W (u)) ≡ 1. Which implies that [W (u)]−1 exists for all u ∈ C.

9. Existence and Uniqueness of the Solution

Theorem 5. Formulas (6) and (7) give the unique solution to the RHP described above in the n > 0
and n ̸= 0 cases respectively.

Proof. Suppose that Y1(u) and Y2(u) both satisfy the RHP. Because from the previous theorem we
have that det(Y2(u)) = 1 we can therefore consider the expression Y1(u)[Y2(u)]

−1. We can observe
that Y1(u)[Y2(u)]

−1 is an entire function of u. What’s more if we use our asymptotic condition as
u → ∞ we get

lim
u→∞

Y1(u)[Y2(u)]
−1 = lim

u→∞
(I +O(1/u))unσ3u−nσ3(I +O(1/u))

= I.

Therefore we can apply Liouvell’s theorem to get that Y1(u)[Y2(u)]
−1 ≡ I. So we have that Y1 = Y2

and therefore it follows that our RHP has only one solution. For a proof that these are in fact the
solutions see [6]. □
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10. Asymptotic Expansion for W (u)

We because we have an explicit formula for Y (u) we can expand Y (u) into an asymptotic series
by expanding each entry of Y (u) into an asymptotic series

Y (u) = (I +
An

u
+

Bn

u2
+

Cn

u3
+O(1/u4))unσ3 .

From this it follows that W (u) has the asymptotic expansion

W (u) = (I +
An

u
+

Bn

u2
+

Cn

u3
+O(1/u4))unσ3(u− z)σ3/2,

We can determine the values of An, Bn and Cn by expanding our solution for n ̸= 0 a series

Y11(u) = uu(1 +
κ
(n)
n−1

u
+

κ
(n)
n−2

u2
+

κ
(n)
n−3

u3
+O(1/u4)

Y12(u) = − χn

2πiun+1

(
1− κ

(n+1)
n

u
+

κ
(n+2)
n+1 κ

(n+1)
n − κ

(n+2)
n

u2
+O(1/u3)

)

Y21(u) = −2πiun−1

χn−1

(
1 +

κ
(n−1)
n−2

u
+

κ
(n−1)
n−3

u2
+O(1/u3)

)

Y22(u) =
1

un

(
1−

κ
(n)
n−1

u
+

κ
(n+1)
n κ

(n)
n−1 − κ

(n+1)
n−1

u2

+
κ
(n+2)
n+1 κ

(n+1)
n−1 + κ

(n+2)
n κ

(n)
n−1 − κ

(n+2)
n+1 κ

(n+1)
n κ

(n)
n−1 − κ

(n+2)
n−1

u3
+O(1/u4)

)

An(z) =

[
κ
(n)
n−1 − χn

2πi

− 2πi
χn−1

−κ
(n)
n−1

]

Bn(z) =

 κ
(n)
n−2 −κ

(n+1)
n χn

2πi
2πiκ

(n−1)
n−2

χn−1
κ
(n+1)
n κ

(n)
n−1 − κ

(n+1)
n−1


Cn(z) =

 κ
(n)
n−3 − χn

2πi
(κn+2

n+1κ
(n+1)
n − κ

(n+2)
n )

−2πiκ
(n−1)
n−3

χn−1
κ
(n+2)
n+1 κ

(n+1)
n−1 + κ

(n+2)
n κ

(n)
n−1 − κ

(n+2)
n+1 κ

(n+1)
n κ

(n)
n−1 − κ

(n+2)
n−1

 .

What’s more we can take the derivative of this asymptotic expansion to get

W ′(u) =
∂

∂u

[
(I +

An(z)

u
+

Bn(z)

u2
+O(1/u3)unσ3(u− z)σ3/2

]
=

[
−An(z)

u2
− 2Bn(z)

u3
+O(1/u4) + (I +

An(z)

u
+

Bn(z)

u2
+O(1/u3))(

nσ3

u
+

σ3

2(u− z)
)

]
unσ3(u− z)σ3/2

=
1

u

[
Γ0 +

Γ1

u
+

Γ2

u2
+O(1/u3)

]
unσ3(u− z)σ3/2,
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were Γ0, Γ1 and Γ2 are given by

Γ0 = (n+
1

2
)σ3

Γ1 =
zσ3

2
+ (n+

1

2
)Anσ3 − An

Γ2 =
z2σ3

2
+

Anzσ3

2
+ (n+

1

2
)Bnσ3 − 2Bn.

11. The Riemann-Hilbert Problem for W ′(u)

Now using this asymptotic behavior we can determine that W ′(u) will satisfy the new Riemann-
Hilbert problem.

(1) W ′ is analytic except on [−1, 1] and on the branch cut of
√
u− z.

(2) W ′ satisfies the same jump conditions as W.
(3) As u → ∞ we have

W ′(u) =
1

u

(
Γ0 +

Γ1

u
+

Γ2

u2
+O(1/u3)

)
unσ3(u− z)σ3/2.

(4) As u → ±1 we have the asymptotic behavior

W ′(u) =

[
O(1) O( 1

|u∓1|)

O(1) O( 1
|u∓1|)

]
.

12. Asymptotics for [W (u)]−1

Before we can use the RHP to prove a u-differential equation we need an asymptotic expansion
for [W (u)]−1. Fortunately because W (u) as an expansion in terms of inverse powers of u thing will
work out nicely and we get that W (u) has the asymptotic expansion

[W (u)]−1 = (u− z)−σ3/2u−nσ3(I +
∆1

u
+

∆2

u2
+O(

1

u3
)),(8)

where

∆1 = −An

∆2 = A2
n − Bn.

13. Determining the u-differential equation

If we consider

(u− z)(1− u2)W ′(u)[W (u)]−1 =

(−u3 + zu2 + u− z)
1

u

(
Γ0 +

Γ1

u
+

Γ2

u2
+O(1/u3)

)(
I +

∆1

u
+

∆2

u2
+O(1/u3)

)
= M(u) +O(1/u)

were

M(u) = (−u2 + zu+ 1)Γ0 + (−u+ z)Γ1 − Γ2 + (−u+ z)Γ0∆1 − Γ1∆1 − Γ0∆2.
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We can write out the entries of M(u) = [Mij(u)] explicitly

M11(u) =
1

2
+ n− (n+

1

2
)u2 + nzu+ 2κ

(n)
n−2 + (u− z)κ

(n)
n−1 − (κ

(n)
n−1)

2 +
2(n+ 1)χn

χn−1

M12(u) =
χn

2πi

[
2(n+ 1)u− (1 + 2n)z + (1 + 2n)κ

(n)
n−1 − (3 + 2n)κ(n+1)

n

]
M21(u) =

2πi

χn−1

[
2nu+ (1− 2n)z + (1− 2n)κ

(n−1)
n−2 − (1 + 2n)κ

(n)
n−1

]
M22(u) = −(

1

2
+ n) + (1 + 2n)u2 − 2nzu− 2(κ

(n)
n−1)

2 − 4κ
(n+1)
n−1 + κ

(n)
n−1(−2u+ 2u+ 4κ(n+1)

n ) +
4nχn

χn−1

.

Now if we subtract M(u) from both sides we get
(u− z)(1− u2)W ′(u)[W (u)]−1 −M(u) = O(1/u).

Now because the left hand of this expression is an entire function we which decays to zero as u → ∞
we can apply Liouville theorem to conclude the difference is a zero and therefore we have that

(u− z)(1− u2)W ′(u) = M(u)W (u).

Now we can use that W (u) = Y (u)(u− z)σ3/2 and therefore we have that

W ′(u) =

[
Y ′(u) + Y (u)

σ3

2(u− z)

]
(u− z)σ3/2.

Looking at the first column of both sides we can see that we have the system of ODEs
y′ = X(u)y

were y = (y1, y2), y1 = pn(u) and y2 = − 2πi
χn−1

pn−1(u) and were

X(u) =
M(u)

(u− z)(1− u2)
− I

2(u− z)
.

We can rewrite this system as a second order ODE that y1 satisfies namely

y′′1 −
(
X ′

12

X12

+X11 +X22

)
y′1 +

(
X ′

12X11

X12

−X12X21 +X11X22

)
y1 = 0.

14. Asymptotics for Ẇ (u)

To determine the asymptotic series for Ẇ (u) all that we need to do is differentiate the asymptotic
series for W (u) with respect to z doing this gives

Ẇ (u) =
∂

∂z

[
(I +

An

u
+

Bn

u2
+

Cn

u3
+O(1/u4))unσ3(u− z)σ3/2

]
= (

Ȧn

u
+

Ḃn

u2
+

Ċn

u3
+O(1/u4))unσ3(u− z)σ3/2 − (I +

An

u
+

Bn

u2
+O(1/u3))

σ3

2(u− z)
unσ3(u− z)σ3/2

=
1

u
(Ȧn +

Ḃn

u
+

Ċn

u2
+O(1/u3))unσ3(u− z)σ3/2

− 1

2u
(I +

An

u
+

Bn

u2
+O(1/u3))σ3(1 +

z

u
+

z2

u2
+O(1/u3))unσ3(u− z)σ3/2

=
1

u
(H0 +

H1

u
+

H2

u2
+O(1/u3))unσ3(u− z)σ3/2.
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were H0, H1 and H2 are given by

H0 = −σ3

2
+ Ȧn

H1 = −zσ3

2
− Anσ3

2
+ Ḃn

H2 = −Bnσ3

2
− zAnσ3

2
− z2σ3

2
+ Ċn.

15. The z-differential equation

To determine the z-differential equation apply our asymptotic expansion to get

(u− z)(1− u2)Ẇ (u)[W (u)]−1 =
(u− z)(1− u2)

u
(H0 +

H1

u
+

H2

u2
+O(

1

u3
))(I +

∆1

u
+

∆2

u2
+O(1/u3))

= (−u2 + zu+ 1)H0 + (−u+ z)H1 −H2 + (−u+ z)H0∆1 −H1∆1 −H0∆2.

Once again it follows from Liouville’s theorem that this result is exact and therefore we have that
(1− u2)(u− z)Ẇ (u) = A(u)W (u).

were A(u) = [Aij(u)] is given by
A(u) := (−u2 + zu+ 1)H0 + (−u+ z)H1 −H2 + (−u+ z)H0∆1 −H1∆1 −H0∆2.

We can also write our the entries of A(u) explicitly using the notation An = [pij], Bn = [qij] and
Cn = [rij]:

A11(u) = (−u2 + zu+ 1)(−1

2
+ ṗ11) + (−u+ z)(−z

2
+ ṗ11 + q̇11) +

z2

2
+

zp11
2

+
q11
2

− ṙ11 + (−u+ z)(−p11
2

− ṗ11p11 − ṗ22p21)−
zp11
2

− p211 + p12p21 + q̇11p11 + q̇12p21

−p211 − p12p21 + ṗ11(p
2
11 + p12p21) + ṗ12(p21p11 + p22p21) +

q11
2

− ṗ11q11 − ṗ12q21,

A12(u) = (−u2 + zu+ 1)ṗ12 + (−u+ z)(
p12
2

+ q̇12)−
q12
2

− zp12
2

− ṙ12

+(−u+ z)(
p12
2

− ṗ11p12 − ṗ12p22)−
zp12
2

− p11p12 + p12p22 + q̇11p12 − p11p12 − p12p22

ṗ11(p11p12 + p12p22) + ṗ12(p12p21 + p222) +
q12
2

− ṗ11q12 − ṗ12q22,

A21(u) = (−u2 + zu+ 1)ṗ21 + (−u+ z)(−p21
2

+ q̇21) +
q21
2

+
zp21
2

− ṙ21

+(−u+ z)(−p21
2

− ṗ21p11 − ṗ22p21) +
zp21
2

− p21p11 + p22p21 + q̇21p11 + q̇22p21

+p11p21 + p21p22 + ṗ21(p
2
11 + p12p21) + ṗ22(p21p11 + p22p21)−

q21
2

− ṗ21q11 − ṗ22q21

A22(u) = (−u2 + zu+ 1)(
1

2
+ ṗ22) + (−u+ z)(

z

2
+

p22
2

+ q̇22)−
z2

2
− q22

2

−zp22
2

− ṙ22 + (−u+ z)(
p22
2

− ṗ21p12 − ṗ22p22) +
zp21
2

− p21p22 + p222 + q̇21p12 + q̇22p22

−p222 − p12p21 + ṗ21(p11p12 + p12p22) + ṗ22(p21p12 + p222)−
q22
2

− ṗ21q12 + ṗ22q22.
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were Using the same method as for the u-dfferiental equation we can determine that our OPs will
satisfy

ÿ −

(
Ṁ12

M12

+M11 +M22

)
ẏ +

(
Ṁ12M11

A12

−M12M21 +M11M22

)
y = 0.

were M = [Mij] is given by

M =
A(u)

(1− u2)(u− z)
− I

2(u− z)
.

16. Concluding Remarks

Future work on the this project includes searching for formulas for αn and βn as functions of z.
In particular we would like to understand the singularities of αn and βn. Looking at the table in
section 3 it seems that singularities of αn and βn are roots of Legendre polynomials. Another future
goal is to generalize these results for weights of the form w(x) = (x− z1)(x− z2) · · · (x− zn) instead
of w(x) = x − z. Finally we would like to look for a way to write our string equations in terms of
recurrence coefficients without reference to the coefficients of our OPs.
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