ENCODING COHOMOLOGY, CLASSIFYING EXTENSIONS, AND EXPLICIT GALOIS

GERBS

NIR ELBER

ABSTRACT. We use group cohomology to provide some general theory to classify all group extensions of a
G-module A in the case of an abelian group G. The main idea is to use a group presentation of G provide a
group presentation of the extension using specially chosen elements of A. It turns out that this “encoding”
of the extension into elements of A enjoys a number of good homological properties, which are of separate
interest. This machinery is then used to provide explicit group presentations for the various Kottwitz gerbs

[Kot14], in special cases.
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1. INTRODUCTION

Given a Galois extension of fields of L/K with Galois group G and an algebraic torus T, a Galois gerb £
of L/K bound by T is a group extension

0—->T(L)—E&—G—0.

Roughly speaking, the goal of the paper is to provide explicit descriptions of these Galois gerbs—and group
extensions in general—by giving £ a group presentation.

More specifically, let L/K be a finite Galois extension of global fields with Galois group G. In ,
Kottwitz defined three global gerbs &1, &, and £5. The overall goal of this paper is to be able to provide
a somewhat explicit description of the group law for &; in the toy case of L = Q({,) and K = Q for ¢ a
prime-power. Along the way, we will develop various tools which suggest that the methods can be feasibly
extended beyond this toy case.

To describe the approach, we quickly recall the definitions of £, &, and £5; more details are provided in
Let Vi denote the set of places of a global field F'. We begin with the following short exact
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sequences.
(X) 0= Z[Vp]o = Z[VL] = Z —0
(A) 0= L =Af - A7/L* =0

Selecting the global fundamental class oy (L/K) = up/x € ﬁ2(G,Az /L*), we may construct the Galois
gerb

0 — Homy(Z,A} /L*) = & — G — 0.

Similarly, by gluing together local fundamental classes, we may construct a class as(L/K) € H 2(G,AY)
defining the Galois gerb

0 — Homgy(Z[VL],AF) = & — G — 0.

Constructing &3 is more difficult. Denote the set of morphisms of short exact sequences from to by
Homyz (X, A). It turns out that

H?(G,Homgz(X,A)) —— H?(G,Homgz(Z[VL],A}))

(1.1) l l

H?(G,Homy(Z, A} /LX) —— H?(G,Homg(Z[VL], AY /L¥))

is a pull-back square, so we can check that we can construct a unique element «(L/K) € H?(G, Hom(X, A)) to
project down to a1 (L/K) € H?(G,Homg(Z, Ay /LX) and az(L/K) € H*(G,Homy(Z[VL],AY)). Projecting
a(L/K) to H*(G,Homgz(Z[VL]o, L*)) yields az(L/K) and hence the Galois gerb

0 — Homgz(Z[Vi]o, L™) = &3 — G — 0.

Most of this definition can be turned directly into a computation. For example, a 2-cocycle representing
a1(L/K) = ur i is not too hard to construct, especially in our toy case of Q((,)/Q. Continuing, finding
a representative for ao(L/K) is simply a matter of constructing local fundamental classes and then gluing
them together appropriately. However, it is harder to make the pull-back square of In short, this
requires choosing a representative for as(L/K) in such a way to appropriately cohere with our choice of
representative for a;(L/K). This is by far the hardest part of this approach.

1.1. Overview. The layout of the paper is as follows. We review some background in To write
down the group law of a group extension of a group G by a G-module A requires being able to easily carry
around 2-cocycles in Z2(G, A). As such, is interested in studying how one can, in general, encode
cocycles. This section is rather pure homological algebra and is largely of separate interest.

The rest of the paper is interested in abelian groups G. In we describe a natural way to give
a group extension of G by a G-module A a group law and use this to provide a classification of group
extensions. In we recast this theory in the more abstract machinery of

Having established enough algebra, we turn to executing the above computation. In we use
the framework provided by to write down local fundamental classes of abelian extensions. Lastly,
[section 7] finishes the computation by gluing the local fundamental classes together appropriately to represent
a2(Q(¢p)/Q) and so also a3(Q((p)/Q), in our toy case.

1.2. Acknowledgements. This research was conducted at the University of Michigan REU during the
summer of 2022. The author would especially like to thank his advisors Alexander Bertoloni Meli, Patrick
Daniels, and Peter Dillery for their eternal patience and guidance. Without their advice, this project would
have been impossible. The author would also like to thank Maxwell Ye for a number of helpful conversations
and consistent companionship. Without him, the author would have been left floating adrift and soulless.

2. BACKGROUND

In this section, we familiarize ourselves with various tools used throughout the paper.

2.1. Homological Algebra.
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2.1.1. Definitions. Fix a group G, not necessarily finite. We take a moment to review properties of group co-
homology and group homology will be used throughout. There is a unique sequence of functors H*(G, —): Modg —
Ab for i € N satisfying the following set of properties.

[ ] HO(G, —) = HOmz[G] (Z7 —) = (—)G.

e H'(G,I)=0 for all i > 1 and injective modules I.

e There is a functor taking short exact sequences

0+A—-B—-C—0
of G-modules to long exact sequences
0— H°G,A) - H'(G,B) - H'(G,C) - H'(G,A) - H'(G,B) — H(G,C) = H*(G,A) — --- .

The functors H*(G, —) are the cohomology functors. Analogously, there is a unique sequence of functors
H;(G,—): Modg — Ab for i € N satisfying the following set of properties.

e Hy(G,—) =Z®gq) —

e H;,(G,P)=0 for all ¢ > 1 and projective modules P.

e There is a functor taking short exact sequences

0A—-B—-C—=0
of G-modules to long exact sequences

-+ — Hy(G,C) = Hi(G,A) — H(G,B) — Hi(G,C) — Hyo(G,A) — Hy(G,B) = Hy(G,C) — 0.
When G is a finite group, it turns out that we can tie H® and H; together by defining Tate cohomology: for
a G-module A, define
H'(G, A) i>1,
A%/imNg i=0,
keI‘Ng/IgA 1= —1,
H_, 1(G,A) i< -2
where Ng: A — A is the norm map, and I is the kernel of the augmentation map e: Z[G] — G sending
e: g+ 1 for each g € G. Then we have the following.

Hi(G, A) =

Theorem 1 ([AW10, Theorem 3)). Let G be a finite group. There is a functor taking short exact sequences
0+A—-B—-C—0
of G-modules to (very) long exact sequences
> H G, A) - H(G,B) - H'(G,C) — H*(G,A) = H°(G,B) —» H(G,C) — - - - .

Throughout the paper, we will essentially exclusively assume that G is finite and will thus use Tate
cohomology unless explicitly stated otherwise.

2.1.2. The Bar Resolution. To actually compute group cohomology, one can use the bar resolution. We
will not need the full bar resolution for Tate cohomology except in a few circumstances, so we will content
ourselves with describing H(G, A) and H%(G, A) for a G-module A. Outside these, we will say explicitly
when we need to refer to the full standard complex from |[AW10].

We have the following definitions.
Definition 2. Fiz a group G and G-module A. Then a 1-cocycle is a function f: G — A satisfying the
relation

flgg') = f(g)+9-£(9)
for each g,g' € G. The set of 1-cocycles is denoted Z'(G, A).
Example 3. Let G act on an abelian group A trivially. Then Z'(G, A) = Homgz(G, A).

Definition 4. Fiz a group G and G-module A. Then a I-coboundary is a function f: G — A such that
there exists a € A such that
flg)=(g—1)-a
for each g € G. The set of 1-coboundaries is denoted B (G, A).
4
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One can check that BY(G, A) C ZY(G, A), and it is a fact that
HY(G,A) = Z(G,A)/B (G, A).
There is a similar description for H%(G, A).

Definition 5. Fiz a group G and G-module A. Then a 2-cocycle is a function f: G* — A satisfying the
relation

9 flg".9") + fl9.9'9") = fl9.9') + flag', 9")
for each g,9',9" € G. The set of 2-coboundaries is denoted Z?(G, A).
Example 6. If G is cyclic of order n generated by o € G, then any a € A® can define the 2-cocycle
f(0_170__]) — \‘Z +]J a

n

where 0 < 4,5 < n.

Definition 7. Fiz a group G and G-module A. Then a 2-coboundary is a function f: G2 = A such that
there exists b: G — A with

fg,9") = g-b(g") —blgg") + b(g)
for each g, g’ € G. The set of 2-cobounaries is denoted B%(G, A).
Again, one can check that B%(G, A) C Z%(G, A), and it is again a fact that

H?*(G,A) = Z*(G,A)/B*(G, A).

2.1.3. Induced Modules. Let G be a group and H C G a subgroup. The following is our definition.

Definition 8. Fix a group G with subgroup H C G. Then, given an H-module M, we can construct the
induced module ITndS; M as the set of functions ¢: G — M satisfying o(hg) = he(g) for each h € H. Here,
the G-action on Indg M is given by

(g-9)g) = old'9).
Remark 9. In the absence of an explicitly defined subgroup H C G, we will assume that H is the trivial
subgroup.

These modules enjoy a number of nice properties.

Lemma 10 (|Mil20, Remark I1.1.3]). Fiz a finite group G with subgroup H C G and H-module M. Then
Ind$; M is (canonically) isomorphic to M ®zm) ZIG].

Sketch. Send a morphism ¢ € Indg M to

Z o(9) ® g~" € M @z ZIG).
geG
Note that this sum is finite because G is finite. |

Remark 11. Here is yet another description: when G is finite, Indg M is isomorphic to the set of functions
f: G/H — M with G-action given by

(g-f)x)=g-f(g7'x).
Here is the main result we will want out of induced modules.

Lemma 12 (Shapiro, [Mil20, Proposition 1.11]). Fiz a group G with subgroup H C G and H-module M.
Then, for any i € Z, there is a canonical isomorphism

H(G,Ind$ M) — H'(H, M).

One can track this isomorphism explicitly from the left to right for ¢ > 0 using the bar resolution. For
example, for i = 1, we take a 1-cocycle f: G — Indg M to the composite

H L 1md$ M4

where the last map is evaluating at the coset eH € G/H.
5
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Corollary 13 ([Mil20, Corollary 1.12]). Fiz a finite group G, and let 1 denote the trivial subgroup. Then
any abelian group M has

H'(G, M ®4 Z[G)) = H'(G,Homg(Z[G], M)) = 0.

Proof. Note M ®7 Z[G] = Homg(Z[G], M) = Ind§ M, so use [
2.1.4. Change of Group. Let G be a finite group and A a G-module. Given a morphism f: A — B of
G-modules, we know that we induce a morphism

HY(G, f): H(G,A) > H(G, B)

because H {(G, —) is a functor. It will benefit us somewhat to be able to change the group here as well.

For most of the paper, we will only need two change-of-group morphisms. Observe that, given a subgroup
H C G, we can take a 1-cocycle f: G — A and restrict it to f|y. Additionally, 1-coboundaries G restrict to
1-cobounaries of H, so we have induced a morphism

Res: H'(G,A) — H'(H, A).

A similar story works for defining the map Res: H%(G, A) — H?(H, A), and in fact one can define for all
i € Z a morphism
Res: H(G,A) — H'(H, A)
by extending the same approach.
Next, fix a normal subgroup H C G. Then given a G-module A, we see that A? is a G/H-module. Now,
we can take a l-cocycle f: G/H — A and then define the composite

G—G/HL A" < 4
to be a 1-cocycle in Z!(G, A). As before, this will induce a map
Inf: H' (G/H,A") — H'(G, A).
And we also get to extend this morphism to all indices i € Z as
Inf: H (G/H,A") — H(G, A)
by extending this construction.

Remark 14. More generally, a group homomorphism ¢: H — G can take a 1-cocycle f: G — A to the
1-cocycle

H%G4 A
Thus, we define a morphism H'(G, A) — H'(H, A). Again, this can be extended to all indices i € 7.

2.1.5. Cup Products. Let G be a finite group. Given two G-modules A and B, we can make A ®z B a G-
module by letting G acting diagonally. Now, by [AW10, Theorem 4] there is a unique family of cup-product
morphisms

U: H(G, A) @z H (G, B) — H" (G, A®y B)
for all G-modules A, B and i, j € Z satisfying the following.

(1) The cup products U are natural in A and B.
(2) The cup product

U: H%(G, A) @2 H (G, B) — H(G, A®y B)
is induced by AY ®7 B¢ — (A®z B)°.
(3) Given an exact sequence
0+A—-B—=>C—=0

of G-modules and a G-module M such that
0=2A®zM =Bz M —-C®z M —0
is also exact, our cup product commutes with § morphisms in that
(6¢) Um = 6(cUm) € HHITHG, Ay M)
for c € ﬁ[i(G,C) and m € I;U(G,M).
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(4) Given an exact sequence
0+A—-B—->C—=0

of G-modules and a G-module M such that
0->M®,A—>M®zB—M®;C—0
is also exact, our cup product commutes with § morphisms in that
muU (6c) = (=1)'6(m U c) € HHH G, M @7 A)

for m € H'(G, M) and ¢ € H(G, C).
There are explicit formulae for these cup products in terms of the standard resolution in [AW10] p. 107],
which we will occasionally reference.
Here are a few properties of cup products which we will use without citation.

Proposition 15 (JAW10, Proposition 9]). Let G be a finite group and A, B, and C all G-modules. Then,
fora € H(G,A) and b€ H* (G, B) and ¢ € H*(G,C), the following are true.

e (aUb)Uc=aU(bUc), where we have identified (A @z B) ®z C with A ®z (B ®z C).

e aUb=(-1)¥(bUa), where we have identified A @z B with B ®7 A.

e For a subgroup H C G, we have Res(a Ub) = (Resa) U (Resb).

Remark 16. Oftentimes we might have some canonical map p: A ®z B — C of G-modules, in which case
we might directly refer to the cup product map as the composite

HY (G, A) ®z H (G, B) = H(G, Aoz B) 3 HT(G,0)
induced by .
2.1.6. Periodic Cohomology. Some results from will mirror the theory of periodic cohomology, so
we take a moment to state the main theorem here. We have the following definition.

Definition 17. A finite group G has periodic cohomology if and only if there is a d €
Z 7% and natural isomorphism

HY(G,—) = H*YG,-)
for each i € Z.
Then one can show the following.

Theorem 18 (|Bro82, Theorems V1.9.1, VI.9.5]). Let G be a finite group. Then the following are equivalent.

(a) G has periodic cohomology.

(b) There is a nonzero i € Z such that H'(G,Z) = Z]#GZ.

(¢) There is a nonzero i € Z and x € H'(G,Z) and z¥ € H=(G,Z) with

zUzY =2V Uz =[] € H(G,2).
Here, the cup products are induced lzy the isomorphism 7 Qg7 7 = 7.
(d) For some nonzero i,d € Z and x € H'(G,Z), we have a natural isomorphism

(zU—): H(G,—) = H*(G, -).
(e) All Sylow p-subgroups of G are cyclic.
Example 19. If G is cyclic of order n generated by o, then one can show that G has 2-periodic cohomology:
note
(X U _): ﬁZ(G7 _) = ﬁi+2(G7 _)

defines a natural isomorphism, where x € ﬁIQ(G, Z) is represented by the 2-cocycle

(0'.af) > |52 ).

n
where 0 < 4,7 < n.

We will not prove but it is useful to note that these periodic cohomology theories all come
from cup products and that they can be witnessed by an “invertible” element in the cohomology ring
H*(G,Z). These themes will reoccur.

7
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2.2. Group Extensions. We continue with G as a group and A as a G-module. We have the following
definition.

Definition 20. Let G be a group and A a G-module. A group extension £ of G by A is a short exact sequence
0-A5ESG—0
such that any a € A and w € € have
m(w) - ¢(a) = ¢ (waw™") .
For example, Galois gerbs are group extensions.

An isomorphism of group extensions £ — & is a morphism of the corresponding short exact sequences,
as follows.

0 A & G 0
0 A & G 0

By the Five lemma, all such morphisms must be isomorphisms of short exact sequences, which justify why
these are isomorphisms of group extensions.
We have the following classification result.

Theorem 21 (|Bro82, Theorem IV.3.12]). Let G be a group and A a G-module. Then isomorphism classes
of group extensions € of G by A are in natural bijection with cohomology classes in H*(G, A).

Sketch. We will describe the maps from 2-cocycles to group extensions and vice versa; that the maps are
well-defined and provided the needed isomorphism are a matter of computation. In one direction, fix a group
extension

0-A5ESG—0.

Now, choose a set-theoretic section s: G — & of 7, and it turns out that the function c¢: G? — A given by
c(g,h) = s(9)s(h)s(gh)~*
defines a 2-cocycle ¢ € Z%(G, A).
In the other direction, fix a 2-cocycle ¢ € Z?(G, A). Then we build the extension

02ASEDG—=0

as follows. As a set, &, = A x G, with group law defined by
(a,9)(d’,g') = (a+g-d +clg.9),99).

The identity is (—c(1,1),1). And lastly, we define w: & — G by projection and ¢: A — &. by a —
(a—c(1,1),1). [ |

The isomorphism of also behaves well with the functoriality of our cohomology groups. For
example, a group homomorphism ¢: G — H and G-module A induces a map ¢: H2(H,A) — H?*(G, A)
(see . On the side of group extensions, given a class u € H?(H, A) corresponding to the group
extension &, we can construct £ corresponding to @(u) by pulling back as follows.

0 A § H 0
T T
0 A P G 0

Similarly, a G-module homomorphism f: A — B induces a map f: H?*(G,A) — H*(G,B). On the side of
group extensions, given a class u € H 2 (G, A) corresponding to the group extension &£, we can construct &’

corresponding to f(u) by pushing out as follows.

A
[
B

0 G 0

0 0 ¢t
Q
o
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2.3. Class Field Theory. For our purposes, class field theory will be used to be able to describe certain
cohomology groups associated to local and global fields. So as not to confuse Hilbert’s Theorem 90 with the
(harder) results of class field theory, we will state it now.

Theorem 22 (Hilbert’s Theorem 90). Let L/K be a Galois extension of fields with Galois group G. Then
HYG,L*)=0.
Note that we do not assume our fields are local or global.

2.3.1. Local Class Field Theory. We begin with the local story. Let L/K be a finite Galois extension of
degree n and Galois group G. Because we are interested in extensions, we begin with what H? (G, L*) looks
like.

Theorem 23 ([Mil20, Lemma I11.2.2]). Let L/K be a Galois extension of local fields of degree n and Galois
group G. Then there is a canonical isomorphism
inv: H? (G,L*) = 1Z/Z.
The element of H?(G, L) corresponding to 1 deserves a name.
Definition 24. Let L/K be a Galois extension of local fields of degree n and Galois group G. Then the local
fundamental class ur k is the class in H? (G, L*) with
invur g = 1/n.

The local fundamental class satisfies a number of good functoriality properties.

Proposition 25 ([Mil20, Lemma I11.2.7]). Let M/L/K be a tower of finite local field extensions where M /K
is Galois. Then

Resupr x = unr/r-
If L/K is also Galois, then
Infup = [M: Lupk.
With the machinery in place, we might as well mention the local Artin reciprocity map.

Theorem 26 (|Mil20, Theorem II1.3.1]). Let L/K be a finite Galois extension of local fields with Galois
group G. Then the map

(up/x U—): H(G,Z) — H™*? (G, L”)
is an isomorphism for all i € Z.

Remark 27. More generally, if T is an algebraic K -torus which splits over L, then the map
(up/re U—): H(G, X.(T)) — H*? (G, L)
is an isomorphism for all i € Z; see [PR94, Theorem 6.2].

2.3.2. Global Class Field Theory. We now turn to the global story. Given a global field K, we let Vi denote
its set of places.

Let L/K be a finite Galois extension of global fields of degree n and Galois group G := Gal(L/K). To be
able to make class field theory, we need to fix the correct objects.

Definition 28. Given a global field K, we define the ring of adelés to be the restricted direct product
Ay = H (Ky, O).
veVi

Namely, we are considering infinite tuples (ay)yev, , where a, € K,, for each v € Vi but a,, € O, for all but
finitely many v € Vi.

Observe that there is a natural embedding K — Ak by

a = (a)vEVK'

This embedding descends to an embedding K* < Ay /K>, which lets us consider the quotient Ay /K*.
It turns out that A} and Ay /K™ are the right objects to study. For example, we have the following

result.
9
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Theorem 29 ([Mil20, Proposition 2.5]). Let L/K be a finite Galois extension of global fields with Galois
group G. Then the various restrictions define an isomorphism

7 >< 1 X
H'(G,A})~ @ H'(G, L)),
u€Vi
for i >0, where the v(u) € Vi, is a chosen prime over each u € V.
We also have a global invariant map.

Theorem 30 ([Tat10} p. 194]). Let L/K be a finite Galois extension of global fields of degree n with Galois
group G. Then there is a canonical map

inv = Z inv,: H*(G,A}) — Q/Z
VeV,
induced by the local invariant maps and[Theorem 29 This map induces a canonical isomorphism
inv: H*(G, A} /L*) = L7/

As before, the canonical generator we chose will be of special interest.
Definition 31. Let L/K be a Galois extension of global fields of degree n with Galois group G. Then the
global fundamental class ur, i is the class in H? (G,AZ/LX) with

invur, g = 1/n.
And, for fun, here is our global Artin reciprocity map.

Theorem 32 ([Tatl0} p. 197]). Let L/K be a Galois extension of global fields with Galois group G. Then
the map

(up/ U—): H(G,Z) — H*2 (G, A} /LX)
is an isomorphism for all i € 7.

2.4. The Kottwitz Gerbs. We quickly recall the construction of the Kottwitz gerbs &, &, and . Given
a global field K, let Vi denote the set of places of K. We follow [Kot14] and |Tat66].

Fix a finite Galois extension of global fields L/K with Galois group G := Gal(L/K). For later use, we
will also let G, C G denote the decomposition group of a place v € V. Now, we build two short exact
sequences, as described in To begin, we note that the augmentation map Z[Vik| — Z induces the
short exact sequence

(X) 0—>Z[Vplo = Z|VL] = Z =0
where Z[V1]o is the kernel of Z[V] — Z. We also have the short exact sequence
(A) 0L A -A/L* =0

where the inclusion L™ < AY is the diagonal one.

2.4.1. Construction of & and . We now construct the Kottwitz gerbs one at a time. For &, we let
o1 (L/K) € H? (G,Homgz(Z,A} /L)) denote the global fundamental class. Then we use the recipe from
to construct the group extension

0—A;/L* = &(L/K) — G — 0.
This completes the construction of & (L/K), so we see that constructing £ (L/K) is exactly as hard as
constructing the global fundamental class.
To construct &, let Dy := Homy(Z[VL], —) denote the algebraic torus with character group Z[Vy]. Then
& (L/K) is the Galois gerb associated to a particular class g € H? (G,D2(Az)). To construct this class, we
need the following lemma.
Lemma 33 ([Tat66, p. 714]). Let L/K be an extension of global fields with Galois group G, and let V7,

and Vi denote the set of places of L and K respectively. Given a place v € Vi, let G, C G denote its
decomposition group. Then, for any i € Z,

ﬁi(G,HomZ( H H 1)(u)7 )
u€Vk

where the product is over places u € Vi with a chosen place v(u) € Vi, above u.
10
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Proof. We give the proof for later use. This is essentially a matter of separating our places and then applying
Shapiro’s lemma. For each u € Vi, let V,, C V}, denote the set of places in L above u. Then we see

Zvi) ~ € Z[V.]
u€Vi

as G-modules because the G-orbit of a place v € VI, lying over a place u € Vi is exactly V,,. Thus, we have
the isomorphisms

H'(G,Homgy(Z[VL), M)) ~ H’ <G,HomZ ( T Z[V,J,M))

It remains to show that
~ 7?7 o~
H' (G,Homgz(Z[V,], M)) ~ H' (G (), M).

Well, for each place u € Vi, find a place v(u) € Vi, above it. As discussed above, V,, is a transitive G-set,
and the stabilizer of v(u) is G, ). Thus, Vi, >~ G ,,)\G as G-sets (note the distinction between left and right
G-sets is somewhat irrelevant because gG, = G,g for each g € Gy), so Z[V, | ~ Z[G,,)\G] as G-modules.
Thus, we may write
H' (G, Homg(Z[V,], M)) =~ H (G, Homz(Z[G ) \G], M))
~ M (G,MorSet(Gv(u)\G, M))
~ H'(G,Colndg,  (M)),

where the last isomorphism is because Morse (G () \G, M) =~ CoIndg(M) by taking f: Gyw)\G — M to

the function g — gf (Gvg_l). Now, this last cohomology group is isomorphic to fli(Gv(u), M) by
thus finishing. [ ]

Remark 34. Tracking through the application of Shapiro’s lemma above, we can see that the isomorphism
behaves as
Hi(G, Homz(Z[VL], M)) %8 H (G, Homy(Z[VL], M)) °%° H(G,, M)

on components; here eval, is induced by the evaluation-at-v map Homy(Z[VL], M) — M.

Thus, to specify as € H? (G,Dy(AL)), it is enough to specify a set of classes
Oéz(u) S j—_jQ (Gv(u)vAZ)

for each u € V. To do so, we note that G,y = Gal(L,(,)/Ky), so we use the natural embedding
iy: Ly = AT (for u € V) to set

(%) (u) = Zv(u) (Oz(LU(u)/Ku)),

where a(Ly )/ Ku) € g (Gv(u), L:(u)) is the local fundamental class. Now, from «s, we construct Eo(L/K)
again from as the extension

0 — Dy(AF) = &(L/K) — G — 0.

This completes the construction of &;.
11
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2.4.2. Constructing £5. Lastly, we construct £. Roughly speaking, we note that the morphism of short
exact sequences from and can be specified by commuting morphisms Z[V;] — A} and Z — A} /L™,
inducing the last arrow as follows.

0 L~ AS AXJL* —— 0

Intuitively, this should let us specify a cohomology class as € H?(G,Homz(Z[VL]o, L*)) from melding
together oy and as.

To rigorize this, we let Homz(X, A) denote the group of morphisms of short exact sequences from to
we let 7y, 7o, w3 denote the projections from Homyz (X, A) to Homz(Z[Vi]o, L), to Homz(Z[VL], AT),
and to Homy(Z, A} /L*) respectively. Then the above argument tells us that

Homgz (X, A) —=— Homgz(Z[VL]o, AY)

g 1

Homy,(Z, L*) —— Homy(Z[VL],A})

is a pull-back square. Then we can check via that H'(G, Homg(Z[VL), AT)) = 0, which gives the
following result.

Lemma 35 (|Tat66), p. 716], [Kot14, Lemma 6.3]). Fiz everything as above. Then

H2(G,Homy(X, A)) —=— H2(G,Homgy(Z[Vi]o, AY))

| |

H%(G,Homy(Z, L*)) —— H2(G,Homg(Z[V], AY))

is a pull-back square.

To finish, we note that one can check that as and a; have the same image in H2(G, Homy (Z[VL],AT))
so that promises us a € H%(G,Homg (X, A)) such that mea = ag and 7 = . These together
let us construct az = msa € H?(G,Homgz(Z[VL]o, AF /L*)) and hence E3(L/K) from [Theorem 21f as the

extension
0—D3(L™) = &(L/K) — G — 0,
where D3 := Homg,(Z[VL]o, —).
Remark 36. It is true that certain morphisms fo: Z[Vi] — AT induce a morphism f3: Z[Vi]o — L™ making

0 —— Z[Vi]o —2 Z[Vy)]

3 f3 lfz

0 LY —Y 5 A

commute by solving a’ f3 = fob' (when possible). (Here, a’ and b’ are the obvious maps.) However, it is not
true that oo uniquely determines ag like this because the induced map

a': H?(G,Homg(Z[Vi]o, L*)) — H*(G,Homg(Z[Vi]o, A}))

need not be injective in general, so knowing a’az = b'as does not specify as in general.

3. GENERALIZED PERIODIC COHOMOLOGY

The goal of this section is to separate out what we can, a priori, expect from “encoding” modules from
what is a special property of the specific encoding module we study in the rest of the paper. As such, we
should begin by motivating encoding modules.

12
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Throughout this section, let G be a finite group. When G = (o) is a cyclic group of order n, it is an
amazing feature that there is some y € H?(G,Z) granting isomorphisms

(3.1) (xU—): HY(G, M) — H*(G, M)
for any G-module M. In fact, it is not too hard to write down y as being represented by the “carrying”

2-cocycle
i g i+
(a,a)H{ : J

SO is telling us that we can represent each cohomology class of H? (G, M) by a 2-cocycle of the form

(0", 07) = V“J o
n
for some o € MY. This “classification” of 2-cocycles in H 2(G, M) is incredibly useful and makes the
cohomology of cyclic groups very easy to work with computationally.
From one perspective, this classification of 2-cocycles for cyclic groups says that we can retrieve all 2-
cocycles by keeping track of the single element o € M% = H°(G, M), modulo some equivalence relation
coming from Tate cohomology. The algebraic way to choose a single element of M is by elements in

Homy, (Z, M%) = Homgg)(Z, M).
As such, one can phrase as providing a natural isomorphism

H°(G,Homy(Z,—)) = H*(G,—).
Here, the choice of G-module Z in some sense “encodes” 2-cocycles from H 2(G, M) into a single morphism
from Z to M, modulo some equivalence relations.

More generally, permit G to be non-cyclic, and suppose we have a G-module Z|[G]
and G-submodule I with isomorphisms

H° (G, Homy(Z[G)™ /1, M)) — H*(G, M),

™ /] for some m > 0

for any G-module M. In this case, we see we are still encoding 2-cocycles into morphisms, where these
morphisms look like

R . _ Homgg (Z[G]™ /1, M)
H? (G, Homg (Z[G)™ /T, M) = o o Gm TT A1)

To see the encoding here, view the numerator as choosing out an m-tuple of elements of M in the same way
that we would choose morphisms Homgg) (Z[G]™, M), but we can’t just choose any m elements because
they must saitsfy some relations dictated by I. Then the denominator provides an equivalence relation of
the m-tuples which determines if two tuples live in the same “class.”

The above discussion is intended to motivate the following definition.

Definition 37. Let G be a finite group and r € Z be an index. Then a G-module X is an r-encoding
G-module if and only if there is a natural isomorphism

®,: H'(G,Homy (X, —)) = H*" (G, —)
for some i € Z.

We will abbreviate the G from “r-encoding G-module” whenever confusion is unlikely to arise.
It will turn out that the index i € Z is more or less irrelevant. Indeed, we will be able to show the following
equivalences.

Theorem 38. Let G be a finite group. Given a G-module X and index r € Z, the following are equivalent.
(a) X is an r-encoding module.
(b) If r > 0, then X is cohomologically equivalent to Igr; if r < 0, then X is cohomologically equivalent
to Homy (I, Z).
(¢) There is x € H(G, X) granting a natural isomorphism
(zU—): H(G,Homyz(X, —)) = H*"(G, )

for any i € Z.
13
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(d) There are x € H™(G,X) and z¥ € H™"(G,Homy(X,Z)) such that
zUzY =[1] € HY(G,Z) and 2V Uz = [idx] € H(G, Homz (X, X)).

If X is also Z-free, these are equivalent to
(e) fIT(G7X) =Z/#GZ and ﬁIO(G,HomZ(X, X)) is cyclic.

Proof. The equivalence of (a) and (b) follow from combining [Proposition 71| with [Example 72| and [Exam-|

ple 1050 The equivalence of (c¢) follows from [Corollary 75| Continuing, the equivalence of (d) follows from
Proposition 84} Lastly, the equivalence of (e) follows from [Proposition 96} |

When we may take X = Z (e.g., when G is cyclic), we are essentially studying groups with periodic
cohomology, so many results and arguments in this section will mimic those of However,
periodic cohomology requires somewhat stringent conditions on the group itself, and allowing this “free
parameter” X will permit general groups at the cost of a perhaps more complex X. For example, when
r > 0, we can take X = I&" for any finite group G (as seen from , though this G-module is
quite rough to handle.

In general, it can be an interesting question what specified abelian groups X can be turned into encoding
modules or dually what the encoding modules for a given group G look like. Many of the results in this
section are motivated by a desire to provide partial answers or intuition towards answers to these questions.

3.1. Shiftable Functors. The main point of this subsection is to set up some theory around what we call
shiftable functors, whose main application will be in the proofs of [Corollary 50| and [Corollary 51}

Definition 39. Let G be a finite group. Then a functor F': Modg — Modg is a shiftable functor if and
only if F is both additive and sends induced modules to induced modules.

The main point to shiftable functors F' is that the dimension-shifting short exact sequences
0-Ig®2A— ZG®zA — A -0
0—- A — Homz(Z[G],A) - Homgz(Ig,A) — 0

will remain exact upon applying F' (because F is additive, and these short exact sequences are Z-split), and
the middle term will remain induced.
Here are our key examples of shiftable functors.

Lemma 40. Let G be a finite group and X a G-module. Then Homgz(—, X) is a (contravariant) shiftable
functor.

Proof. We already know that Homgz(—, X) is additive, so the main check is that we send induced modules
to induced modules. Well, without loss of generality, let M := Z[G] ®z A be our induced module. Then the
tensor—-hom adjunction gives

HOmz(M, X) = HomZ(Z[G] ®z A, X) ~ HOIIlz(Z[G}7 HomZ(A, X)),
so we are done because the rightmost G-module is induced. |

Lemma 41. Let G be a finite group and X a G-module. Then Homy (X, —) is a shiftable functor.

Proof. Tt is known that Homgz (X, —) is an additive functor, so we just need to check that it sends induced
modules to induced modules. Well, pick up some induced module M := Homgz(Z[G], A) for some G-module
A. Then we see

Homyz (X, M) = Homgz (X, Homz(Z[G], A)) ~ Homz (X ®z Z[G], A),

which is induced by noting X ®z Z[G] is induced and using [Lemma 40 |
Lemma 42. Let G be a finite group and X a G-module. Then X ®z — is a shiftable functor.

Proof. Again, X ®7— is additive, so we just need to check that it sends induced modules to induced modules.
Well, suppose M := Z|G] ®z A is an induced module. Then we note the isomorphisms

are all also isomorphisms of G-modules. Because Z[G] ®z (X ®z A) is induced, we are done. |

Of course, we can create some crazier examples of shiftable functors by melding them together.
14
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Lemma 43. Let G be a finite group. If F' and F' are shiftable functors, then F o F' is a shiftable functor.
Proof. This follows directly from the definition. |
Example 44. The functor

A — Homy, (A &7 Homz(Ig, I ®y A), Ig)
is a shiftable functor.
3.2. Shifting by Cup Products. A key property of shiftable functors is how we will be able to relate them
to each other via cup products. With this in mind, we have the following definition.

Definition 45. Let G be a finite group. Then we define a shifting pair (F, F', X,n) to be a pair of shiftable
functors F' and F' equipped with a natural transformation

Ne: X @z F = F'.
The following will be our key example.
Example 46. Given G-modules X and X', there is a canonical composition map
ne : Homz (X', X) ®z Homz (X, —) = Homgz (X', —)
p® f = foyp
so (Homz(X, —),Homz (X', —),Homy (X', X),ne) is a shifting pair.
In particular, cup products assemble into natural transformations.
Len}\ma 47. Let G be a finite group, and let (F, F', X, n) be a shifting pair. Then, given indices r,s € Z and
c € H" (G, X), the cup-product maps
(cU—): H (G, F—) = H""*(G,F'—),
induced by n, make a natural transformation of cohomology functors.
Proof. Given a G-module A, we note that our cup-product map is defined by
H*(G,FA) S5 H(G, X @7 FA) ™ H5(G, F'A).

So, to check naturality, we pick up a G-module homomorphism ¢: A — B and draw the following diagram.
H*(G,FA) 2= H™(G, X @7 FA) — H™+5(G, F'A)

1| 1| 1|
H*(G,FB) -=“= H™(G, X ®z FB) — H"(G, F'B)
The left square commutes by functoriality of cup products [Neul3, Proposition 1.5.3], and the right square
commutes by the naturality of n and functoriality of H"*5(G, —). |

It will turn out occasionally that we have multiple evaluation maps flying around, so we pick up the
following lemma for reassurance.
Lemma 48. Let G be a finite group, and let A, B, C' be G-modules equipped with maps
pap: ARz B— X
pxc: X Rz C — Z
ppe: Bz C =Y
Ay ARzY = Z
making the diagram
Az B, C 22 X ®,C

LPBC’J/ J{@xc
A@,y —22 7
commute. Then, for any a € H"(G, A) and b € H*(G, B) and ¢ € H'(G,C), we have

(aUb)Uc=aU(bUc) e H(G, 2).
15
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Proof. The point is to track b € H*(G, B) through the following very large commutative diagram.

H(G,B) — 2= H™(G,A®y B) — 22— H™(G, X)

cufl 1) cu{ @) cufl

H"(G,B®y, C) 222 H™H+(G, Ay B oy C) 222 H™ (G, X ®4C)

‘PBC\L (3) APBC\L (4) tpxcl

HHG,Y) — 2 HH(G, Ay Y) — 22— H' (G, 2)

Namely, (a U b) U ¢ corresponds to following the top and then right legs of the diagram, and a U (b U ¢)
corresponds to following the left and then bottom legs of the diagram.

Thus, it suffices to show that the entire diagram square commutes. Well, (1) commutes by associativity
of the cup product, (2) and (3) commute by naturality of the cup product, and (4) commutes by the
hypothesized square and functoriality of H TG, ). |

Let’s start with a key result on shiftable functors, which gives a taste for why our hypotheses are so
specially chosen.

Proposition 49. Let G be a finite group, and let (F,F’', X,n) be a shifting pair. If we have indices r,s € Z
and ¢ € H"(G, X) such that the cup-product map

(cU—): H(G,F—) = H™**(G, F'—-)
is a natural isomorphism, then the cup-product map

(cU—): HI(G,F—) = H™ (G, F'-)
is a natural isomorphism for all indices j € Z.

Proof. This proof is by dimension-shifting on j. Note that it suffices by to only worry about the
component morphisms being isomorphisms.

To shift downwards, we suppose that the cup-product map is always an isomorphism for j, and we show
that it is always an isomorphism j — 1. Namely, fix a G-module A, and we are interested in showing that
the cup-product map

(cU—): HI=YG,FA) — H~Y(G, F'A)
is an isomorphism. To do so, we note the short exact sequence
(3.2) 0—I¢—ZIGl->Z—0

which splits over Z and thus gives us the short exact sequences

0 —— F(Ilg®, A) ———— F(Z[G] ®@z A) FA 0

0 — X@zF(lg®zA) — X @z F(ZIGl®@z A) — X ®z FA —— 0

mcl Uz[c]l VIA\L

0 —— Flg®@zA) ——— F(ZIG)|®@zg A) ——— FFA ——— 0

where the bottom two rows commute by naturality of n and thus give a morphism of short exact sequences.
These short exact sequences give us boundary morphisms

§: HH-YG,F'A) — H(G F(lg®gA)
On: Hjil(G,FA) — Hj(G,F(IG X7z A))
O : H7-+j_1(G, X ®yz FA) — I’IT‘—"_J'(G7 X ®gz F(IG X7, A))
Notably, all these § morphisms are isomorphisms because their short exact sequences have induced middle

terms: all of F' and X ®z F' and I’ are shiftable functors.
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Now, the key to this dimension-shifting is claiming that the diagram

HIi"Y(G,FA) —*=— H™H-Y@Q, F'A)

5{ (—1)"{
Hi(G,F(Ig ®7 A)) == H™(G,F'(Ig @z A))
commutes. Indeed, this will be enough because the bottom row is an isomorphism by the inductive hypoth-
esis, and the left and morphisms are isomorphisms as discussed above, which makes the top row into an
isomorphism. Well, to see that the diagram commutes, we expand the diagram as follows.

cU—

Hi"Y(G,FA) —== 5 H™Y(G, X @z FA) —— H™1(G, F'A)

6,¢ (4)%5{ (71)T5l

cU—

HI(G, F(Ig ®7 A)) 2= H™(G, X @7 F(Ic ®7 A)) —2S H™I(G, F'(Ig @7 A))

The left square commutes because cup products commute with boundary morphisms; the right square
commutes by functoriality of boundary morphisms.

Shifting upwards is similar. Suppose that the cup-product in question is always an isomorphism for j,
and we show that it is always an isomorphism for j + 1. Namely, fix a G-module A, and we are interested
in showing that the cup-product map

(cU—): HITYG, FA) — H™H+YG, F' A)
is an isomorphism. As before, we use [(3.2)|to induce the short exact sequences
0 FA F(Homgz(Z[G],A)) ——— F(Homz(Ig,A)) — 0

0 — X®z FA —— X ®z F(Homz(Z[G],A)) —— X ®z F(Homz(Ig,A)) —— 0

TIA\L nz[c]l nlgl

0 F'A F'(Homg(Z[G], A)) ———— F'(Homg(Ig, A)) —— 0

where again the bottom rows commute by definition of 1. As before, we have the boundary morphisms
§:  H™(G,F'(Homy(Ig,A))) —  H™HTY(G, F'A)
Op: HY(G, F(Homgz(Ig, A))) — HItY G, FA)
Oy : HTJrj(G, X ®z F(Homy(Ig, A))) — Hr+j+1(G, X ®z FA).
We again note that all of these are isomorphisms because the middle terms of our short exact sequences are

induced: all of F' and X ®7z F' and F’ are shiftable functors.
Once more, the key to the dimension-shifting will be the claim that the diagram

HI(G, F(Homgz(Ig, A))) == H™I(G, F'(Homg(Ig, A)))
6{ H)"al
HIitY G, FA) ——— H™H(G, F'A)

commutes. This will be enough because the top arrow is an isomorphism by the inductive hypothesis,
and the left and right arrows are isomorphisms as discussed above, thus making the bottom arrow also an
isomorphism. Now, to see that the diagram commutes, we expand out our cup products as follows.

(G, F(Homgz(Ig, A)) 2= H™(G, X @z F(Homy(Ig, A))) —S H™(G, F'(Homy(Ic, A)))

| (18| (178
HItY (G, FA) —— &= HH+Y G, X @y FA) —— ™ H™H+1(G, F'A)
The left square commutes because cup products commute with boundary morphisms, and the right square

commutes by functoriality of boundary morphisms. This finishes. |
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Here are some applications.
Corollary 50. Let G be a finite group. There exists ¢ € ﬁl(G,Ig) such that, for any G-module X,
(cU—): H(G,Homz(X, —)) = H*Y(G, Homyz(X, I @7 —))
is a natural isomorphism for any i € 7.

Proof. Here, we are using the shifting pair (Homgz (X, —), Homz (X, I¢ ®z —), I¢,n), where
na: Ig ®z Homy (X, A) — Homy (X, I ®z A)

is the canonical map sending z ® f to z — 2z ® f(x).

Now, in light of |Proposition 49 we merely have to find ¢ € H 1(@G,Ig) and show that we have a natural
isomorphism at ¢ = 0. Because we already have a natural transformation by we are only worried

about making the component morphisms
H°(G,Homg(X, A)) — H'(G,Homy (X, I ®7 A))
isomorphisms for all G-modules A. Well, we note that we have the Z-split short exact sequence
0 — Homgz (X, Ig ®z A) — Homyz(X,Z[G] ®z A) — Homz(X,A) — 0

which will induce a § morphism between the correct modules. In fact, because Homyz (X, —) is a shiftable
functor, the middle term here is induced, so the § morphism

§: H°(G,Homy(X, A)) — H'(G,Homy (X, I ®z A))

is an isomorphism.

To finish, we claim that this 6 morphism arises as a cup product. We simply show this by hand by tracking
through the § morphism. Given [f] € H°(G, Homz (X, A)) where f: X — A is a G-module homomorphism,
we can pull this back to the 0-cochain f: X — Z[G] ®z A defined by

]7: r—= 1 f(x).

Applying the differential, we get the 1-cocycle df € BY(G,Homyz(X,Z|G] ®7 A)) defined by

(@f)(9)(z) = (9/)(z) — f(x)
=g-f(97'2) - f(2)
=g(1® f(g'2)) — (1@ f(x))
=(@-1Def(w),
which we know must be a 1-cocycle representing §([f]) € H'(G,Homgz(X, Ig ®z A)).

Thus, we see that we should set ¢ EAHl(G7 I¢) to be represented by g — (g — 1). This will work as long
as g — (g —1) is actually 1-cocycle in H'(G, I). Well, take X = A = Z and f = idz in the above argument
so that §(f) is exactly g — (x — (¢ — 1) ® x), which is g — (g — 1) after applying Homy(Z,Ig) ~ 1. N
Corollary 51. Let G be a finite group. There exists ¢ € ﬁl(G,Ig) such that, for any G-module X,

(cU—): H(G, Homy(X, Homz (I, —))) = H't'(G, Homz (X, —))
is a natural isomorphism for any i € 7.
Proof. Similar to before, we are using the shifting pair (Homy (X, Homz(Ig, —)), Homz (X, —), Ig,n), where
Na: Ig ®z Homyz (X, Homy(Ig, A)) = Homy (X, —)

is the canonical map sending z ® f to & — f(x)(z).
Using |Proposition 49| and [Lemma 47 again, it will suffice to find ¢ € H Y@G,1g) such that we have
isomorphisms

(cU—): H(G, Homy (X, Homy (I, A))) — H' (G, Homz(X, A))
for all G-modules A. This time around we use the Z-split short exact sequence

0 — Homyz(X, A) — Homgz (X, Homz(Z[G], A)) — Homgz (X, Homy(Ig, A)) — 0
18
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which will induce a boundary morphism
§: H°(G,Homy (X, Homy (I, A))) — H' (G, Homgz (X, A)).

In fact, 4 is an isomorphism because our middle term Homg(X, Homz(Z[G], A)) is induced.

We now show that ¢ is a cup product by hand. Pick up some [f] € H°(G, Homz (X, Homz(Ig, A))) where
f: X — Homg(Ig, A) is a G-module homomorphism. This pulls back to f € H°(G, Homz(Homgz(Z[G], A)))
defined by

Applying the differential, we compute

(df)(9)(@)(2) = (9f = F)(x)(2)
(

Thus, this pulls back to the 1-cocycle g — (z — f(z)(1 — g)) in H'(G, Homz (X, A)).
In particular, we see that we should take ¢ represented by g — (1 —g), which will work as soon as we know

that g — (1 —g) is a 1-cocycle. Well, this is the negation of the 1-cocycle g — (g — 1) found in [Corollary 50
We close by remarking that we can actually take ¢ represented by g — (g — 1) because negating ¢ does not

change the fact that the cup product gives an isomorphism. |

Remark 52. Essentially the same proofs for|Corollary 50 and [Corollary 51| will work when Homyz (X, —)
is replaced by X ®z —, or any composite of these. There isn’t an analogue for arbitrary shiftable functors
because, for example, there is no way obvious way to construct n in general. Regardless, we will not need to
work in these levels of generality.

The point of [Corollary 50| and [Corollary 51}is that have a somewhat general version of dimension-shifting
granted by cup products. In fact, the proofs show that we can use the same ¢ € H'(G, Ig) represented by
g — (g — 1) for both shifting isomorphisms.

3.3. Shifting Natural Transformations. Observe that a natural transformation F' = F’ of shiftable
functors will induce natural transformations in cohomology

HY(G,F-)= H'(G,F'-)

It will turn out that, when F' = Homgz(X, —) and F' = Homg (X', —), we will be able to force all natural
transformations in cohomology will come from natural transformations F' = F’.
To begin, we show this result for i = 0.

Lemma 53. Let G be a finite group, and let X and X' be G-modules. Suppose that, for given index r € Z,
there is a natural transformation

®,: H(G,Homy (X, —)) = H"(G,Homg (X', —)).

Then there exists [z] € H™(G, Homz (X', X)) such that ®, = ([z] U —), where the cup product is induced by
the shifting pair of [Ezample 70,

Proof. This is essentially the Yoneda lemma. As such, set [z] := ®x([idx]). The point is to fix some
G-module A and [f] € H°(G,Homz(X, A)) in order to track through the commutativity of the following
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diagram.

H°(G, Homyz (X, X)) —%5 H"(G,Homz (X', X))

(3.3) ﬂ ﬂ

H°(G, Homz (X, A)) —4 H"(G,Homz(X', A))

Because we will need to deal with the cup products with negative indices, we will use the standard res-
olution of [AW10]. For example, we interpret f € [f] € H°(G,Homz(X,A)) as a constant function
[ € Homgg(Z][G],Homz(X, A)) outputting fe Homgy (X, A), which means that f(z) is the same G-
module homomorphism for each z € Z[G].

As such, we can track the left arrow of as

F: H(G,Homz (X, X)) » HO(G,Homgz(X, A))
[z — idx] [z f(2) oidx]| = [f].

So, along the bottom of we are evaluating ® 4 ([f]).
Along the top of we immediately send [z — idx] to ®x([z — idx]) = [z], so to finish the proof, we
need to show that
F(la)) = 2] U [F),
which will be enough by the commutativity of We have two similar cases to appropriately deal with
the cup product.

e Suppose that 7 > 0 so that we can interpret x as an element of Homgyg (Z[GT“],X), using the
standard resolution. As such, we compute

(CUUf)(gm s 797‘) = x(QO; cee 797") ®f(gr)7
where our output is in Homyz(X’, X) ®z Homgz(X, A). Applying evaluation, the cup product is
outputting
(907"'797') = foz(goa"'vgr)

as our element of Homg;¢ (Z[G"™+1],Homz (X', A)). Indeed, this morphism represents f([x]).

¢ Analogously, suppose that 7 < 0 so that we interpret x as an element of Homgzg) (Homz(Z[G]",Z), X).
To decrease headaches, we let g*: Z|G] — 7Z denote the G-module homomorphism sending g — 1
and other group elements to 0. Then r-tuples (g7, ...,¢") form a Z-basis of Homz(Z[G]", Z), so it’s
enough to specify

(fo)(g;"wg:) :$(9T7---a9:) ®f(gr)a

where the output is in Homz(X’, X) ®z Homyz(X, A). Applying evaluation, the cup product is
outputting

(91s--s97) = foa(gl,....q7)
as an element of Homgzq) (Homz(Z[G]", Z), Homz (X', A)). Indeed, this represents f(x))-

The above cases finish tracking through |(3.3)[ and hence finish the proof. [ |

The case of r = 0 will be particularly interesting to us, so we note that we have the following more
concrete description.
Lemma 54. Let G be a finite group, and let X and X' be G-modules. Then, given a G-module morphism
p: X' = X, the maps (— o) and ([p]U—) on

H'(G,Homy(X,—)) = H (G, Homz(X', —))

assemble into the same natural transformation for any i € Z.
Proof. This follows from unpacking the definitions.

We already know that ([¢] U —) is a natural transformation by so it suffices to show that the

two maps agree on components. (Namely, naturality of (— o ¢) will immediately follow.) To see this, we fix
a G-module A to evaluate the morphism

H'(G,Homz(X, A)) — H'(G,Homz (X', A)),
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for which we use the standard resolution of |AW10]. For this, we represent [p] by the morphism ¢ €
Homgy(Z][G], Homz (X, A)) which constantly outputs .
Now, pick up [x] € H*(G,Homz(X, A)). We have two cases.
e Ifi >0, we can interpret z as an element of Homzg (Z[G]”l, Homy, (X, A)) Then our cup product
is
(eUz)(g0,---,9:) = &(g0) @ (go, - - 9i),
which evaluates to
(905 ---+9i) = 2(g0, -, 9i) © ¥,

which represents the desired class (— o ¢)([z]).
e If i < 0, we can interpret = as an element of Homgq (Homz(Z[G]", Z), Homz (X, A)). Our cup
product is

(PUz)(gr,--,97) = ¢l91) @ x(97,-- -, 97);
which evaluates to
(91, 97) = 291, 97) 0 9,
which represents the desired class (— o ¢)([z]).
The above cases finish the proof. |

We now get the main result by dimension-shifting.

Proposition 55. Let G be a finite group, and let X and X' be G-modules. Then, given indices r,s € Z,
any natural transformation

o{”: H*(G,Homy (X, —)) = H"**(G, Homy (X', -)),
is L) = (zU—) for some x € H"(G, Homy (X', X)).

Proof. This argument is by dimension-shifting the s upwards and downwards. Namely, we show the con-
clusion of the statement by induction on s; for s = 0, this is We will show how to induct
upwards to s > 0 in detail, and inducting downwards is similar. For brevity, we set F' := Homz(X, —) and
F’' .= Homgz (X', —).

To induct upwards, suppose the statement is true for s = ¢, and we show s = i + 1, so fix a natural
transformation

ot HH(G, F-) = HPHY(G, F/-),

which we would like to know arises as (x U —) for some x € lr;”’(G7 Homgz(X’, X)). The main idea is to use
Y in order to construct ®L. Well, using |Corollary 50, we have some ¢ € H (G, Ig) given by g — (g—1)
yielding the following isomorphisms for any G-module A.

(cU—)g: HY(G,FA) — H*Y G, F(lg®zA))

(cU=): HY(G, F'A) — H™M Y G, F'(Ig ®7 A))

As such, we have the diagram

(cU=)a

Hi(G,FA) HHYG, F(Ig ®7 A))

|
| (i+1)
! lq)IG@ZA

v

Arvi(a, Ay L2 gt (@, F(1g @ A))
where the horizontal arrows are isomorphisms. Thus, we induce a morphism

i) -1 i+1
o = ((cU )™ 0 )4 0 (U -)a
Note that <I>(.i) is the composition of natural transformations (the cup product is a natural transformation
by construction) and therefore is a natural transformation.
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Thus, the inductive hypothesis now tells us that ol = (z U —) for some x € ﬁp(G,HomZ(X’,X)). We

now need to turn this around on <I>£i+1), which essentially means we need to shift back in the other direction.
As such, we use to give the following isomorphisms for any G-module A.

(cU=)y: HY(G,F(Homg(Ig, A))) — HTYG, FA)
(cU—),: H(G, F(Homgz(Ig, A))) — HH(G, FA)

Now, to deal with <I>£i+1), we claim that associativity and commutativity of cup products implies ((—1)% U —)
can be used to make the right arrow in the diagram

(G, F(Homgy(Ig, A))) ~2s B+ (G, FA)
(3.4) zu,l 3
(G, F/(Homg (I, A))) = fr+i+1(q, Fr A)

commute. Indeed, applying to the square

I ®z Homz (X, Homy(Ig, A)) ®z Homgz (X', X) —— Homgz(X, A) ®z Homgz (X', X)

l |

I ®7 Homz (X', Homy (I, A)) Homgz (X', A)

shows that any a € H'(G, F(Homy(Ig, A))) has
cU(zUa) = (-1)"cU(aUz) = (=1)"(cUa)Uz = (=1)" T+ U (cUa) = (-1)'2 U (cUa),

which is what we wanted.

Now, this right arrow of is unique because the horizontal arrows are isomorphisms, so we will be
done if we can show that we can place @SH) in the right arrow to also make the diagram commute as well.
For this, we draw the following very large diagram.

Hi(G, F(Homg(Ig, A))) (cU—)u H™*(G, FA)
| T eu = |
zU— A\ — PG+
HYG, F(Ig ®z Homg(Ig, A))) 4
(I)(Ii;—é;HomZ(lG,A)
H™(G, F'(Homy(Ig, A))) (cU—Y, H™+1(@, F' A)
(cU=)} J S —

H™ 4G, F' (I ®7 Homg (I, A)))
Here, the f maps are induced by the evaluation map
f: IG ®z Homz(Ig,A) — A.

We want the outer rectangle to commute, for which it suffices to show that each parallelogram and the small
top and bottom triangles to commute.

e The left parallelogram commutes by definition of ®{” = (z U —).

e The right parallelogram commutes by naturality of <I>(.i+1) applied to f.

e Showing that the bottom triangle commutes will be analogous to showing that the top triangle
commutes, so we will only show the top. Unwinding [Corollary 50| and |[Corollary 51} we see that this
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triangle is actually induced by the following diagram.

H(G, F(Homy (I, A))) == H*Y(Q, Ig @z F(Homy(Ig, A))) —2s HTY(G, FA)
w5
Hi+1(G, F(IG ®7, Homz(lg, A)))
Here, ny: I ®7z Homz (X, Homy (I, A)) — Homgz(X, A) behaves as
Mz f o (o0 f)(2),
and nq: Ig ®gz HOmz(X, Homz(I(;, A)) — }IOIIIZ(AX7 Ig ®y HOmz(Ig, A)) behaves as
na: 2@ f— (v 2@ f(z)).
Now, to check our commutativity, it suffices to show that the triangle

I ®z Homgz (X, Homz (I, A)) —*—~ Homgz(X, A)

ndl /

Homy (X, I¢ ®z Homy(Ig, A))
commutes. Well, we can simply track through the diagram as follows.

! /

(:L'i—>Z®f(

The above commutativity checks finish the induction upwards.

We will not give detail for the induction downwards from i — 1 to ¢, except to say that we reverse the
applications of [Corollary 50| and |Corollary 51 The rest of the approach essentially goes through verbatim,
constructing q)() from a given ®, 1), applying the inducting hypothesis to <I>£), and then finishing by
shifting back to <I>£ b, |

Remark 56. Essentially the same proof can show that, for any pair of shiftable functors F,F': Modg —
Modg, a natural transformation (respectively, isomorphism,)

o). HY(G,F—) = H™*" (G, F'-),

at i = s induces natural transformations (respectively, isomorphisms) at all i € Z. Instead of usz’ng
[lary 50 and|Corollary 51, we must instead dimension-shifting using the usual short exact sequences.

Corollary 57. Let G be a finite group, and let X and X' be G-modules. Then, given indices s € Z, any
natural transformation

o) HI(G, Homy (X, —)) = H*(G, Homz (X', —)),
is &) = (— o) for some G-module morphism ¢: X' — X.

Proof. tells us that the natural transformation takes the form ([¢] U —) for some G-module
morphism ¢: X’ — X. Then ([¢] U —) is simply (— o ¢) by ]

3.4. Cohomological Equivalence. It might be the case that “many” different shiftable functors give the
same cohomology groups. Because we are mostly interested in the case of Homy (X, —), we now have the
tools to talk fairly concretely about what this means. We have the following definition.

Definition 58. Let G be a finite group. We say that two G-modules X, X’ are cohomologically equivalent if
and only if there exist morphisms [¢] € H°(G,Homz (X', X)) and [¢'] € H*(G,Homz(X, X")) such that

[poy] = idx] € H*(G, Homz (X, X)) and [ o] = [idx/] € H*(G,Homz (X', X')).
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Example 59. All induced modules X are cohomologically equivalent to 0. To see this, we set ¢: 0 — X and
¢ X — 0 equal to the zero maps (which are our only options). Then note that Homy(X, X) is induced by

and Homz(0,0) = 0, so
H°(G,Homz(X, X)) = H*(G, Homz(X', X')) = 0,
making the checks on ¢ and ¢’ both trivial.
More concretely, X and X’ are cohomologically equivalent if and only if we have two G-module morphisms
p: X' = X and ¢’: X — X’ and two Z-module morphisms f: X — X and f': X’ — X’ such that
poy =idx + Ngf and @ op=1idx: + Ngf'.
As a quick sanity check that this is a reasonable notion of equivalence of modules, we have the following.

Lemma 60. Let G be a finite group. If the G-modules X and X' are equivalent andY and Y’ are equivalent,
then X @Y is equivalent to X' &Y.

Proof. We are promised the morphisms

e v: X' = X and ¢': X — X’ (as morphisms of G-modules),
e f: X > X and f': X’ - X' (as morphisms of Z-modules),
e : Y - Y and ¢': Y — Y’ (as morphisms of G-modules),
e g:Y —>Yand ¢: Y — Y’ (as morphisms of Z-modules),

which are required to satisfy

po@ =idx + Nof and ¢’ op =idx: + Naf’,
Yoy’ =idy + Ngg and ¢/ o9 = idy: + Nag'.

Summing everywhere, we get the G-module homomorphisms ¢®1: X®Y — X'@Y’ and o' ®y": X' @Y’ —
X @Y satisfying
(p@v)o(¢ @y)=(pop) @Yoy
= (ldx + Ngf) @ (idy + Neg)
=idx @idy + Na(f @ g).

The other check is analogous, switching primed and unprimed variables. |

We now show that this notion of equivalence correctly translates to shiftable functors.

Proposition 61. Let G be a finite group, and let X and X' be G-modules. Then X and X' are cohomolog-
ically equivalent if and only if there is a natural isomorphism

®,: H(G,Homy (X, —)) = H°(G, Homg (X', —)).

Proof. In the forward direction, suppose X and X’ are cohomologically equivalent so that we have [p] €
H°(G,Homz (X', X)) and [¢'] € H°(G,Homz(X, X')) such that
[LlUle]=lpo¢]=lidx] and [P U[g]=[¢" 0] =[idx],

where we are using the canonical evaluation maps for the cup products (see|[Lemma 54)). Now, we note that,
for any G-module A, we have inverse morphisms

H°(G,Homyz(X, A)) ~ H(G,Homz(X', A))
(3.5) [£] [f o ¢l
[f" o ¢'] [£'].
Indeed, these are mutually inverse because
[fowog]=[flUlpoy]=[f]olidx] = [f]

and similar on the other side. To finish, we note that the isomorphisms |(3.5)| assemble into a natural
isomorphism by [Lemma 47| and |Lemma 54|

T
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We now show the backwards direction. Suppose we have a natural isomorphism ®,. Then applying
in both directions, we get [¢] € HO(G, Homz (X', X)) and [¢'] € HY(G, Homz(X, X")) such that
the morphisms

®,: H(G,Homz (X, —)) ~ H°(G,Homz (X, —))
[f] [f o 4]
[f" o ¢'] [f']

are mutually inverse. In particular, we see that

T17

lidx] = [idx o po '] = [po ¢,
so [p o ¢'] = [idx]. Swapping primed and unprimed variables, we see [¢’ o ¢] = [idx/] as well. ]
Remark 62. The above result makes it fairly clear that cohomological equivalence actually makes an equiv-

alence relation. In particular, we can invert and compose natural isomorphisms, which gives symmetry and
transitivity of cohomological equivalence respectively.

One use of this machinery is that we have pretty good tools to tell what is cohomologically equivalent to
0.

Corollary 63. LAet G be a finite group, and let X be a G-module. Then X is cohomologically equivalent to
0 if and only if H°(G,Homz(X, X)) = 0.
Proof. On one hand, if X is cohomologically equivalent to 0, then [Proposition 61] promises a natural isomor-
phism
®,: H°(G,Homz(X, —)) = H(G,Homgz(0,—)) = 0,

so it follows PAIO(G, Homyz (X, X)) = 0 by plugging in X.

On the other hand, if H°(G,Homz(X, X)) = 0, then the G-module homomorphism idx: X — X must
be equivalent to 0 in this group. So let ¢: 0 — X and ¢’: X — 0 be the canonical zero morphisms so that

[po '] =[0] = [idx] € H°(G, Homy(X, X))
and
[¢ o @] = [0] = [ide] € H*(G, Homz(0,0)),
which finishes. |

Examp}\e 64. It is not in gene(gl true that two G-modules X and X' are cohomologically equivalent if and
only if H°(G,Homz(X, X)) = H°(G,Homyz (X', X")). Indeed, let G = (o) = Z/27 act on X = Z trivially
and on X' =7Zi by o: i+ —i. Then

Homy(Z,Z) = Z = Homy/(Zi, Zi)
as G-modules (!), but these modules are not cohomologically equivalent because
H°(G,Homy(Z,Z)) = 7./2Z % 0 = H°(G, Homg(Z, Zi)).
Namely, Homy)(Z, Zi) = (Zi)¢ = 0.

Corollary 65. Let G be a finite group, and let A and B be G-modules. Then, if A ® B is cohomologically
equivalent to 0, then both A and B are cohomologically equivalent to 0.

Proof. This is not too hard to see directly, but it falls immediately out of using and writing
0 = H°(G,Homz(A & B, A& B))
~ H°(G,Homy (A, A)) & H°(G,Homy (A, B)) &
H°(G,Homg (B, A)) @ H°(G, Homgz(B, B)),
from which H°(G,Homy(A, A)) = H(G, Homy (B, B)) = 0 is forced. ]

Example 66. By|Ezample 59, free Z|G]-modules Z[G]® ~ Z[G] @7 Z° for sets S are cohomologically equiv-
alent to 0. It follows that all projective Z|G]-modules are cohomologically equivalent to 0 from|Corollary 63|

Here is a quick partial converse to
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Proposition 67. Let G be a finite group. If X is Z-projective and cohomologically equivalent to 0, then X
is Z|G]-projective.
Proof. Tt suffices to show that Homgg (X, —) is exact. Well, given a short exact sequence
0A—-B—-C—0
of G-modules, the Z-projectivity of X implies that
0 — Homgz(X, A) - Homz (X, B) - Homz(X,C) — 0
is also exact. Taking cohomology, we have the exact sequence

0 — Homgg (X, A) — Homgz (X, B) — Homgg (X, C) — H' (G, Homgz (X, A)),

but H'(G,Homz (X, A)) = 0 by So indeed, Homy¢ (X, —) is exact. [ ]

Remark 68. Overall, it seems like an interesting question to pin down exactly which G-modules are coho-
mologically equivalent to 0. It is possible to show that all such X must be acyclic, but it seems currently out
of reach to show that being acyclic is also sufficient.

Anyway, the alternate definition for cohomological equivalence from also provides us with
a way to multiply.

Corollary 69. Let G be a finite group. If X and X' are cohomologically equivalent and Y and Y' are
cohomologically equivalent, then X ®z X' is cohomologically equivalent to Y ®z Y.

Proof. We are granted natural isomorphisms as follows.
®,: H'(G,Homz (X, —)) = HY(G, Homz (X', -))
U,: HY(G,Homgz(Y,—)) = H°(G,Homz(Y’', —))
Now, repeatedly using the hom—tensor adjunction, we can chain together natural isomorphisms

HO(G,Homgz(X ®2Y,—)) ~ H°(G, Homz (X, Homz (Y, —)))

& Hom(Y,—) ~
"2V B0(@, Homg (X!, Homy (Y, —)))

%(G,Homz (X' ®7Y,—))
°(G,Homy(Y @z X', —))
0(G, Homy(Y, Homy (X', —)))

R
= O I

R

PHOmENT) (G, Homg (Y, Homg (X', —)))

%@, Homz(Y' @z X', —))
O(Gv HomZ(X/ Kz Yla *))7

—

[
™ T

which is what we wanted. n
One might hope that we can get more information by using indices away from 0, but in fact we cannot.

Proposition 70. Let G be a finite group, and let X and X' be G-modules. Then the following are equivalent.

(a) X and X' are cohomologically equivalent.
(b) For some r € Z, there is a natural isomorphism

®{"): H™(G,Homyz (X, —)) = H"(G,Homz(X',—)).
(¢) There is a G-module homomorphism ¢: X' — X such that the induced maps
(— o) H(G,Homg (X, —)) = H'(G,Homz(X', -))

are natural isomorphisms for all i € 7.
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Proof. Note that (a) implies (b) by taking » = 0 and applying Also, (c) implies (a) by
taking ¢ = 0 and again applying Lastly, to show (b) implies (c), we note that

promises us ¢: X’ — X such that
o) = (— o).

We would like to use [Proposition 49| Let our shifting pair be (Homz (X, —), Homz (X', —), Homz (X', X),n),
where 7, is the canonical pre-composition map

ne: Homgz (X', X) ®z Homy (X, —) — Homg (X', —).
Then we take r = r and s = 0 and ¢ = [¢] as above so that the cup-product natural transformation
([p] U —): HY(G,Homy(X, —)) = H'(G,Homy (X', —))
is simply induced by (—o¢) for any i € Z by|[Lemma 54] So we are given that (—o¢) is a natural isomorphism
at i =1, so gives us this isomorphism at all 4 € Z, which proves (c). |

3.5. Encoding Modules. Lastly, we arrive at the application we care about: encoding cohomology. Coho-
mological equivalence is exactly what we need to talk about uniqueness.

Proposition 71. Let G be a finite group, and let r, s € Z be indices. Then, if nonempty, the set of G-modules
X with a natural isomorphism

®,: H"(G,Homz(X,—)) = H (G, )
make up exactly one cohomological equivalence class.

Proof. Fix some G-module X with such a natural isomorphism

U,: H"(G,Homy (X, —)) = H™*(Q, —).
We would like to show that X’ has a natural isomorphism ®,: H"(G, Homz (X', —)) = H™+%(G, —) if and
only if X and X’ are cohomologically equivalent.

If X and X’ are cohomologically equivalent, then we can compose the promised natural isomorphism of
(¢) with W, giving a natural isomorphism
H"(G,Homy (X', —)) = H"(G, Homy (X, —)) = H™(G, ).

In the other direction, if we have a natural isomorphism

®,: H"(G,Homy (X', —)) = H™(G, —),

then we can compose with ¥ ! to build a natural isomorphism
~ Y -1
A™(G, Homz(X', —)) 2 H™+(G,—) ™ H"(G, Homy(X, —)),
from which it follows that X and X’ are cohomologically equivalent by [Proposition 61| (b). ]

Example 72. Take s > 0. Dimension-shifting iteratively with the short exact sequence
0—-Ic®,A—ZGl®zA— A—0

shows that
H™*(G, A) ~ H" (G, Homy(IE*, A))
and in fact these isomorphisms are natural by the functoriality of boundary morphisms. So the equivalence
class of 18 represented by Igs.
Remark 73. We will show in[Ezample 105 that all of these equivalence classes are nonempty.
Example 74. Not all r-encoding modules are Z-torsion-free. For example, if M is an r-encoding module,

and A is induced, then M & A is cohomologically equivalent to M, so M & A is an r-encoding module.
However, not all induced modules A are Z-torsion-free.

In fact, akin to the classification of natural transformations from we can show that these
encoding maps must be cup products.
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Corollary 75. Let G be a finite group, and let v € Z be an index. Suppose we have a G-module X and index
i € Z with a natural transformation

®,: H(G,Homy(X, —)) = H" (G, -).
Then there exists [x] € H™(G, X) such that ®, is the cup-product map ([x] U —).
Proof. The point is to set X' = Z in For technical reasons, we note that we have a natural
isomorphism
([1] U 7): ﬁiJrT(Ga HOmz(Z, 7)) = ﬁiJrT(Ga 7)
by checking at index 0 and then using Thus, &, will induce a natural transformation

H(G, Homy (X, —)) 2 gitr(q,—) WS Bi+7(@, Homy (2, -)).

By [Proposition 55 we are promised [z] € H°(G, Homz(Z, X)) such that this composite is ([z]U—). It follows
that @, is

MU ([z]u=—): H(G,Homgz(X,—)) = H*" (G, —).
Associating, this natural isomorphism is the same as (([1] U [#]) U —); indeed, fixing a G-module A to plug
in, we get the result by noting the commutativity of

Z ®z X @z Homy(X,A) —— Z®z A 2y f —— 2 f(y)
X ®z Homy (X, A) ———— A 2y ® f —— f(zy)
and passing through [Cemma 48] [ |

Example 76. For r > 0, we can continue to note that standard dimension-shifting arguments
give natural isomorphisms

H° (G, Homz(IE", -)) = H"(G, -),
so |Corollary 75 implies that these isomorphisms are cup products with an element of fAIT(G, Igr). For
example, when r = 0, we have [1] € H°(G,Z); and when r = 1, we have g — (1 — g) in H*(G, Ig). Observe
that we could also see this by inductively dimension-shifting with|[Corollary 51}
Because cup products are better-behaved than just general natural transformations, we get the following

nice statement.
gorollary 77. Let G be a finite group, and let r € Z an index. Then an r-encoding module X has x €
H" (G, X) such that

(xrU—): H(G,Homy (X, -)) = H*"(G, )

is a natural isomorphism for all i € Z.

Proof. By definition of X, we know that there is some i € Z such that we have a natural isomorphism
®,: H(G,Homz(X, —)) = H*" (G, -).

Then |Corollary 75| tells us that this natural isomorphism arises as (z U —) for some z € H"(G, X).
To finish, we extend (xU—) being a natural isomorphism from a single 4 to all ¢ € Z by using|Proposition 49

Indeed, take F = Homy (X, —) and F/ =id and X = X and 7: X ®z Homz (X, —) = id to be the canonical
evaluation maps. This finishes. |

Remark 78. Taking X = Z above, we are asserting that, if G is a group such that all G-modules admit
period-r cohomology which is natural in some sense at a single index i, then this periodicity extends to all
indices and arises from a cup product with an element of Hr (G,Z).

Observe that the naturality in the isomorphisms is important: letting G = Z/pZ act on A = Z/pZ
trivially,
Z/pZ

0
28

H (G, A) = ~ H°(G, A),



ABELIAN EXTENSIONS

but this does not extend to all G-modules. For example,
. 7 .
HYG,7Z) = — = H°G,7).
(6.2)=0% - = 1°(G,2)

The element defined in is so special that we will give it a name.
Definition 79. Let G be a finite group and X an r-encoding module. An element x € I;V(G, X) as con-
structed in[Corollary 77 is the encoding element.

It will turn out that encoding elements are not unique, though they will be almost unique.

3.6. Encoding Is Unique. Fix an r-encoding module X. As a brief intermission, we will show that there
is essentially one way to do the encoding

HY(G,Homgz(X,—)) = H*" (G, —).

Namely, we know from that this natural isomorphism must come from a cup-product with
an element = € H"(G, X), so we might wonder how unique this element z is. The answer to this, roughly
speaking, will be that H"(G, X) is cyclic of order #G generated by z.

Anyway, the main idea will be to use the following duality result.

Proposition 80 ([CE56, Corollary XII1.6.5]). Let G be a finite group and A be any G-module. Then the
cup-product pairing induces an isomorphism

ﬁi_l(G, HOII’IZ(A7Q/Z)) — Homy, (ﬁ_l(G,A)7ﬁ_1(G,Q/Z))

for all i € Z. Indeed, this is a duality upon embedding ﬁ_l(G, Q/Z) into Q/7Z.
And here is our computation.

Corollary 81. Let G be a finite group and X an r-encoding module. Picking up an encoding element
x € H"(G,X), H (G, X) is cyclic of order #G generated by x.
Proof. For brevity, set n := #G. By we have the isomorphism

(xU—): H 4G, Homz(X,Q/Z)) — H™Y(G,Q/Z) = L7/z.

In particular, ﬁiril(G, Homy(X,Z)) ~ Z/nZ, generated by some element z* such that x U z* = [1/n].
Now, we apply to say that the cup-product pairing induces an isomorphism

17,/n2 ~ H="(G, Homz (X, Q/Z)) — Homy, (?I’“(G, X), H7Y(G, Q/Z)) ~ Homy, (?I’“(G, X), %Z/Z) .

Because HP(G, X) is n-torsion, homomorphisms H" (G, X) — Q/Z must have image in 17/, so in fact the
rightmost group is the dual of Hr (G, X). Because an abelian group is isomorphic to its dual, we see that
H7™(G,X) is in fact cyclic of order n.

It remains to show that x is a generator; for this, we show that x has order at least n, which will be
enough because H"(G, X) is cyclic of order n. Well, if we have k € Z such that kz = 0, then

[k/n] =k(zUz*) =kzUz* = [0]Uz™ = [0]
in H-Y(G,Q/Z) ~ 17/Z, so n | k. This finishes. [

Remark 82. Conversely, if x € I;V(G,X) is any generator, then
(xU—): H(G,Homgz(X, —)) = H*"(G, )
is a natural isomorphism. Indeed, certainly some generator xg € ﬁT(G,X) conjured from
suffices, but then x = kxq for some k € (Z/#GZ)*, so we have the equality
(xu—-)= ((kmg) U —) = k(xzgU—)

of natural transformations. But multiplication by k is a natural isomorphism H* (G,-) = ﬁ'(G, —) because
these cohomology groups are #G-torsion, so we conclude (x U —) = k(xo U —) is a natural isomorphism.

And here is our uniqueness result.
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Corollary 83. Let G be a finite group, and let X be a finitely generated r-encoding module. Then, given
i € Z and two natural isomorphisms

®,, P, : H (G, Homy (X, —)) = H*"(G, -),
there exists a unique k € (Z/#GZ)* such that ¥, = kD,.
Proof. Note that we are allowed to interpret k (mod n) because these cohomology groups are #G-torsion,
so #G - Py = 0.
Anyway, by [Corollary 75 we know that there are x,2" € H"(G, X) such that
b, = (zU-) and @, = (' U-).

However, by |Corollary 81 we see that H "(G,X) is cyclic generated by z of order #G, so we can write
a’ = kx for a unique k € Z/#GZ.

It remains to show that @, = k®,. Well, for any G-module A and ¢ € ﬁi(G, Homy (X, A)), we write
Py (c)=2"Uc=krUc=k(xzUc) =kPa(c).
It follows that @/, = k®,. [ ]

3.7. The Dual Element. In the theory of periodic cohomology (e.g., see |[CE56, Section XII.11]), it is
helpful to phrase the theory in terms of having some elements © € H"(G,Z) and y € H~"(G,Z) such that

zUy=[1] € H(G,Z).

In contrast, given an r-encoding module X, we cannot hope to have x € ﬁT(G, X)andy € I?*T(G, X) with
rzUy € ﬁO(G, Z) because there is no obvious map X ®z X — Z. To remedy this, we observe that there is a
canonical evaluation map

X ®z HomZ(X, Z) — 7.
This idea gives the following result.

Proposition 84. Let G be a finite group, and let X be a G-module and r € Z be an index. The following
are equivalent.

(a) X is an r-encoding module.
(b) There are x € H"(G, X) and ¥ € H™"(G,Homy(X,Z)) such that
zUzY =[1] € H(G,Z) and 2V Uz = [idx] € H(G, Homz (X, X)).
Proof. For brevity, set n == #G.

We start by showing (a) implies (b). By [Corollary 77, we can find an encoding element z € H"(G, X)
yielding the isomorphism

(zxU—): H"(G,Homy(X,Z)) — H*(G,Z) = Z/nZ.

As such, we can find a unique 2V € H™"(G,Homg(X,Z)) such that  Uz¥ = [1]. It remains to show that
z¥ Uz = [idx].
Note that (z U —) and (z¥ U —) induce morphisms
(zU—): H*(G,Homz (X, X)) — H"(G, X)
(VU -): H"™(G,X) — H°(G,Homgz(X, X))
We claim that these are inverse. Because (x U —) is already an isomorphism, it suffices to show that we have

an inverse on one side. Well, H "(G, X) is cyclic generated by z by [Corollary 81} so it suffices to note that
any kx € H"(G, X) has

(zU—)o(z¥U=))(kz) =2 U (¥ Ukz) = (zUz") Ukz = [1]Ukz = kz.
Notably, = has used noting that the square

X ®z Homy(X,Z) @7 X —— X ®z Homyz (X, X) 1 ® fRr —— 11 @ (y = f(y)x2)
7z X X f(z1) ® 29— f(71)22

30



ABELIAN EXTENSIONS

commutes. Anyway, we now see that we have inverse morphisms, so
rUidx] =idx(z) =z =2U(z¥ Uxz)
implies that 2 Uz = [idx], finishing.
We now show (b) implies (a). Let ¢ € Z be any index. The main point is that
(xU-): H(G,Homy(X,-)) =  H*"(G,-)
(VU -): H* (G, —) = H'(G,Homz(X,—))

ought to be inverse natural transformations. More formally, we want to show (xU—) is a natural isomorphism,

for which we note naturality follows from

Thus, given a G-module A, it remains to show that its component morphisms
(zU—): H(G,Homy(X, A)) — H'*"(G, A)
are isomorphisms. In fact, we claim that the corresponding map
(z¥U=): HY"(G, A) —» H (G, Homz (X, A))
is the inverse morphism. We have two checks.

e In one direction, we note that any a € H'"(G, A) has
(zUu=)o(@YU=))(a)=2U(zYUa)=(zUz")Ua=[l]Ua=a
where = holds by using on the following commuting square.

X ®z Homy(X,Z) @, A —— X ®z Homy (X, A) YR fRb+—— y® (yo — f(yo)d)
Z®g A A fy) @b —— f(y)b

e In the other direction, we note that aV € fAI"(G, Homgyz (X, A)) will have
(z¥U—=)o(zU—))(a")=2"U(zUa) = (z¥Uz)Ua = [idx]Ua =idx(a) = a,
where = holds by using on the following commuting square.

Homgz(X,Z) @z X ®z Homz (X, A) - Homz(X,Z) @z A fRy®g — f®9(y)
Homz (X, X) @z Homg (X, A) ——— Homy(X, A) (Yo = f(y0)y) @ g > (yo = f(y0)g(y))
This finishes the proof. |

We quickly note that the proof of actually managed to conjure the inverse natural trans-
formation to (z U —).

Corollary 85. Let G be a finite group, and let X be an r-encoding module. Constructing x € Hr (G,X) and
zV e I?*T(G, Homyz (X, Z)) from the natural transformations

(xU—): H(G, Homy(X, ) »  H*"(G,-)

(zV'U-): H™ (G, -) — HY(G,Homgz(X, —))
are inverse for each i € 7.
Proof. In the proof, we showed that, given a G-module A, the morphisms
(z¥ U —): H*"(G, A) - H'(G,Homy(X, A))
provide the inverses for (x U —). This is what we wanted. [ |
As such, we will give the element " a name.

Definition 86. Let G be a finite group and X an r-encoding module. Then zV € fI’T(G,HomZ(X, 7)) as

constructed in[Proposition 84 is the dual element.
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Remark 87. The above definition says “the” dual element because these are unique, once given an x €
H"(G,X). Indeed, the isomorphism
(xU—): H"(G,Homy(X,Z)) — H(G, Z)
promises the uniqueness of z¥ € H="(G, Homz(X,Z)) going to z Uz" = [1] € H*(G,Z).
Here is another amusing corollary we get from this.

Corollary 88. Let G be a finite group, and let X be an r-encoding G-module with encoding element x €
H"(G,X). Then, for any subgroup H C G, X is an r-encoding H-module so that any index i € 7 has the
natural isomorphism

(Resz U —): H'(H,Homz(X,—)) = H™"(H, -).
Proof. The point is that restriction commutes with cup products, so we may use Indeed, we
are given ¢ € H"(G, X) and z¥ € H™"(G, Homz(X, X)) such that
zUzY =[] € HY(G,Z) and YUz = [idx] € H*(G, Homz(X, X)).
Applying restriction to H everywhere, we see
Resz UResz" = Res(zUx")
= Res([1])
=€ H'(H,2),
and
Resz"” UResx = Res(z" U )
= Res([idx])
= lidx] € H°(H,Homz(X, X)),

which is enough by [Proposition 84]to show that X is an r-encoding H-module. The remarks from [Corollary 85|
explain why the needed isomorphism is given by (Resz U —). |
Remark 89. Essentially the same proof should hold for inflation.

Example 90. It is not true that, if X is an r-encoding Gp-module for all Sylow p-subgroups G\, C G, then
X is an r-encoding G-module. Indeed, take X = 7Z and G = S3: all Sylow p-subgroups of S3 are cyclic, so
Z is a 2-encoding module for all these subgroups. However, Ss is not cyclic, so

H™2(G,Homy(X,Z)) ~ H (G, Z) ~ S3/|Ss, S3] £ Z/6Z = H*(G, Z).

3.8. Encoding by Tensoring. It turns out that we can also encode “on the other side,” in the following
sense.

Theorem 91. Let G be a finite group, and let X be an r-encoding module with encoding element x© €
H"(G,X). Then the cup products

(—Uz): H(G,—) = H*(G, — @7 X)
assemble into a natural isomorphism for any i € Z.

Proof. That we have a natural transformation follows from the naturality of cup products. Thus, it suffices
to pick up a G-module A and show that the component morphism

(—Uz): H(G,A) — H*" (G, A®y X)
is an isomorphism. For this, we pick up a dual element z € H*"(G, Homz(X,Z)) so that
zUzY =[1]€ H(G,Z) and 2YUz = [idy] € H°(G,Homz(X, X)).
As such, we claim that the morphisms

(—Uz):  H(G,A)  — H' (G, A%y X)
(—UaY): H*(G, Aoy X) —  HY(G, A)
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are inverse, which will finish; here (— U V) is using the following evaluation map
(A®z X) ®z Homz(X,Z2) —» A
b ®@ y ® f — f(y)b.
We have now checks for our morphisms to be inverse.
e On one hand, pick up a € fli(G, A). Then we can use on the commuting square

A®ZX®ZHOIH2(X,Z)*>A®ZZ b®y®f%b®f(y)
A®z X ®z Homgz(X,Z) — A bRy f—— f(y)b

to evaluate
(muz¥)o(—Ua))(a) =(aUz)Uz" =aU(zUz")=aU[l] =a.

e On the other hand, pick up av € ﬁ”T'(G, A ®z X). Then we can use on the commuting

square
(A®z X) ®z Homz(X,Z) @z X —— A®z X bRy fey — fybhey
(A®z X) ®z Homz (X, X) ——— A®@z X bRy® (yor f(yo)y') —— b f(y)y'

to evaluate
(muz)o(—Uz"))(a) =(aUz")Uz=0a"U(z"Uz)=a" Ulidx] =a".
The above checks complete the proof. |

Something nice that falls out of this theory is that we are able to compute the cohomology groups of our
encoding modules.
Corollary 92. Let G be a finite group, and let X be an r-encoding module with encoding element x €
H"(G,X). Then the cup products
(—Uz): H(G,Z) — H*"(G, X)

are isomorphisms for all i € 7.

Proof. Plug in Z into [ |

Remark 93. It is conceivable that one can build a converse for[Theorem 91 In the case where X is finitely
generated, one can use duality arguments due to the canonical isomorphism

A ~ Homyz(Homy(A,Q/Z),Q/Z)

for finitely generated G-modules. However, in general, this seems to be difficult because the analogous version

of |Proposition 84| is nontrivial to prove.

3.9. Torsion-Free Encoding. In the theory of periodic cohomology, one can show that it is enough to
check the single cohomology group

H'(G,Z) = 7/#GZ
for some index r € Z to get r-periodic cohomology. We might hope that something similar is true for our
r-encoding modules. To this end, we pick up the following “integral” duality statement.

Proposition 94. Let G be a finite group, and let X be a Z-free G-module. Then the cup-product pairing
induces an isomorphism

(G, Homz(X, Z)) — Homy, (ﬁ*i(G,X), ﬁO(G,Z))

for alli € Z. Indeed, this is a duality upon identifying }AIO(G,Z) with %Z/Z CQ/Z.
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Proof. This proof is analogous to |CE56, Theorem XII.6.6]. The key to the proof is the short exact sequence
(3.6) 0-Z—-Q—Q/Z— 0.

The main point is that X being Z-free implies that X is projective (as an abelian group), so we can apply
Homy (X, —) to get out the short exact sequence

(3.7 0 — Homyz(X,Z) - Homgz(X,Q) — Homgz(X,Q/Z) — 0.

Now, note that the multiplication-by-n endomorphism on Homy(X, Q) is an isomorphism (namely, Q is a
divisible abelian group), so the same will be true of H*(G,Homz(X,Q)) for any i € Z. However, these

cohomology groups must be #G-torsion, so in fact fli(G, Homgz(X,Q)) =0 for all i € Z.
Similarly, we note that we can hit [(3.7)| with the functor — ®z X to get another short exact sequence

(38) 0— HomZ(X, Z) Rz X — HomZ(X, Q) Rz X — HomZ(X, Q/Z) ®z X — 0.

Notably, this is exact because X is Z-free and hence flat as a Z-module. Now, Homy(X, Q) ®z X is still a
divisible abelian group, so again H {(G,Homz(X,Q)) =0 for all i € Z.

The rest of the proof is tracking boundary morphisms around. Fix some i € Z. Note and and
induce boundary isomorphisms

5: HYG,Q/z) - H(G,7)
§n: H"Y(G,Homy(X,Q/Z)) —  H'(G,Homy(X,Z))
§;: H=(G,Homz(Q/Z) ®z X) — H(G,Homz (X, Z) ®7 X).

We also note that we have a morphism of short exact sequences
0—— HomZ(X, Z) X7z X — HOIl’lz(AXV7 Q) KRz X — I{OI’Ilz()(7 Q/Z) KRz X —0

| | o

0 zZ Q Q/Z —— 0

where the 1, are evaluation maps. Now, tells us that

(G, Homz (X, Q/2)) — Homg (H4(G, X), 174G, Q/7))
a — (b ngyz(aUb))

is an isomorphism. Composing this with various other isomorphisms, we can build the isomorphism

H{(G, XYY — H(G,X*) — Hom (ﬁ—i(G,X)7 A, Q/Z)) — Hom (ff—i(G,X), ff@(a@/Z))
a = §la & (b ngz(6;, 'aub)) — (b dngz(s;, 'aU b))
where XV := Homy(X,Z) and X* := Homy(X,Q/Z), for brevity. This gives an isomorphism between the
desired objects, but to prove the result we need to show that the above map is a — (b — nz(a Ub)). Well,
given a € H(G,Homgz(X,Z)) and b € H~*(G, X), properties of the boundary morphisms tells us
ongyz (85, 'a U b) = nzd, (6, 'aUb)
=1y ((5;16,:1@ U b)
= UZ(a U b)a

which is what we wanted. ]

Remark 95. The hypothesis that X be Z-free is necessary: the statement is false for X = Z/#GZ and
i =0, for example.
And here is our result.

Proposition 96. Let G be a finite group, and let X be a Z-free G-module. The following are equivalent.

(a) X is an r-encoding module.

(b) {IT(GUX) > 7 /#GZ and }AIO(G,HomZ(X, X)) 2 Z/#GZ.

(¢) H"(G,X) 2 Z/#GZ and H°(G,Homgz(X, X)) is cyclic.
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Proof. For brevity, set n := #G. That (a) implies (b) is not hard: [Corollary 81| tells us that H"(G, X) =
Z/nZ, and then being an r-encoding module promises an isomorphism
H°(G,Homy (X, X)) ~ H' (G, X) = Z/nZ.

Continuing, we see that (b) implies (c¢) easily. Thus, the interesting direction is showing that (c) implies (a).
For this, we use |Proposition 94| and |Proposition 841 We are given € H"(G, X) of order n, so we note
that there is a morphism

H"(G,X)~7Z/nZ = H°(G,Z)
sending z to [1]. Thus, grants ¥ € H"(G, Homy(X,Z)) such that
zUzY =[1] € HY(G,Z).

It remains to check that z¥ Uz = [idx] € H°(G, Homz (X, X)). This is more difficult.
For this, we will show that

(3.9) (zU—): H(G,Homz(X, X)) — H"(G, X)

is injective while showing that 2V Uz and idx have the same image under (x U —).
Indeed, on one hand, let A be a G-module (which we will set to be X shortly), and we claim that the
composite

H7(G, A) "8~ HO(G, Homy (X, A)) “5 H7(G, A)

is the identity. To see this, pass the commutativity of the diagram

X ®z Homyz(X,Z) @ A —— X ®7 Homy(X, A) To® f®ag — xo @ (Z/ — f(y)GO)
Z®z A A f(@o) ® ag ——— f(wo)ao
through to compute that, for any a € ﬁp(G7 A),
(3.10) rUzYUa=[l]Ua=a,

as desired. Taking A = X, It follows that
rU(zVz) =2 =2 U lidx].

Now, it remains to show that the map (xU—) from is injective. Well, note [idx] € H%(G, Homz (X, X))
has order n: if k[idx] = 0, then 0 = k(x U [idx]) = k=, so n | k. Because H°(G,Homgz(X, X)) is cyclic (by
hypothesis!) and n-torsion, we conclude that in fact H°(G, Homgz (X, X)) is cyclic of order n generated by
[idx]. Thus, we note that there is a unique morphism

H°(G,Homy(X, X)) 2 Z/nZ = H" (G, X)
sending [idx] to 1 to z, and this map is an isomorphism. However, (zU—) sends [idx] to = as well, so (zU—)

is an isomorphism and thus injective. |

Example 97. The Z-free condition is necessary. As in let G = Z/pZ act on X = Z/pZ
trivially. Then

H°(G,Homy(X, X)) ~ H(G, X) 2 H (G, X) = Z/pZ.
However, X is not a (—1)-encoding module because

HY(G,Homgz(X,Z)) ~ HY(G,0) = 0 % Z/pZ = H*(G, 7).
Remark 98. As we will discuss later in[Remark 107, the requirement that X be Z-free is not too serious.
Example 99. To see that I/JO(G,HomZ(X7X)) being cyclic is necessary, we use the example from
[ple 6]} Let G = (o) ~ Z/2Z act on X :=ZL[i] = Z® Zi by conjugation. Then

H(G, X) ~ H(G,Z) & H(G, Zi) ~ 727,
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but
H°(G,Homy(X, X)) ~ H°(G,Homy(Z, Z)) & H°(G, Homy(Z, Zi))
& H°(G,Homy (Zi, Z)) & H°(G, Homy (Zi, Zi))
comes out to Z/2Z. &0 0 Z/27. Thus,
H°(G,Homy(X, X)) 2 H°(G, X),
so X 1is mot a 0-encoding module even though X is Z-free and fIO(G,X) >~ 7/#GZ.

In some sense, the issue with the above example is that we could decompose our G-module into A @& B
when in fact there is no reason to talk about these sorts of G-modules as encoding modules.

Corollary 100. Let G be a finite p-group. If A @ B is a finitely generated Z-free r-encoding module, then
one of A or B is an r-encoding module and the other is cohomologically equivalent to 0.

Proof. This follows quickly from the check in On one hand,
H°(G,Homyz(A® B, A® B)) ~ H°(G,Homgz (A, A)) & H*(G, Homy(A, B))
@ H(G,Homy(B, A)) & H°(G, Homy (B, B))

tells us that both H(G,Homy(A, A)) and H°(G, Homy(B, B)) are both cyclic because H°(G, Homgz (A &
B,A® B)) is.
On the other hand, we note
H"(G,A) @ H"(G,B) ~ H" (G, A& B) = Z/#GZ,

so we are forced to have lf\IT(G7 A) 2 Z/#GZ or I/{TT(G7 B) = Z/#GZ because G is a finite p-group.
Thus, one of A or B is an r-encoding module; without loss of generality, say that A is. It remains to show
that B is cohomologically equivalent to 0. Well, we have

H°(G,Homgz (A, A)) = H" (G, A) = Z/#GZ
because A is an r-encoding module, so the embedding
H°(G,Homgz (A, A)) ®H°(G, Homy (B, B)) — H(G,Homz(A & B, A® B))
Z/#GZ Z/#G7Z

forces H°(G, Homy(B, B)) = 0. As such, [Corollary 63| finishes. [ ]

Remark 101. It is conceivable that is true without requiring A @ B to be Z-free nor G to be
a p-group.

3.10. New Encoding Modules From Old. The goal of this section is to build encoding modules up from
smaller ones.

Proposition 102. Let G be a finite group. Given an r-encoding module A and an s-encoding module B, the
G-module A ®z B is an (r + s)-encoding module.

Proof. By we have natural isomorphisms
H°(G,Homgz(A,—)) ~ H'(G,—) and  H"(G,Homg(B,—)) ~ H (G, -).
Whiskering, we have a natural isomorphism
H°(G,Homy(A ®z B, —)) ~ H" (G, Homy(A, Homy (B, —)))
~ ]?I’”(G, Homy (B, —))
~ H5(G, ),

which is what we wanted. |

Remark 103. With some care, it is possible to use|Corollary 69 combined with|Ezample 105 (below) to show

this result. The difficulty in realizing this approach lies in the fact that r and s need not both be nonnegative.
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Proposition 104. Let G be a finite group, and let X be an r-encoding module. Then Homz(X,Z) is a
(—r)-encoding module.

Proof. We use [Proposition 84l For brevity, we set XV := Homgz(X,Z) and X"V := Homyz(X",Z). Observe
that there is a (canonical) map ¢: X — X"V by

p(x): [ f(z).
By we may find z € H"(G, X) and V¥ € H~"(G, XV) such that
zUzY =[] € HY(G,Z) and 2z'Uz = [idx] € H(G, Homy(X, X)).

As such, we set y .= zV and y" = (—=1)"¢(x). The commutative diagram

X, XV — 5 7 r® fr—m f(x)
s@®idl H I H
XW e, XV — 7 (g—=g@)® f—— f(z)

tells us that we may evaluate
pE)uzY =zuzY =[1] € HYG,7),
soyUyY = [1] € HY(G,Z) after being careful with signs.
On the other hand, we set A = B = X for clarity and define ¢: Homg(A, B) — Homgz(BY, AY) by
() g (gof),

yielding the commutative diagram

AY @z B ——— Homg(A4, B) f@br——— (a f(a)d)
] | 1 1
AV ®z Homg(BY,Z) —— Homg(BY, AY) f@ (g gb) — (9 g(b)f)

which tells us that we may evaluate
¥ Up(x) =YY Ur) =9Y([idx]) = [idxv] € fAIO(G,HomZ(Xv,XV)),
so y¥ Uy = [idxv] after being careful with signs. This completes the proof. |

Example 105. [Ezample 79 established that Igr is an r-encoding module for r > 0. By |Proposition 104
Homy, (IgT,Z) is a (—r)-encoding module for —r < 0. Thus, we have established existence for r-encoding

modules for all r € 7.

Corollary 106. Let G be a finite group, and let X be a finitely generated r-encoding module. Letting X
denote the Z-torsion subgroup of X, we have that X; is a G-submodule of X, and X/X; is an r-encoding
module.

Proof. To see that X; is a G-submodule, we note that any x € X; has some k € Z such that kx = 0, so any
g € G will have
k-gr=gkx)=¢g-0=0.
Thus, X; C X is preserved by G.
It remains to show that Xy := X/X; is an m-encoding module. To begin, we claim that
(3.11) Homyz (Homgz (X, Z), Z) = Homz(Homgz (X, Z),Z)

as G-modules; by this will imply that Homgz(Homgz (X s, Z),Z) is an r-encoding module. To
see this, we note that the short exact sequence
0—-Xy =X =Xy —0
becomes the left exact sequence
0 — Homgz(Xy,Z) — Homgz(X,Z) — Homg (X, Z).
However, Homy (X, Z) = 0 because X; is Z-torsion, so the above left exact sequence witnesses the isomor-

phism Homyz(Xy,Z) = Homgz(X,Z). Applying Homz(—,Z) again yields
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To finish, we note that
¢: Xy — Homy(Homz(X¢,Z),Z)

by  — (f — f(z)) is a G-module morphism and isomorphism of abelian groups because Xy is torsion-
free and finitely generated. Thus, ¢ is an isomorphism of G-modules, implying that X; is an r-encoding
module. |

Remark 107. Even though[Ezample 7]] asserts that not all r-encoding modules X are Z-torsion-free,
explains that we can canonically obtain a Z-torsion-free r-encoding module from X in the form of
Homy (Homy(X,2),Z) = X/ X;.

Proposition 108. Let G be a finite group, and let
0—-X' =-M—-X—0

be a Z-split short exact sequence such that M is an induced G-module. Then X is an r-encoding module if
and only if X' is an (r 4+ 1)-encoding module.

Proof. Given a G-module A, we recall that Homy(—, A) is a shiftable functor by so Homgz (M, A)
is induced. Now, because the short exact sequence is Z-split, we have the short exact sequence

0 — Homgz (X, A) — Homgz (M, A) — Homz(X', A) — 0
which gives the isomorphism
§4: H(G,Homy (X', A)) — H'(G,Homy(X, A))

because Homy (M, A) is induced. In fact, the 64 make a natural isomorphism d,: ITIO(G,HomZ(X’7 -)) =
H'(G,Homgz(X,—)): given a G-module morphism f: A — B, the morphism of short exact sequences

0 —— Homgz (X, A) —— Homyz(M,A) —— Homz(X',A) —— 0
g a 7|
0 —— Homgz(X, B) —— Homgz(M, B) —— Homz(X’,B) —— 0

induces the desired commuting square, as follows.

(G, Homz (X', A)) —4— HY(G,Homz (X, A))
1| 1|
H°(G, Homy(X", B)) —2 HY(G,Homy(X, B))

We now proceed with the proof. In one direction, if X is an r-encoding module, then promises
us a natural isomorphism

®,: H'(G,Homy(X, ) = H'(G,-),
so the composite
H°(G, Homz(X', —)) & H (G, Homy (X, —)) 2 A™(G, -)
shows that X’ is an (7 + 1)-encoding module. The other direction is analogous, concatenating with §;1. W

Example 109. Fiz a finite group G generated by S := (01, ...,0,), and let M = Z|G)*° have basis {e;}7,.
Then there is a projection m: Z[G]#G — Ig by sending e; — (0; — 1), giving the short exact sequence

0 — kerm — Z[G)*® — I¢ — 0.

This short exact sequence is Z-split because I is Z-free. Because Z|G|*° =2 Z[G] @z Z#° is induced and I
is a 1-encoding module, we conclude that ker 7 is a 2-encoding module by [Proposition 108§,

By this point, we have a wide array of ways of making p-encoding modules, so we call it quits here.
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3.11. A Perfect Pairing. We close this section with a hint of Artin reciprocity. The main goal of this
subsection is to prove the following result.

Theorem 110. Let G be a finite group, and let X and A be G-modules and r € Z be an index. Then, if
there exists an element ¢ € H"(G, X) such that the cup-product maps

(cU—): H"(G,Homy (X, Z)) — H(G,Z)
(cU—): H(G,Homy(X,A)) — H"(G, A)

are isomorphisms, then the cup-product pairing induces an isomorphism

H7(G, A) — Homy, (ﬁ—T(G,HomZ(X, 7)), H(G, Homy(X, A))) .

Proof. Applying to the commutative square

X ®z Homy(X,Z) @ A —— X ®z Homy (X, A) TR f®ar—— @ (y— f(y)a)
7 Qg A A flz)®a ——— f(x)a

we are able to conclude that any u € HP(G, A) makes the diagram

H="(G,Homy(X,Z)) —% H°(G,Homy(X, A))

ow-| =

HY(G,Z) H7(G, A)

—Uu

commute. Now, by hypothesis, the left and right arrows are isomorphisms, so the commutativity means that
showing

A7 (G, A) — Homy, (ﬁ—r(a, Homz (X, Z)), H(G, Homz(X, A)))
u — (a— (aUu))
is an isomorphism is the same as showing that

H7(G, A) — Homy, (ﬁO(G, 7). H"(G, A))
u — (k= (EUw))

is an isomorphism.
Setting n == #G, we see H°(G,Z) = Z/nZ, and the cup product we are looking at sends k € Z/nZ and
u € H?(G, A) to kUu = ku by how the isomorphism Z ®z A ~ A behaves. Thus, we are showing that

(G, A) — Homy (Z/nz, (G, A))
u — (k — ku)

is an isomorphism.

However, " "(G, A) is n-torsion, so in fact maps Z — ﬁp(G, A) automatically have nZ in their kernel
and hence reduce to maps Z/nZ — f[’“(G, A). Conversely, any map Z/nZ — fﬂ’(G7 A) can be extended by
Z — 7Z/nZ to a map Z — ﬁ’"(G, A), so we have a natural isomorphism

Homy, (Z/nZJfIT(G, A)) ~ Homy (ZJ‘AIT(G, A))

f = (ke fR]D)
([k] = f(K)) — f

In particular, it suffices to show that
H7(G, A) — Homy, (Z, (G, A))

is an isomorphism. But this is a standard fact about the functor Homy, so we are done. |

We now synthesize this with the theory we have been building.
39



ABELIAN EXTENSIONS

Corollary 111. Let G be a finite group, and let X be an r-encoding module. Then, given a G-module A,
the cup-product pairing induces an isomorphism

H7(G, A) — Homy, (1?1—7'(@, Homy(X, Z)), H*(G, Homy (X, A))) .

Proof. We apply to our case; we take ¢ to be the z of The cup-product maps in
question are isomorphisms by Thus, [Theorem 110] kicks in, completing the proof. [ ]

Remark 112. The other side of the pairing
H7"(G, Homgz (X, Z)) — Homg (I?V(G, A), H%(G, Homy (X, A)))

need not be an isomorphism; for example, take A = 0.

Remark 113. When X is a Z-free 2-encoding module, we can think about Homyz(X,—) as an algebraic
torus T'. For example, if L/K is an extension of local fields, and the torus T splits over L, then the above
statement says that the Artin reciprocity map

(up/ U—): H2(L/K,X.(T)) — H(L/K,TL)

uniquely determines ur, i € ﬁ]z(L/K7 L*). It is conceivable that a sufficiently concrete description of this
reciprocity map might then be able to describe ur, .

4. GrROUP LAwS OF GROUP EXTENSIONS

Having established some background of what we expect from our encoding modules, we will spend the
next few sections building a particularly nice example of a 2-encoding module with ties to classifying group
extensions.

Much of the theory in this section will be similar to that built in |AS78| and [Tig81]. In particular,
providing a group law for the extensions built from our G-module A is essentially the same problem as being
able to write down a group law for abelian crossed products. Regardless, we will build the theory from the
ground.

4.1. Motivating Results. Throughout this section, G will be a finite group and A will be a G-module; we
will write the group operation of A and the group action of G on A both multiplicativelyﬂ To sketch the
idea here, begin with an extension

1-A-E5G6—1.

We know that we can abstractly represent £ as the set A x G with some group law dictated by a 2-cocycle
in Z2(G, A), so we expect that £ can be presented by A and a choice of lifts from G, with some specially
chosen relations.

Here are some basic observations realizing this idea. We start by lifting a single element of G.

Lemma 114. Let A be a G-module, and let
1-A=E5G—1
denote a group extension. Further, fix some o € G of order n,, and find F € € such that o = w(F). Then
o= F"

has o € A,
Proof. A priori, we only know that a € £, so we compute

(o) =m (F") =0"" =1,
so a € kerm = A. Thus, we may say that

o(a) = FaF~! = F" = q,
so o € A9 as desired. [ ]

We can make the above proof more explicit by specifying the group law of £.

1We denote the group law on A multiplicatively for two reasons: a key example will be A = L* where L is some local field,
and we do not want to denote the group law of an extension £ of G by A additively because £ need not be abelian.
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Lemma 115. Let A be a G-module. Picking up some 2-cocycle ¢ € Z?(G, A), let
1248501

be the corresponding extension. Fizing o € G of order ng, let F == (m,0) € & be a lift. Supposing
c(l,0) =1, then

Nng—1

F" = N,(m) H c(ai,a),

i=0
o—1 4
where Ny =Y 120" o’

Proof. This is a direct computation. By induction, we can show that

k—1
Fk = (11) a'(m)c (O’i,O') ,ak>

for k € N. Indeed, there is nothing to say for k = 0, and the inductive step merely expands out F* - F.

It follows that
Ne—1 ne—1
Fho = ( H ot(m) - H c(oi,a) ,1> ,
i=0 i=0
which is what we wanted. ]

Having this explicit formula lets us say how « changes as we vary the lift.
Proposition 116. Let A be a G-module. Fizing a cohomology class u € H*(G, A), let

1545561

be a group extension whose isomorphism class corresponds to w. Further, fix some o € G of order n,, and
let A, = AL be the fized submodule. Then the set

Sg o ={F" :7w(F) =0}

ne—1 _;

is an equivalence class in Ay /Ny(A), independent of the choice of €; here, Ny =37, o".

Proof. Note that Sg , C A, already from

The point is to use Note the extension &£ corresponds to the equivalence class u € H?(G, A),
so let ¢ € Z%(G, A) be a representative. Letting £. be the extension constructed from ¢, we are promised an
isomorphism ¢: £ = £, making the following diagram commute.

1 A E "5 @G 1
|k
1 A E. ‘5 G 1

We start by claiming that S¢ , = Sg¢, », which will show that Sg¢ , is independent of the choice of represen-
tative €. To show Sg, C Sg, », note that a € Sg , has F € £ with n(F) = 0 and a = F™. Pushing this
through ¢, we see p(F) € &, has

me(p(F)) =p(n(F)) =0 and  o(F)" =@(F") =a,

so a € Sg, , follows. An analogous argument with ¢! shows the other needed inclusion.
It thus suffices to show that Sg, , is an equivalence class in A,/N,(A). However, this is exactly what

Lemma 115|says as we let the possible lifts F' = (m, o) € & of o vary over m € A. [ |

The fact that we are taking elements of G to equivalence classes in A,/N, (A) is reminiscent of the
(inverse) Artin reciprocity map, and indeed that is exactly what is going on.

Corollary 117. Work in the context of [Proposition 116 Then
Se =S¢, = [0] U[Res],

where U: H=2((0),Z) x H%((0), A) — H°((5), A) is the cup product in Tate cohomology.
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Proof. Note that S, € A,/N,(A) = HO({c), A), so the conclusion at least makes sense.
Now, using notation as in the proof of [Proposition 116} we recall that S, = Sg_,, so it suffices to prove
the result for . Well, by [Lemma 115, S, € A, /Ny (A) is represented by

Neg—1

H c(oi,a) ,

=0

which is exactly the cup product [o] U [c]. ]

Corollary 118. Let L/K be a finite Galois extension of local fields with Galois group G = Gal(L/K).
Further, let

1L =561
be an L/K-gerb bound by G,, whose isomorphism class corresponds to the fundamental class ur/x €
H?(G,L*). Further, fix some o € G of order ny, and let Ly = L'°) be the fived field. Then

HL/lL (o) ={F" :7(F)=0}.

Proof. Recalling 92/114(, is a cup product map, note that GZ}L(, (o) is given by [0] Uur k. So we are done by

u

The above results are all interested in lifting single elements of G and studying how they behave on their
own. In the discussion that follows, we will need to study how the lifts interact with each other, but for now,
we will justify why lifts are adequate to study at all.

Proposition 119. Let A be a G-module. Further, let
1-A=-&5G—1

be a group extension. Given elements > C G which generate G, then £ is generated by A and a set of lifts
{Fo}oex with n(Fy) = o for each 0 € X.

Proof. Fix some element w € &£, which we need to exhibit as a product of elements in A and F,s. Well,
because the o € ¥ generate G, we know that m(w) € G can be written as

m
:Ilo’a"

oEX

for some sequence of integers {a, }yex € N®=. It follows that

s (w ) =1
HGEZ Fad 7

so w/ [ ey F3o € kerm = A. Thus, we set a € A to be the quotient w/[], 5, Fg so that
w=a- H 2o,
oeX
which is what we wanted. |

4.2. Tuple Relations. The results from are very focused on single elements ¢ € G and the
cyclic groups they generate, but we will be more interested in dealing with more general abelian groups G.
If we want to keep track of the fact our group is abelian, we should extract the elements of A which can do
S0.

Lemma 120 (|AS78, Lemma 1.2]). Let G be an abelian group and A be a G-module, and let
1A= E5G—1

be a group extension. Further, fit some Fy, Fy € € and define o; == w(F};) fori € {1,2}, and let o; € G have
order n;. Then, setting
o = F" and — Bi=F\FF] Fyt
we have the following.
(a) a; € A% fori € {1,2} and B € A.
(b) Ni(B) = a1/o2(ayr) and No(B71) = s /o1 (as), where Nj E;’Bl a?
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Proof. These checks are a matter of force. For brevity, we set A; := A for i € {1,2}.
(a) That a; € A; follows from [Lemma 114 Lastly, § € A follows from noting

m(8) = m(F)w(F)n(F) ' w(F) ™' =1,

so 8 € kerm = A. Note we have used the fact that G is abelian.
(b) We will check that Ny, (8) = a1/02(a1); the other equality follows symmetrically after switching
1s and 2s because 37! = F, 1 Fy 1F_ Well, we compute

N(B) =07 (B)-07%(B) a7 (B) ..o 07" (B)
= (BB
FP (BB FTEY) FE
F (BMBFTE ) FE
UM (R R F Fy Y
= FRFt

I D A
= B Fy ™M E TP
= a1 /o2(aq).
The above computations finish the proof. |
The proof of (b) above might appear magical, but in fact it comes from a more general idea.

Lemma 121 (|AS78, Lemma 1.1(b)]). Fiz everything as in|Lemma 120, Then, for x,y > 0, we have

r—1y—1

FrFy =[] I] (etos(B)FYFY) .

k=0 £=0

Proof. We induct. We take a moment to write out the case of x = 1, for which we induct on y. To be
explicit, we will prove

P FY = H02 B)FYF,.

For y = 0, there is nothing to say. So suppose the statement for y (and = = 1), and we show y 4+ 1 (and
x =1). Well, we compute

RFYT = Fle Py

_H02 VFYF, -

YA
y—1
= [[ #5(8) - o4(B)FY - FoFy
=0
(y+1)—-1
= os(B) - F¥T'
=0

which is what we wanted.
We now move on to the general case. We will induct on y. Note that y = 0 makes the product empty,
leaving us with FJ' = F, for any x. So suppose that the statement is true for some y > 0, and we will show
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y+ 1. For this, we now turn to inducting on x. For x = 0, we note that the product is once again empty, so
we are left with showing F¥*" = F¥™' which is true.

To finish, we suppose the statement for x and show the statement for z + 1. Well, we compute

z+1 py+1 x y+1
FrHipytl — py . Fo R

z—1 (y+1)—1
=R I otoss) - F¥TFy
k=0 ¢=0
z—1 (y+1)—1
=01 atos(B) | - FLFY T FY
k=0 ¢=0
(z4+1)—1 (y+1)—1

k=1 (=0
(z+1)—-1 (y+1)-1 (y+1)-1
= 11 atos(8)- [ o5(8)-08(8) - Fy¥T Py - FY
k=1 (=0 £=0
(@+1)—1 (y+1)—1
= ofob(B)FY T FT,
k=0 (=0
which is what we wanted. |

Remark 122. Setting v =ny and y =1 recovers Ny /1 (o)) (8) = a1 /oa(aq).

Roughly speaking, tells us that coherence of the group law in £ should give rise to relations
between our elements of A. Namely, trying to expand out the group law as placed constraints on our
a1, oo, 8. Here is another example.

Lemma 123 (|AS78, Lemma 1.2]). Let A be a G-module, and let
1A= EHG—1

be a group extension. Further, fix some Fy, Fy, F3 € € and define o; == w(F};) fori € {1,2,3}, and let 0; € G
have order n;. Then, setting
Bij = FiF;F; ' F!
for each pair of indices (i,j) with i > j. Then
o2(Bs1)  01(Bs2) 03(B21)

B31 Bz B
Proof. The point is to turn F3F5F) into Fy F5F3 in two different ways. On one hand,
(F3F2)Fy = P FaF3Fy
= B3 Faf31 F1F3
= B3202(B31)(Fa k1) F3
= B3202(B31) P21 F1 Fo F.
On the other hand,
F3(F2Fh) = P3P 1 By
= 03(B21)(F3F1) Fy
= 03(B21)B31F1 (F3F2)
= 03(B21) 831 F1 832 F2 F3
= 03(B21)B3101(B32) F1 F> F3.
Thus,
B3202(B31)B21 = 03(B21)B3101(B32),

which rearranges into the desired equation. |
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Remark 124. The relation from[Lemma 123 may look asymmetric in the B, but this is because the defini-
tions of the B;;s themselves are asymmetric in F;. For example, swapping all 1s and 2s, will indeed recover
the same relation.

Remark 125. So far we have mostly been able to recover the results from beyond working
with just a single o € G and as to be able to work with lots of group elements in G and some Bs. We have
not built an analogue for [Corollary 117, though we will explain that it is possible to do so much later in

Remark 173
4.3. Tuples to Cocycles.

4.3.1. The Set-Up. The preceding lemmas [Lemma 120 and |[Lemma 123| are intended to give intuition that
the element g is helping to specify the group law on &.
More concretely, we will take the following set-up for the following results: fix a G-module A, and let

10A4A—-€6—-G—1

be a group extension. Once we choose elements {o;}"; generating G, we know by [Proposition 119|that we
can generate £ by A and some arbitrarily chosen hftb {F;}™, of the {aZ . Then, letting n; be the order
of o;, we set

o = F"
for each index 7 and
Bij = FiF;F ' F
for each index 1 < j,7 < m. Notably, it suffices to only work with j < i: indeed, 3;; = 1 and §;; = ﬂj_il for
any i and j. Setting A; == A{?) and N; == Z;L’_Ol o?, the story so far is that

(4.1) «a; € A; for each ¢ and Bij € A for each i > j
and
(4.2) Ni(Bij) = aifoj() and Nj(ﬁigl) = aj/oi(ay) for each i > j

by and

(4.3) 7i(Pu) _ orlBiy)  oilBie) for each i > j >k
Bik Bij Bik

by This data is so important that we will give it a name.

Definition 126. In the above set-up, the data of ({cu}, {Bi;}) satisfying|(4.1) and|(4.2) and|(4.3) will be
called a {o; " -tuple. When understood, the {o;}, will be abbreviated. Once G and A are fized, we will
denote the set of {o;}™-tuples by T(G, A).

Note that this definition is independent of £, but a choice of extension £ and lifts F; give a {o;}7-tuple
as described above.

Remark 127. The T (G, A) form a group under multiplication in A. Indeed, the condztzons and-

and are closed under multiplication and inversion.

We also know from [Cemma 121] that
z—1y—1
FrFY = [ [ oFol(Bi FYE;
k=0 £=0

for i > j and z,y > 0. It will be helpful to have some notation for the residue term in A, so we define

z—1
S Z o
=0

so that we can write
rz—1y—1

a§$>0§y)ﬂij _ H H o' 511

k=0 £=0
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Now, combined with the fact that Fyx = o;(x)F; for each F; and x € A, we have been approximately told
how the group operation works in £. Namely, we could conceivably write any element of £ in the form

aq a
I’Fl ...me

for x € A and a; € Z/n;Z because we know how to make these elements commute and generate £. Further,
we can multiply out two terms of the form

a Am b b,
gF® .. Fom . ypb.. . pb

into a term of the form zFy* --- F¢m. In fact, it will be helpful for us to see how to do this.

Proposition 128. Fiz everything as in the set-up, except drop the assumption that {o;}7, generate G.
Then, choosing a;,b; € N for each i, we have

(ﬁ Fiaz‘> (ﬁ Fibi> _ H ( H O_ak“rbk) < H ng>o_§ai)o_]('bj)ﬁij <ﬁ Fiai+bi> )
i=1 i=1 1<j<i<m \ 1<k<j j<k<i i=1

Proof. The reason that we dropped the assumption on {o;}7, is so that we may induct directly on m. We
start by showing that

m m

a; by ay (al bl) a1+by a;
[1F ) = ] IT - B | Fyte T Ao
i=1 1<i<m \1<k<i i=2

We do this by induction on m. When m = 0 and even for m = 1, there is nothing to say. For the inductive
step, we assume

m m
. . i) (b i
([ ) et = | T ( Lot oo e T
i=1 1<i<m \1<k<i =2
and compute

m—+1 m
(H Fzm) F' = (HFim) Forh By

i=1 i=1

(HF> ol o B P
ak am b1 ay b1
(Tt ) etrset s | T (T oot
k=1 1<i<m M1<k<i
F(llerl (H Fa,) ’::/l?i#»ll

=2

m—+1
= II IT o o\ "ol gy | Fprtt <H Fiai>,

1<i<m+1 \1<k<i =2

which completes our inductive step.
We now attack the statement of the proposition directly, again inducting on m. For m = 0 and even for
m = 1, there is again nothing to say. For the inductive step, take m > 1, and we get to assume that

(7))L () )] )
i=2 i=2 2<j<i<m \ 2<k<j j<k<i i=2
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From here, we can compute

m

i=1

m

i=1

J(11)

(i)
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= H < H agk>0£ai)0§bl)ﬂi1 Fflerl (HF;“) (HF;”)
[ 1<i<m \1<k<i | i=2 i=2
= I < 11 02”)“5“%?’% Ft
| 1<i<m \1<k<i |
b m
H < H O.Zk"l‘bk)( H ng>0.§ai)o.§ J)/@ij <HFiai+bi>
2<j<i<m \ 2<k<j j<k<i i=2
=| II < 11 ng>0§ai)0§bl)ﬁi1
1<i<m \1<k<i

m

O.Zk> Ugai)a.j(_bj)ﬁij (H Fiai+bi
=2

a1+by
o1 11

2<j<i<m

ak+by
H Tk

2<k<yj

I

J<k<i

(

From here, a little rearrangement finishes the inductive step.

)

The reason we exerted this pain upon ourselves is for the following result.

) |

Proposition 129. Fix everything as in the set-up. Then, if well-defined, we can represent the cohomology

class corresponding to € by the cocycle
a;+b;
)( o.llclk,>0_£ ( O.Zkerk)ai[ ng J ,

Observe that [Proposition 129| has a fairly strong hypothesis that c¢ is well-defined; we will return to this

1<j<i<m \1<k<j
where g =[], 08" and h =], ol
later.

m

II

i=1

ok +bk

a;) (b)
k )Jj Bij

I

J<k<i

II

1<k<1

c(g,h) =

Proof. Very quickly, we use the division algorithm to define
ai +b; =niq; + 1
where ¢; € {0,1} and 0 < r; < n;. In particular,

gh = ﬁ F".
i=1

Now, because the elements o; generate G, we see that the lifts o; — F; defines a section s: G — £. As such,
we can compute a representing cocycle for our cohomology class as

c(g,h) = s(g)s(h)s(gh) ™"
)

(11 ) (11

m m
ke Ak ai) (bj a;+b;
( H Ukkerk Ukk>0-i( )‘73(‘ )Bij (HFZ +b> (HFmi+1
j<k<i i=1 i=1

1<k<j
It remains to deal with the last products; we claim that it is equal to
m

<z‘—1 )(ﬁ ) (H ot

H Fiar‘rbi
1<k<i
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i=1
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which will finish the proof. We induct on m; for m = 0 and m = 1, there is nothing to say. For the inductive
step, we assume that

) () )

i=2 \ 2<k<i

and compute

m m m
a;+b; —Tm—it1 _ pai+b a;+b; —Tm—it+1 —a1—b ai+by—r
I1# [[E. ) =t T HFm i P S
=1

i=1 i=2
m
_ pra1+b ak+bg qi —a1—by  q1
=FK H H O S oy
i=2 \ 2<k<i
_ ak+by q1
= H( II ) af | of
=2 \ 1<k<i
T 1 o )or
i=1 \1<k<i
finishing. |

4.3.2. The Modified Set-Up. A priori we have no reason to expect that the ¢ constructed in [Proposition 129
is actually a cocycle, especially if the o; have nontrivial relations.
To account for this, we modify our set-up slightly. By the classification of finitely generated abelian

groups, we may write
m
G~ @ Gk,
k=1

where G, C G with G, 2 Z/niZ and ny > 1 for each ny. As such, we let oy, be a generating element of Gj,
so that we still know that the o generate G. In this case, we have the following result.

Theorem 130 (|AS78, Theorem 1.3)). Fix everything as in the modified set-up, forgetting about the extension
E. Then a {o;}2-tuple of {a;}2q and {B;j}is; makes

c(g,h) = H ( H Uak+bk>( H O'Zk>0'£ai)0'§bj)ﬁij ﬁ( H UZkerk)ai[aiT:biJ 7

1<j<i<m \1<k<j j<k<i i=1 \ 1<k<i

where g =[], 0" with h =], a;lj and 0 < a;,b; < n;, into a cocycle in Z*(G, A).

Proof. Note that ¢ is now surely well-defined because the elements g and h have unique representations as
described. Anyway, we relegate the direct cocycle check to because it is long, annoying, and
unenlightening. We will also present an alternative proof in using more abstract theory. W

Observe that the above construction has now completely forgotten about £! Namely, we have managed to
go from tuples straight to cocycles; this is theoretically good because it will allow us to go fully in reverse: we
will be able to start with a tuple, build the corresponding cocycle, from which the extension arises. However,
equivalence classes of cocycles give the “same” extension, so we will also need to give equivalence classes for
tuples as well.

4.4. Building Tuples. We continue in the modified set-up of the previous section. There is already an
established way to get from a cocycle to an extension, which means that it should be possible to go straight
from the cocycle to a {o;}7*-tuple. Again, it will be beneficial to write this out.

Lemma 131. Fiz everything as in the modified set-up, but suppose that & = E. is the extension generated
from a cocycle ¢ € Z?(G, A). Then, if F; = (z;,0;) are our lifts, we have
ot x;  oilzy) clog,04)
a; = Ni(z;) - ][ e(of,0i and B = —F— -
kl;[o (o) Tooi(m)  w cloj00)
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for each a; and B;;.

Proof. The equality for the a; follow from For the equality about $;;, we simply compute by
brute force, writing

FiFj = ((Ez . O'Z'!Ej . C(G’i70'j),0i0'j)
F;F; = (zj - ojx; - c(0j,0:),0;0;)
(F3F) ™ = ((000) () - 02 - e, 00)) " H oy o)
which gives
Bij = (FFy) (F F) 7!
_< €T; UZ‘.”L']‘ C(O’Z‘,O'j) 1)
ojr;  x;  clojo) )]

finishing. |

Here is a nice sanity check that we are doing things in the right setting: not only can we build tuples
from extensions, but we can find an extension corresponding to any tuple.

Corollary 132. Fiz everything as in the modified set-up, forgetting about the extension £. Given any
{o:}21 -tuple of {a;}%q and {Bij}is;, there exists an extension € and lifts F; of the o; so that

Q5 :F,Lnl and 61']' :FiFjFi_le_l.
Proof. From [Theorem 130} we may build the cocycle ¢ € Z%(G, A) defined by

(44) c(g,h) = H ( H ng+bk> ( H Uzk>az(ai)g§bj)ﬁij ﬁ < H JZ’C"‘bk)ayibiJ |

1<j<i<m \1<k<j j<k<i i=1 \ 1<k<i

where g .= [[, F{" and h =[], F;j and 0 < a;,b; < n;. As such, we use £ := &, to be the corresponding
extension and F; := (1,0;) as our lifts. We have the following checks.

o To show a; = F;"*, we use [Lemma 131|to compute F;"*, which means we want to compute

nifl

H c (af ,03) .
k=0
Well, plugging ¢ (cF, 0;) into|(4.4)] we note that all ﬂl(c(zkb[) terms vanish (either ay = 0 or by = 0 for
each k # £), so the big left product completely vanishes.
As for the right product, the only term we have to worry about is

( 1 0,2“)%“"“7

1<k<i

which is equal to 1 when k <n; — 1 and «; when k =n; — 1. As such, we do indeed have a; = F}".
e To show 3;; = FiFijle*l for i > j, we again use to compute FiFijlefl, which
means we want to compute
c(oi,04)
C(Uja Ui) .
Plugging into once more, there is no way to make |(ay + bg)/ni | nonzero (recall we set ng > 1
for each k) in either ¢(oy,0;) or ¢(o;,0;). As such, the right-hand product term disappears.
As for the left product, we note that it still vanishes for ¢(o;, 0;) because ¢ > j implies that either
ar = 0 or by = 0 for each k > ¢. However, for ¢(o;,0;), we do have a;, = 1 and b; = 1 only, so we
have to deal with exactly the term

(I ) (T o)
1<k<j J<k<i

With ¢ > j and a, = b = 0 for k ¢ {i,j}, we see that the product of all the oys will disappear,
indeed only leaving us with £;;.
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The above computations complete the proof. |

And here is our first taste of (partial) classification.

Corollary 133. Fix everything as in the modified set-up, forgetting about the extension €. Then the formula
of and the formulae of (setting x; = 1 for each i) are homomorphisms of abelian
groups between tuples in T (G, A) and cocycles in Z*(G, A). In fact, the formula of s a section
of the formulae of [Lemma 151]

Proof. The formulae in [Theorem 130| and [Lemma 131 are both large products in their inputs, so they are
multiplicative (i.e., homomorphisms). It remains to check that we have a section. Well, starting with a

{o:}™,-tuple and building the corresponding cocycle ¢ by [Theorem 130} the proof of [Corollary 132 shows
that the formulae of [Lemma 131 recovers the correct {o;}I”-tuple. |

4.5. Equivalence Classes of Tuples. We continue in the modified set-up. We would like to make
into a proper isomorphism of abelian groups, but this is not feasible; for example, the cocycle c
generated by will always have ¢(o;,0;) = 1 for ¢ > j, which is not true of all cocycles in
Z%(G, A).

However, we did have a notion that the data of a {o;}/; should be enough to specify the group law of the
extension that the tuple comes from, so we do expect to be able to define all extensions—and hence achieve
all cohomology classes—from a specially chosen {o;}7,-tuple.

To make this precise, we want to define an equivalence relation on tuples which go to the same cohomology
class and then show that the map is surjective on these equivalence classes. The correct
equivalence relation is taken from

Definition 134. Fiz everything as in the modified set-up. We say that two {o;}7~,-tuples ({cu}, {Bi;}) and

({ai},{Bi,}) are equivalent if and only if there exist elements 1, ...,z € A such that
x;  oi(xy)
— Ni(x:) o d — L Sl A 1
@ i(i) o an Bij o5 () z; Bij

for each a; and B;j. We may notate this by ({a:}, {Bi;}) ~ ({ai}, {Bi;})-

Remark 135. [t is not too hard to see directly from the definition that this is in fact an equivalence relation.
In fact, the set of tuples equivalent to the “trivial” tuple of all 1s is closed under multiplication (and inversion)
and hence forms a subgroup of T(G,A). As such, the set of equivalence classes forms a quotient group of
T(G, A). We will denote this quotient group by T (G, A).

This notion of equivalence can be seen to be the correct one in the sense that it correctly generalizes
Proposition 136 (JAS78, Theorem 1.4]). Fiz everything as in the modified set-up with an extension €. As
the lifts F; change, the corresponding values of

. s .- —1 —1
Q= Fz and BZ] = FszFl Fj

go through a full equivalence class of {o; }1", -tuples.

Proof. We proceed as in [Proposition 116 Given an extension &', let Sgr be the set of {o;},-tuples
generated as the lifts F; change. We start by showing that an isomorphism ¢: & = £’ of extensions implies
that Sg¢ = Sg/; by symmetry, it will be enough for Sg¢ C Sg/. The isomorphism induces the following diagram.

1 A £ G 1
|
1 A g a 1

To show that Sg C Sg/, pick up some {0, }7~;-tuple ({o; }, {83;;}) generated from lifts F; € € (i.e., m(F;) = o),
where

a; = F/" and Bij = FiFjFi_lFJfl.
Now, we note that F} := o(F;) will have

m(F}) = m(p(Fi)) = ¢(n(Fy)) = o
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by the commutativity of the diagram, so the F) are lifts of the ¢;. Further, we see that
(F))" = o(F)" = ¢ (F]") = p(o) = o
for each 7, and
FF[(F) " F)™" = o (FFFTFTY) = 9(Bij) = By
for each ¢ > j. Thus, ({au}, {8i;}) is a {o;}/2,-tuple generated by lifts from &', implying that ({os},{8:;}) €
Ser.
It now suffices to show the statement in the proposition for a specific extension isomorphic to £. Well,

the isomorphism class of £ corresponds to some cohomology class in H?(G, A), for which we let ¢ be a
representative; then & ~ &£, so we may show the statement for £ := £.. Indeed, as the lifts F; = (z;,0;)

change, we know by that

n;—1

. xX; Ul(ic) C((Ti,U')
OLZ:Nz(IEl) I | C Uf,ai and ﬂz = . J/ . J

k=0 ( ) ! oj(z;) Lj c(oj,04)

for each «; and B;;. All of these live in the same equivalence class by definition of the equivalence, and as
the x; are allowed to vary over all of A, they will fill up that equivalence class fully. This finishes. ]

We are now ready to upgrade our section.

Corollary 137. Fix everything as in the modified set-up, forgetting about the extension £. Firing a co-
homology class [c] € H*(G, A), the set of {o;}™-tuples which correspond to [c] (via|Theorem 13(}) forms

exactly one equivalence class.

Proof. We show that two tuples are equivalent if and only if their corresponding cocycles (via[Theorem 130))
to the same cohomology class, which will be enough.

In one direction, suppose ({a;}, {8i;}) ~ ({ei}, {B;})- Bijorollary 132% we can find an extension £ which

gives ({c;}, {8i;}) by choosing an appropriate set of lifts. By [Proposition 136 we see that ({a;}, {;;}) must
also come from choosing an appropriate set of lifts in £. However, the cocycles in Z2(G, A) generated by

from our two tuples now both represent the isomorphism class of £ by S0

these cocycles belong to the same cohomology class.
In the other direction, name the cocycles corresponding to ({a;}, {8i;}) and ({a}},{5};}) by c and ¢

respectively, and suppose [¢] = [¢/]. Then &, = & as extensions, but we know by the proof of [Corollary 132
that ({a;}, {i;}) comes from choosing lifts of €. and similar for ({a;}, {3},}). In particular, because . = &,

we know that ({«}, {;;}) will also come from choosing some lifts in €. (recall the proof of [Proposition 136)),
so ({ai}, {8i5}) ~ ({ei}, {5i;}) follows. u

Theorem 138. The maps described in [Corollary 133 descend to an isomorphism of abelian groups between
the equivalence classes in T (G, A) and cohomology classes in H*(G, A).

Proof. The fact that the maps are well-defined (in both directions) and hence injective is|Corollary 137} The
fact that we had a section from tuples to cocycles implies that the map from cocycles to tuples was also
surjective. Thus, we have a bona fide isomorphism. |

4.6. Classification of Extensions. We remark that we are now able to classify all extensions up to iso-
morphism, in some sense. At a high level, an isomorphism class of extensions corresponds to a particular
cohomology class in H?(G, A), so choosing a {o;}1;-tuple ({a;},{Bi;}) corresponding to this class, we can
write out a representative of this cocycle by properly corresponding to the original extension

by [Proposition 129
In fact, the cocycle in is generated by the description of the group law in

and the entire computation only needed to use the following relations, for the appropriate choice of lifts Fj.
(a) Fyx = o;(z)F; for each i and x € A.
(b) E" = o for each i.
(C) FiFjFiileil = Bij for each 7 > 75 i.e., F,LFJ = ﬁ”FjFl

As such, the above relations fully describe the extension because they also specify the cocycle, and we know

that this cocycle is well-defined. We summarize this discussion into the following theorem.
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Theorem 139. Fiz everything as in the modified set-up, forgetting about the extension £. Further, fix a
{o:}72,-tuple ({a;},{B:;}), and define the group E({a;},{B:;}) as being generated by A and elements {F;}7,
having the following relations.

(a) Fix = o;(x)F; for eachi and x € A.

(b) E"" = oy for each i.

(¢) F;F; = B;; F;F; for each i > j.
Then the natural embedding A — E({o;},{Bi;}) and projection w: E({cy},{Bi;}) - G by F; — o, makes
E({a;},{Bij}) into an extension. In fact, all extensions are isomorphic to some €({a;},{Bi;})-

Proof. This follows from the preceding discussion, though we will provide a few more words in this proof.
The exactness of

1—-A— E({ai},{ﬁij}) 1> G—1

follows quickly. Further, the action of conjugation of £ on A corresponds correctly to the G-action by (a).
So we do indeed have an extension.

It remains to show that all extensions are isomorphic to one of this type. Well, note that
and use only the above relations to write down a cocycle representing the isomorphism class
of E({a;},{B:;}), and it is the cocycle corresponding to the {o;}1"-tuple ({e;}, {B;;}) itself as described in
Theorem 1301

However, we know that as the equivalence class of ({a;}, {8;;}) changes, we will hit all cohomology classes
in H?(G, A) by|[Theorem 138 Thus, because every extension is represented by some cohomology class, every
extension will be isomorphic to some E({«;}, {8;;}). This completes the proof. |

4.7. Change of Group. We continue in the modified set-up, but we will no longer need access to an
extension £. In this subsection, we are interested in what happens to tuples when the cocycle operations
of Inf: H? (G/H,A") — H?*(G, A) and Res: H*(G,A) — H?(H, A) are applied, where H C G is some
subgroup.

In general, this is difficult because the structure of a subgroup H C G might not be particularly amenable
to forming a tuple from a tuple in G. More concretely, H might have generators which look very different
from those of G. However, it will be enough for our purposes to restrict our attention to the subgroups of
the form

H= <0‘111,... gdmy,

rvm
where the {d;}" ; are some positive integers with d; | n, for each . With that said, here are our computations.
We begin with inflation.

Lemma 140. Fizx everything as in the modified set-up, forgetting about the extension £. Further, let H :=
<Jf1, ooy 09m) be a subgroup with de | ne, and let G; be the image of o; in G/H. Consider the inflation map
Inf: H? (G/H, A") — H?(G, A).

If the cocycle ¢ € Z* (G/H, A®) gives the {o;};"  -tuple ({ai;}, {B,;}) (by, then the cocycle
Infe € Z%(G, A) gives the {o;}™ -tuple

f({a}, (5,)) = (o (81) = ({@0"} . (B,)).

Proof. The point is to use the explicit formulae for the o; and B;; of
More explicitly, the map of tells us that we can compute the tuple for Inf ¢ by using our
explicit formulae for o; and f3;; on the 2-cocycle Inf¢ € Z?(G, A). For some «;, the computation is

n;—1
oy = H (Il’le) (of,ai)
k=0
n;—1
= H ¢ (ar,5,)

k=0

d;i—1 ni/d;

k=0
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where the last equality is because Efi = 1in G/H. In fact, d; is the order of 7;, so the product is just @; by

and how we defined @;. It follows

o = @;Li/ i
Continuing, for some 3;;, we have
B, = (Infe)(oy, 0;)
Y (Infe)(oy,04)
_ (@i,7)
&(a;,7:)
= Bijv
where the last equality is by how we defined Blj These computations complete the proof. |

Remark 141. We can also the statement of [Lemma 140 as asserting that the diagram
72 (G/H,A") M 72(G, A)

| J

T (G/H,AT) L, T(G, A)

commutes, where the vertical morphisms are from[Corollary 133,
Remark 142. In light of the fact that the cohomology class of some Inf¢ € §2(G,A) is only defined up
to the cohomology class of ¢ € Z* (G/H, A®), changing an input tuple ({a@;}, {Bi;}) € T (G/H,A") up to
equivalence will not change the cohomology class of the associated cocycle in ¢ € Z? (G/H7 AH) and hence
will not change the cohomology class of Infc nor the equivalence class of Inf({a;},{B,;}) € T (G, A). All
this is to say that we have a well-defined map

Inf: 7 (G/H,A") - T(G, A)
and commutative diagram

T (G/H, AT L TG, A)

! |

H? (G/H,A") 5 H?(G, A)
induced by modding out from [Remark 141
Restriction is similar.
Lemma 143. Fix everything as in the modified set-up, forgetting about the extension £. Further, let H =
(0%, a%m) be a subgroup with de | ne. Consider the restriction map Res: H? (G, A) — H?(H, A).
If the cohomology class [c] € H? (G, A) is represented by the {o;};~,-tuple ({c;},{Bi;}), then the coho-
mology class [Res¢| is represented by the {agi}ﬁl—tuple

1 A ld,—n, diln.—a.) (diln.—a,)
({ai},{ﬂ“}): ({O‘idi 1}7{01( ; dl)aj i lnj=d; ﬂ”})
Proof. As in the previous proof, we will simply define ¢ by and we will use the formulae of
h

mma 131[to retrieve the {afi }-tuple for Resc. Indeed, we compute
ni/difl
a; = H (RGSC) (O',L-dik,a'idi)
k=0
ni/difl
[T c(o*0f)
k=0
’n,i/d,j—l

k=0
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where in the last equality we have used the construction of ¢. Now, if n; = d;, and the product is empty,
and we get 1; otherwise, the last term of the product & = n;/d; — 1 is the only term which does not return
ng=dg

1, and it returns o;. So this matches the claimed ai
Continuing, we compute

where in the last step we have used the construction of c¢. Now, if n; = d; or n; = d;, then we are computing
c (1,0?1) or ¢ (O';li, 1), which are both 1, as needed. Otherwise, d; < n; and d; < nj, so

a (didy)

Bij = 6@' 7,
which again is as claimed. |

Thankfully, we will really only care about inflation in the following discussion, but we will say that there
are analogues of [Remark 141| and [Remark 142]

4.8. Profinite Groups. In this subsection, we will use our results on change of group to extend our results
a little to allow profinite groups. As such, we will want to slightly modify our set-up; we will call the following
set-up the “profinite set-up.”

Let Z be a poset category such that any pair of elements has an upper bound (i.e., a directed set), and let
the functor Go: Z°? — FinAbGrp be an inverse system of finite abelian groups. These will create a profinite
group

G = l&n Gl
i€
In order to be able to apply our theory, we will assume that G is a finite direct sum of procyclic groups as

6=~ B
k=1

for some elements {0y }77; C G. Further, we will require that the kernel N; of the map G — G; to take the

form
. dia d;,
N, = <011 ,...,am””>

in such a way that (0;N;) has order d; ;. In short, our restriction on the N; will allow our inflation maps
to be computable in the sense of We quickly remark that, because the topology on G is the
coarsest one making the projections G — G; continuous, the subsets {NN;};cz give a fundamental system of
open neighborhoods around the identity.

Remark 144. Of course, one could also start with G being a finite direct sum of procyclic groups and then
define the N; and G; accordingly. We have chosen the above approach because in application one might only
have access to select G;s, and it is not obvious how to choose these from such a “top-down” approach.

Example 145. To show that we are still allowing interesting groups, we can set

G, = Gal (Qp(Cpm—1)Qp(Cpr ) /Qp) = Gal (Qp(Cpm—1)/Qp) & Gal (Qp(Cpr)/Qp)

which becomes G = Gal (ng/Qp) ~7® Z,y upon taking the inverse limit. It is not very hard to check that
the kernels are generated correctly; for ezample, when p is odd, we have Z,; = Z/(p — 1)Z & Z,, and under
our isomorphisms, we will have

Gal (Q(Cr)/Qp) ~Z/(p —1)Z® Zp/pyilzp,

so the kernel of G — G, is mZ & (Z)(p — 1)Z) =0 @& p*~'7Z,,.
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Remark 146. I'm not sure if such an explicit construction can be extended to other local fields K (say, via
Lubin—Tate theory). Because K* is not topologically finitely generated when K is in positive characteristic
(see for example [Neu99, Proposition I11.5.7]) such a construction must do something subtle.

Let A be a discrete G-module. The main goal of this subsection is to be able to provide a notion of a
“compatible system” of tuples from each individual H?(G;, A) to be able to exactly describe an element of
H?(G, A). To effect this, we have the following somewhat annoying checks.

Lemma 147. Suppose that P is a directed set, and let P’ C P be a subcategory such that any x € P has
some ' € P’ such that v < z’. Then, given a functor F': P — C, we have

@F ~ liénF,

P P’

provided that both colimits exist.

Proof. For concreteness, if x <y in P, we will let f,,: x — y be the corresponding morphism; in particular,
x <y < zhas f.; = f.yfyz- Now, for brevity, set
X =lim F and X' = lim F*.
P P
By the Yoneda lemma, it suffices to fix some object Y € C and show that More(X,Y) ~ More (X', Y). Well,
morphsims X — Y are in (natural) bijection with cones under F' with nadir Y, and morphisms X’ — Y are
in (natural) bijection with cones under F’ := F|p, with nadir Y.

Thus, it suffices to give a natural bijection between cones under F' with nadir Y and cones under F’ with
nadir Y. Well, given a cone under F with nadir Y, we can simply restrict it to P’ to get a cone under F’.
In the other direction, given a cone under F’ with nadir Y, we can build a cone under F' with nadir Y as
follows; let @,/ : F(z') = Y for 2’ € P’ be the corresponding morphisms in our cone.

For any z € P, find 2’ € P’ such that z < 2’. Then set

Pz = Pa’ O fw’a:
Note that ¢, is in fact independent of our choice of z’: if © <z} and x < %, then because P is a directed
set, we can find y € P such that z7, 25, <y and then 3’ € P’ with y <y’. Then
Pz, © fx’.z = Py’ © fy’w’, © fac’.w
=Py © fy’x
for 2, € {z},z4}. Anyway, we can check that the morphisms ¢ do assemble to a cone under F': if x < y in
P, then find y' € P with x <y <y, and we compute
g@y le) fyx = gpy/ o fy/y o] fyx
=Py © fy’:z:
Thus, we do have a natural, well-defined map sending cones under F’ with nadir Y to cones under F' with
nadir Y. It is not too hard to see that these maps are inverse to each other (for example, the cone under F’,
extended to F, does indeed restrict back to F’ properly), which completes the proof. ]
Remark 148. One can remove the hypothesis that the colimits exist and use essentially the same proof.
Proposition 149. Fiz everything as in the profinite set-up. Then, given a discrete G-module A,
H*(G,A) =~ lim H? (G, A
=
Here, the morphisms between the collection of H? (Gi,ANi) are induced by inflation: if i — j in I, then
G; — G, in FinAbGrp, giving an inflation map Inf: H? (Gi,ANi) — H? (Gj, ANJ).

Proof. Let N be the poset category of open normal subgroups of G, reverse ordered under inclusion; i.e.,
N7 C Ny in G induces a map Ny — Nj. Then it is already known that
H*(G, A) ~ lim H? (G/N,AN).
NeN
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On the other hand, observe that ¢ < j in 7 induces G; — G, so N; € N;. In other words, i — N; will define
a functor Z — N; functoriality follows because Z and N are poset categories. Letting A/ denote the image
of Zin N, we see

lim H? (Gj, AM) ~ lim H? (G/N,AY).

i€l NeN’
Notably, the inflation maps Inf: H? (G;, AN') — H? (G;,ANi) when i < j become the inflation maps

Inf: H? (G/N, AN) — H? (G/N’,AN/> when N’ C N. So if we let F': N'— AbGrp be the functor taking
N to H? (G/N, AN) (and N C N’ to the inflation map), we are trying to show
lim F = lim F.
¥ W
For this, we use Indeed, for a given open normal subgroup N € A, we need to find some
N’ € N such that N < N’, which means N’ C N.
However, the elements of A/ are the collection {N;};cz, which form a fundamental system of open neigh-

borhoods around the identity. Thus, the fact that N is an open set containing the identity implies there is
some N; € N7 such that N; C N. This finishes the proof. [ ]

Observe that the above proofs did not use the extra hypotheses on G nor N; to be products of procyclic
groups. We use these hypotheses now. To work more concretely, we note that any ¢ € 7 has
G m m m
dipy ., d;
Gi= 1 = @D o)/ 057) = Ploy) /(o) € D 2/di 7
top=l p=1

p=1

is a finite abelian group generated by the elements o,/N;. By choosing the d; ;, appropriately, recall that we
also forced the order of o, N; to be d; .

Regardless, the main point is that, given a discrete G-module A, we can consider the {apNi};":l—tuples
’T(GZ—, ANi). Now, as discussed above, ¢ < j in Z induces a quotient map G; ~ G/N; - G/N; ~ G;. From
this, we have the following coherence check.

Lemma 150. Fiz everything as in the profinite set-up, and let A be a discrete G-module. Then, given
1 <3<k inZ, the diagram
T (Gi, AN) —25 T (G, AN
m llnf
T (Gr. AN)
commutes. Here, the Inf maps are defined as in|[Lemma 140

Proof. For each i € Z, we let n; ,, denote the order of 0, N; € G;. Using the definition of Inf from
we just pick up some {0, N} -tuple ({ap}, {Bpq})-tuple in T (G, AN') and track through the diagram as
follows.

({ap} {Ba}) = ({ai /"), 1By}

Infl llnf

( a;dk,p:di,pdk»p/di,p }’ {ﬂpq}) ({az()ldjyp:di,pdj,:D/di,p)(ldkyp:dj_’pdk,p/djyp) }’ {qu})
Notably, di , = d; , implies that these are both equal to d;, because ¢ < j < k upon tracking the order of
op through our morphisms G — G; — G;. This completes the proof. ]

And here is the result.

Theorem 151. Fiz everything as in the profinite set-up, and let A be a discrete G-module. Then the
isomorphisms of |[Theorem 138 upgrade into an isomorphism

H?(G, A) zﬁ_r>n7'(Gi,ANi).

1€L
Here the morphisms between the T (Gi,AN'i) are inflation maps of |Lemma 140
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Proof. Note that the objects T (G;, AN') do make a directed system over Z because of the commutativity
of [Lemma 150, Namely, the lemma checks that Z — AbGrp by i — 7’(Gi,AN'i) is actually functorial;

technically we must also check that the maps T (Gi, ANi) - T (Gi, ANi) are the identity, but this follows
from the definition.

Now, by we have
H?(G, A) = lim H? (Gy, AN ,
iet
but now the natural isomorphism induced by induces an isomorphism of direct limits
lim H? (G, AY) ~ 1l T (G, A™Y)

i€Z ieZ
given by the isomorphism of acting pointwise. This completes the proof. |

Because there are reasonably explicit descriptions of direct limits of abelian groups, and we already have
an explicit description of each T (Gi, AN ) term in addition to a description of the inflation maps between
them, we will be content with our sufficiently explicit description of H2(G, A). So we call it done here.

5. TuPLES AS ENCODING MODULES

The story from was able to encode a cohomology class in H?(G, A) into a (somewhat complex)
tuple of elements in A. This mirrors the introductory comments from [section 3} so we will spend this section
connecting the two stories.

5.1. Set-Up and Overview. The approach here will be to attempt to abstract our data away from the
G-module A as much as possible. To set up our discussion, we continue with

G~ éGz,
i=1

where G; = (0;) C G and o; has order n;. These variables allow us to define

ni—l

T; = (0; — 1) and N; = Z ab
p=0

for each index i. In fact, it will be helpful to continue to use the notation
a—1
o = Z a?
p=0

for any o € G and nonnegative integer a > 0; in particular, ¢(®) = 0 and az(ni) = N,. The main benefits to
this notation will be the facts that

o) =) L 5960 and 6% =Tl +1,

which can be seen by direct expansion. Given g € HZ:I op?, we will also define the notation

i—1
g0 =] o
p=1

for i > 0. In particular gy = g1y = 1 and g(m41) = 9E|
The key to our discussion will be the magical map F: Z[G]™ x Z[G](T;) — Z[G]™ defined by

i—1 m m
Fi (@i, (yig)isg) = (xiNi > v+ Y yjz'Tj) :
Jj=1 Jj=it+1 i=1
This is of course a G-module homomorphism. We will go ahead and state the main results we will prove.
Roughly speaking, F is manufactured to make the following result true.

2We are using a subscript here because we are more or less taking a subsequence of g.
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Proposition 152. Fiz everything as in the set-up. Then the function
= — (a)\™
c(g9) = (900, i’

where g == [/~ 0" with 0 < a; < n; for each i, is a 1-cocycle in Z'(G, coker F).
The reason we care about this cocycle is that we can pass it through a boundary morphism induced by
the short exact sequence

m (%)
0— ZIGI" x 2(G] EA Z|G]™ — coker F — 0,
ker F
X:=

so we have a 2-cocycle §(¢) € Z2(G, X); in fact, we will be able to explicitly compute §(¢) as a result of the

proof of [Proposition 152

Only now will we bring in tuples. The first result provides an alternate description of tuples.
Proposition 153. Fiz everything as in the set-up, and now let A be a G-module. Then {o;}* -tuples are
canonically isomorphic to Homgg) (X, A) = H(G, Homyz (X, A)).

The second result brings in the last ingredient, the cup product.

Theorem 154. Fiz everything as in the set-up. Also, fix a G-module A and a {o;}]2,-tuple ({as},{Bi;}).
Observe there is a natural cup product map

U: H*(G, X) x H°(G,Homz (X, A)) — H*(G, A).

Then, using the isomorphism of [Proposition 155, the cocycle defined in s simply the output of
(@) U ({ai},{Bi;j}) on cocycles.

Because we know that the cup product sends cocycles to cocycles, this will show that the cocycle of
is in fact well-defined. More importantly, X will be a 2-encoding module.

5.2. Preliminary Work. We continue in the set-up of the previous subsection. Before jumping into any

hard logic, we define some (more) notation which will be useful later on as well. First, in Z[G]™ x Z[G](?),
we define

kp = ((Lizp)ir (0)i>5)  and  Apg = ((0)is (L(i jy=(p.g) )i>5)

for all relevant indices p and ¢ so that the x, and \,, are a basis for Z[G]™ x Z[G](2) as a Z[G]-module.
Secondly, we define

ep = (li=p)iZ, € ZIG]™

for all indices p, again giving a basis for Z[G]™ as a Z[G]-module. For example, this notation lets us write

(5].) F Ziﬂilﬁli + Z yij)\ij = Z {EZNZEZ + Zyij (Tl'é?j — TjEi),
i=1 =1

i>j (]
and
m
c(g) = Z gio\ e
i=1

m a;

where g == [[,", o}
Additionally, so that we do not need to interrupt our discussion later, we establish a few lemmas which

will aide our proof of [Proposition 152

Lemma 155. Fiz everything as in the set-up. For any set of distinct indices {i1,...,ix} € {1,...,m}, we
have

=

k
im N;, = im H N,
p=1 p=1
where we are identifying © € Z|G] with its associated multiplication map x: Z|G] — Z[G].
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Proof. The point is that the elements of ﬂ _,im N;, and 1mH
expansion in the form }°  c,g € Z[G] have ¢, “constant in o}, and o4.” More explicitly, of course, HI;:1 N;, €

koo
(=1 imN;,, so

N;, are both simply the elements whose

k k
imH N;, C ﬂ im ;.
p=1 p=1

In the other direction, suppose that we have some element

— a]‘ DRI a
z = g Cla;};01 o € ﬂ im N, ,
p=1

{a:}:

the sum is over sequences {a;}, such that 0 < a; < n; for each index i. We will show z € 1mH
Now, z € im N, for given r is equivalent to z € ker T, but upon multiplying by (o, — 1) we see that we
are asking for

Z C{ai}iUTl e U 1 0 a?rifll e U’Zn = Z c{ai}io'(l11 e O' 1 Uar+10_?—ril o U?Ln'
{ai}ti {ai}s
In other words, this is asking for ¢(4,), = ¢(a;),+(1,_,.);» Or more succinctly just that c is constant in the i = r
coordinate.
Thus, ¢ is constant in all the ¢ = i, coordinates for each index i,. Thus, we let dyqa,},,, , be the restricted

function equal to c(,,), but forgetting the information input from any of the a;,. This allows us to write

_ E ay a
z = C{a;}:01 O
{a:}:

nll nlk

- Z Z Z d{a, Vit O a1 gam

{aitig(ipy @i1=0

m ni;—1 ni, —1
— < Z d{ai}ig{ip} H J?’i>< Z O.Zn) ( Z J:k>7

{ai}ig{ip} Zé{:ZO} Llilzo
P

aik—

which is now manifestly in im Hl;=1 Ni,. |

Lemma 156. Fiz everything as in the set-up. Then, given g == [[;-, o, we have
i—1
90 =1+ 9wy T
p=1

fori>1.

Proof. This is by induction. For i = 1, there is nothing to say. For the inductive step, we take i > 1 where
we may assume the statement for 4 — 1. Via some relabeling, we may make our inductive hypothesis assert

HUGP1+§<1:[0 ) (ap)
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In particular, multiplying through by o7* yields

gi = o1’ HU“P
i—1 -
=o' + o (H lops >0§GP)TP

p=2

=o'+ Z Iy T,

=1+ + Zg olan) T,

p=2

which is exactly what we wanted, after a little more rearrangement. |

And mostly because we can, we show that our main short exact sequence splits.

Lemma 157. Fiz everything as in the set-up. Then consider Z-module map p: Z|G]™ — Z|G]™ defined by

plge;) = 900 (a';li — Nilai:ni,1)5i + Z g(j)oéaj)TiEp
j=it1

where g = [~ o with 0 < a; < n;. Then p descends to a map p: coker F — Z[G)™ witnessing the
Z-splitting of the short exact sequence

0 — X — Z|G]"™ — coker F — 0.

Proof. Observe that we have a well-defined map p: Z[G]"™ — Z[G]™ because Z|G]™ is a free abelian group
generated by ge; for g € G and indices ¢. It remains to show that im F C ker p to get a map p: coker F —
Z|G]™ and then to show that p(z) = z (mod im F) to get the splitting. We show these individually.

To show that im F C ker p, we note from that im F is generated over Z[G] by the elements N;e; and
Tie; — Tje; for g € G and relevant indices 7 and j. Thus, im F is generated over Z by the elements g/N;e;
and gTie; — gTje; for relevant indices i and j. Thus, we fix any g == [[_, o with 0 < a; < n; and show
that gV;e; € ker p and gTie; — g7)e; € ker p for relevant indices ¢ and j.

o We show gN;e; € ker p for any i. Because gN; = go; N;, we may as well as assume that a; = 0. Then

p(goiei) = gy (of — Nilog—n,—1)&; + Z 905 0 T€g
Jj=i1+1

As a varies from 0 to n; — 1, we note that the term g )( — N;l,— nl,l)fsl will only get the —N;
contribution exactly once at a = n; — 1. Summing, we thus see that

n;—1 n;—1
p(gNiei) = 9. ( N; + Z o; )51—1— Z Z 9050 )Tej

a=0 j=i+1

The left term vanishes because N; = Y '" 01 of. Additionally, the right term vanishes because we
can factor out T; 22;01 o} =T;N; =0. So glez € ker p.
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o We show gT,e, — gTye, € ker p for any p > g. Equivalently, we will show that p(gopeq) — p(geq) =
p(gogep) — p(gep). On one hand, note

p(gopeq) = g(q)( — N 1aq—nq—1)5q
+ Z (aJ T,ej
Jj=q+1

+ 9(p) (U(“”H) — Nplap:n,,—l) Tep

+ Z Tpd(;)O TEJ

j=p+1

because g(;) doesn’t “see” the extra o, term until j > p. (For the j = p term, we would like to write
oz(,apﬂ) above, but when a, = n, — 1, we actually end up with 01(90) = 0 and hence have to subtract

out 01(,””) = N,.) Thus,

p(g0peq) — p(92q) = 9y (0% — Nplay—n,—1) Tyep + > 9090y TyTye;.

Jj=p+1
On the other hand, we have
“ - (ay)
p(904Ep) = Tq9(p) (O'p - Nplap:np_l)sp + Z 049()0; " Tpe;
Jj=p+1

where this time all j > p also have j > ¢ and so (049)(;) = 049(j)- Thus,

p(9045p) — p(92p) = 9(p) (057 = Nplay=n, 1) Tuep + Z 930S T, Tye,
Jj=p+1

as desired.

We now check the splitting. For this, we simply need to check that p(ge;) = ge; (mod im F), and we will
get the result for all elements of Z[G]™ by additivity of p. Well, using |[Lemma 156} we write

m
961-—%)02”( 11 ff}”>€i

j=i+1

m j—1
= 907" <1+ > ( II 03q>0§aj)7})5i
j=i+1 \ g=i+1
m Jj—1
=9i)oi'ei + Z g(i)a?i< H USQ>a§aj)Tjsi

j=i+1 g=i+1
=g)oi'ei + Z g(j)0§aj)ﬂ€j (mod im F),
j=it1

where in the last step we have used the fact that Tje; = T)e; (mod im F). Lastly, we note that hN;e; = he;
(mod im F) for any h € G, so in fact

9&i = 9(i) (0’;“ — Nila,yzn,-,—l)si + Z g(j)O'](»aj),Tic’:‘j,
j=i+1l

and now the right-hand side is p(ge;). |
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5.3. Verification of 1-Cocycles. Here we prove Namely, we show that the 1-cochain
¢ € CY(G, coker F) defined by

c(g) = Zgu)aﬁ‘”)ei
i=1

where g == [~ 0§ with 0 < a; < n; is actually a 1-cocycle. It will be beneficial for us to do this by hand,
which is a matter of brute force. Set ¢ € C* (G, Z[G]™) defined by

9) =Y gwoi e,
i=1

where g == [[2, 08" with 0 < a; < n;. We will show that imdec C imF, which we will mean that
imdc = im de = 0, where f + f is the map C*® (G, Z[G]™) — C* (G, coker F) induced by modding out.

As such, we set g =[]\, 0" and h =[], ofi with 0 < a;, b; < n; for each 4. Then, using the division
algorithm, write

@

+bi =nigi + i
where ¢; € {0,1} and 0 < r; < n; for each i. Now, we want to show de(g, h) € im F, so we begin by writing

de(g, h) = ge(h) — c(gh) + c(g )

m

=2 (fih(z)U( e H” Dei + g™ )

=1

n

(5'2) (gh z)a —90) h(z 51 + 9(1)0; (a ) z) .
1

s

7

We now go term-by-term in|(5.2)l The easiest is the middle term of |(5.2), for which we write

L+bi) (nz‘h)

I0hmoi " = 9o
it+bi a;+b;

- g(i)h(i)a’ ey — 9@ @i o qiN;

a;+ L)

- g(i)h )O’ O'
= gihwo" " = gwha - i,
where the last equality is because o;N; = N;. Thus,

- (rs)
=Y gwhwo
=1

i=1

g(i)h(i)aga#bi)gi + Zg(i)h(i) < q; Nig;
)

9@y h Ufaﬁbi)é‘i + Z}—(Q(i)h(i)qmi)-
i=1

(-3
i=1

== 9
i=1

Now, using [Lemma 156} the i¢th coordinate of the left term of is

ghia," =9<¢)0?"< 11 U?j>hi0§bi)

Jj=i+1
a; a; bi
= 9@) <1+Z <H > (a )T>h()20_z()
j=i+1 \ g=i+1
m j—1
@i bi aq a a; b;
= 9@ h@oi o)+ Z (g(i)ai H qu>h(i)03(‘ J)of T
Jj=i+1 g=i+1

= gt o" + 3 gihao e
j=it+1
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And lastly, for the right term of the ith coordinate is

i—1
a; b, a;
9@05)=9w<Mn—§:Mﬂﬁ)TOU§)

j=1

i—1
i i b,
= 9hwo™ = Y gwhao ol T
Jj=1
So to finish, we continue from which gives

m

de(g, h) — Z}'(g(i)h(i)qmi) = Z (g(i)h(i)géli l(b) g(z)h(z ( i+ 1)51 +9(i)h(i)05ai)5i>

=1 =1
( ]) b i (bj)
+Z< > 96)hio; OO — 29 ihioi o) Tj)é‘i

=1 j=i+1 j=1
(S 509 N (a) (v
= Z ( Z hiyo "ol T+ D ghaeyol ’)Tj>€i
i=1 j=1 j=it1
a; b;
= Z]'- g( )h(])O' 0'](- ))\ij) .
i>7
Thus,
(5.3) Z h()lil+zg()h(] (a:) (b ))\ €imF.

i>]

This completes the proof of

In fact, the above proof has found an explicit element z so that F(z) = dc(g,h) for each g,h € G. As
such, we recall that we set
z|G)™ x 7[G)(%)

X =
ker F

to give the short exact sequence
0= X 5 Z[G)™ — coker F — 0.

In particular, we can track ¢ € Z!(G, coker F) through a boundary morphism: we already have a chosen lift
c € ZYG,Z[G]™) for ¢, and we have also computed F~! o dc from the above work. This gives the following
result.

Corollary 158. Fiz everything as in the set-up. Then the ¢ of [Proposition 159 has

Zg< hayki + Y giyhiyot™ o,

i>7
where ¢ is induced by
0>x5 Z|G]™ — coker F — 0.

Proof. This follows from tracking how ¢ behaves, using|(5.3) [ |

Remark 159. In some sense, this §(c) is exactly the cocycle of|[Theorem 130, where we have abstracted away
everything about A. We will rigorize this notion in our proof of [Theorem 157

5.4. Tuples via Cohomology. We continue in the set-up of the previous subsection. The goal of this
subsection is to prove The main idea is that we will be able to finitely generate ker F
essentially using the relations of a {o;}1;-tuple.

We start with the following basic result.

Lemma 160. Fiz everything as in the set-up. Then ker F contains the following elements.
(a) Tpkp for any index p.
(b) NpNgApg for any pair of indices (p,q) with p > q.
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(¢) Tykp + NpApg for any pair of indices (p,q) with p > q.
(d) Tpkq — Ngdpq for any pair of indices (p,q) with p > q.
(e) ToApr — Trdpg — TpAgr for any triplet of indices (p,q,r) with p > q > 7.

Proof. We start by showing that all the listed elements are in fact in ker F.

(a) Note that F only ever takes the z; term to a;N;, so if z; = T;, then the effect of x; vanishes.

(b) Similarly, note that F only ever takes the y;; term to y;;T; or y;;T;. As such, if y;; = N;N;, then
the effect of y;; vanishes again.

(¢) The only relevant terms are at indices p and g. Here, ¢ = p has F output

T,N, — N, T, + 0 = 0.

For i = g, we have no x, term, so we are left with N,T}, = 0.
(d) Again, the only relevant terms are at indices p and ¢. This time the interesting term is at i = ¢,
where we have

T,N, — 0+ (—N,)T, = 0.

Then at i = p, we simply have 0N, — (—N,)T, + 0 = 0.
(e) The relevant terms, as usual, are for ¢ € {p,q,r}.
e At i =p, we have 0 — (T, T, + (—1,)T,) + 0 =0.
o Ati=gq, we have 0 — (—(T,)T}) + ((=T,)T,) = 0.
e At i=r, we have 0 — 0+ (T,T, + (—1,)T,) = 0.

The above checks complete this part of the proof. |

Remark 161. The above elements are intended to encode the relations to be a {o;}_-tuple. We will see
this made rigorous in the proof of [Proposition 1535,

In fact, the following is true.

Lemma 162. Fiz everything as in the set-up. Then the elements (a)-(e) of|Lemma 160, with (b) removed,
generate ker F.

Proof. We remark that we callously removed (b) because it is implied: Tyr, + NpApg € ker F implies that
Ny - (Tykp + NpApg) = NpNgApg
is also in ker F. Anyway, this proof is long and annoying and hence relegated to [ |
Here is the payoff for the hard work in

Proposition 153. Fiz everything as in the set-up, and now let A be a G-module. Then {o;}",-tuples are
canonically isomorphic to Homg g (X, A) = H(G, Homy (X, A)).

Proof. Let T denote the set of {0}~ -tuples. We now define the map ¢: Homgjg)(X, A) — T by

o £ (1) (PO, )

In other words, we simply read off the values of f from indicators on the coordinates of X. It’s not hard to
see that ¢ is in fact a G-module homomorphism, but we will have to check that ¢ is well-defined, for which
we have to check the conditions on being a {o;}1*,-tuple.

Lemma 163. Fiz everything as in the set-up, and let A be a G-module. Then, given f: Z|G]™ x Z[G](Tg)
we have ker F C ker f if and only if

)

((F00)) s (FOi),s)
is a {0y} -tuple.

Proof. By we see ker F C ker f if and only if f vanishes on the elements given in

As such, we now run the following checks.
64



ABELIAN EXTENSIONS

(1) We discuss For one, note that f(\;;) € A essentially for free. Now, we note
fri) € A = Tif(r;) =0
<~ f(Tiki) =0
< T;k; € ker f.
(2) We discuss|(4.2)l On one hand, note that ¢ > j has
Nif(Xij) = =T f(N) <= f(Nidij + TjN)
< Nz)\” + ,T])\z € ker f.
On the other hand,
=N;f(Xij) = =Tif (X)) <= f(NjAij +TiAj) =0
— Nj)\ij + Tz)\j € ker f.
(3) We discuss |(4.3)l Simply note indices ¢ > j > k have
Tif(Nik) = Tif(Nij) + Tif(Njr) = [(TiAie — Tidiy — Tidjr) =0
<~ Tj)\zk — Tk)\” — Ti)\jk € ker f
In total, we see that satisfying the relations to be a {o;}™,-tuple exactly encodes the data of having the
generators of ker F live in ker f. [ ]
So indeed, given f: X — A, the above lemma applied to the composite
767" x 2jG)(3) — x 4 A
shows that p(f) € T.
To show that ¢ is an isomorphism, we exhibit its inverse; fix some ({a;}, {Bij}i>;) € T. Well, Z[G] x
Z[G](ZL) has as a basis the x; and A;;, so we can uniquely define a G-module homomorphism f: X — A by

f(ki) =y and F(Xij) = Bij

for all relevant indices 7, j, and in fact the map 7 — Homgy (Z[G]m X Z[G](?),A) we can see to be a

G-module homomorphism. However, because these outputs are a {Ui}f;l—tuplei we can read [Lemma 163
backward to say that f has kernel containing ker F, so in fact we induce a map f: X — A.
So in total, we get a G-module homomorphism : 7" — Homgz;g (X, A) by

v ({eid ABis}isg) = F
where f is defined on the basis elements above. Further, ¢ is the inverse of ¢ essentially because the

m
2

{ki}i U{Aij}i>; form a basis of Z[G]™ x Z[G]( ). This completes the proof. [ |

And now because it is so easy, we might as well prove [Theorem 154
Theorem 154. Fiz everything as in the set-up. Also, fix a G-module A and a {o;}]",-tuple ({ou}, {Bi;})-
Observe there is a natural cup product map

U: H*(G, X) x H°(G,Homz (X, A)) — H?(G, A).

Then, using the isomorphism of [Proposition 153, the cocycle defined in is simply the output of
0(¢) U ({ai}, {Bij}) on cocycles.

Proof. The main point is that we have a computation of §(¢) from [Corollary 158 which we merely need to
track through. In particular, fix a {o;} -tuple ({c;}i, {Bij}i>;), and let f € H°(G,Homz(X, A)) be the
corresponding morphism. As such, we may compute our cup product out as

(6(2) U £)(g,h) = 6(2)(g,h) ®z gh - f = 6(€)(g,h) &z f.
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To pass through evaluation, we set g := [[, 07" and h =[], O'Z»)i with 0 < a;, b; < n;, from which we get

f(6(@)(g.h)) = (Zg(z)h( )Qiki + Zg(z)h(a)"( )0]( )Aw>

=1 i>7]

m a; +b m . .
Z 9(iyhaiy { J ot Z ginhol )0§ D By

i,j=1
1>]

a;+b; J

= Z ( H ng> ( H 0—24> Ol(ai)aj(bj)ﬁij + Z g(i)h(i)ai[ -

1,j=1 \ p<i q<j i=1
i>7

Doing a little more rearrangement and writing this multiplicatively exactly recovers the cocycle of

This completes the proof. |

Though we have successfully provided an alternate proof of there is more to discuss with
our alternate description of tuples. Namely, we now begin showing that X is a 2-encoding module.

Proposition 164. Fix everything as in the set-up, and let A be a G-module. Then the isomorphism of
Proposition 153 descends to an isomorphism between equivalence classes of {o;}1-tuples are canonically
isomorphic to H°(G,Homgz (X, A)).

Proof. Recall that the short exact sequence

0 X5 Z|G]™ — coker F — 0
of G-modules splits as Z-modules by so we have a short exact sequence

0 — Homg(coker F, A) — Homgz(Z[G]™, A) — =4 Homgz (X, A) — 0.

Now, the key trick will be to compare regular group cohomology with Tate cohomology. To begin, we note
that our cohomology theories give the following commutative diagram with exact rows.

HO(G, Homy(Z[G]™, A)) —2L HO(G, Homgz (X, A)) —— H(G, Homg(coker F, A))
(5.4) i H
0 HY(G,Homy(X, A)) — H'(G,Homy(coker F, A))

Here, the middle vertical map is reduction modulo im Ng. The rows are exact from the long exact sequences,

and the square commutes by construction of Tate cohomology. Now, the point is that the diagram induces

the isomorphism

H°(G,Homz(X, A))
im(— o F)

(5.5) ~ H°(G,Homgz (X, A)),

which simply sends [f] — [f].

Thus, the main content here will be to track through the image of — o F in|(5.4)] Let T denote the
set of {O’Z ", -triples of A, and let 7y denote the set (in fact, equivalence class) of trlples corresponding to
[0] € H2(G A). Letting ¢: H°(G,Homgz(X, A)) — T be defined by

o: frs ((f(fil))ﬂ (f()‘ij))i>j)

be the isomorphism of we claim that the image of —oF in H°(G, Homgz(X, A)) corresponds
under ¢ to exactly To.

Indeed, we take a G-module homomorphism f: Z[G]™ — A to the G-module homomorphism (foF): X —
A. Then we compute

(f o F) (ki) = f(Nigi)
= N;f(e:)
(f o F)(Nij) = f(Tiej — Tjei)
=Tif(g;) = Tjf(ei)
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for all relevant indices ¢ and j. Thus,
o(f o F) = ((Nif (€): (Tf (&) = Tif () 1)

which we can see lives in Ty by definition of our equivalence relation (upon using multiplicative notation).
In fact, as f varies, we see that the values of f(e;) may vary over all A, so the image of f — ¢(f o F) is
exactly all of 7y. Thus, ¢ induces an isomorphism

_ H°(G,Homgz(X,A) T

im(— o F) " To
Composing this with the “identity” map [(5.5)| finishes the proof. |

Remark 165. This proof feels more motivated coming from the perspective that X “should” be a 2-encoding

module (for example, coker F “should” be a 1-encoding module, allowing us to use|Proposition 108). Namely,
we should think of the equivalence relation on the tuples from|Definition 134] as being unmotivated before and

instead is best motivated now as coming out of the quotient
H°(G,Homz(X, —)) = H°(G,Homz (X, —)).

Indeed, the equivalence relations had better match up anyway.

5.5. Algebraic Corollaries. We continue in the set-up of the previous subsection. Observe that
combined with tells us that we have isomorphisms

[0(2)] U —: H(G,Homgz (X, A)) — H*(G, A).
In fact, tells us that these isomorphisms assemble into a natural isomorphism, so we have the
following result.

Theorem 166. Fiz everything as in the set-up. Then X is a 2-encoding module.
Proof. This follows from the above discussion. |

Remark 167. It is perhaps useful to note that we can show that X is a 2-encoding module, without the need

to digress to tuples as done in[Proposition 164 Indeed, we recall that
0— X — Z|G)™ — coker F — 0

splits by so because Z[G)™ = Z[G] ®z Z™ is induced, it suffices to show that coker F is a
1-encoding module by [Proposition 108
For this, we can use [Proposition 84 and manually give x and zV; here, x = [¢] will work, and one can

solve for xV. Alternatively, one could check the cohomology groups from [Proposition 96, One could even
solve for [6(T)]V explicitly, though this is harder.

Now that we have a 2-encoding module, we can apply all the theory we built in For example,
it might have felt like magic that the isomorphism sending a tuple to its cohomology class was induced by

a cup product, but in fact this must have been true all along by
Here are some other results.

Corollary 168. Fix everything as in the set-up. Then X is cohomologically equivalent to I ®7z Iq.

Proof. We know that I ®7 I is a 2-encoding module by [Example 72| so |Proposition 71| finishes. |

Corollary 169. Fiz everything as in the set-up. Then, for any i € Z and subgroup H C G, we have natural
isomorphisms
Res[0(¢)] U —: H'(H,Homgz(X, A)) — H'""2(H, A).

Proof. Follow the proof of [Corollary 77| to see that we can set & = [§(¢)] there. This gives the result for
H = G, and we get general subgroups by appealing to |

Remark 170. Even though we have some notion of restriction from writing a “tuple” in
H°(H,Homy (X, A)) seems somewhat difficult in general. For example, it is not clear how to (in general)
write X as Z[H|™/M for an H-module M. In simple cases, we have worked this out in|Lemma 143

Corollary 171. Fiz everything as in the set-up. Then ﬁ]z(G,X) is cyclic of order #G generated by [6(c)].
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Proof. This follows from |

Remark 172. Fix notation as in and take m = 2. Then there are natural transformations

a2, —) "L 596 Homy (X, -)) = HH(G, —)

sending a 2-cocycle to its {o;}7*-tuple and then to the (class of) Pro. (It turns out that, because G is

bicyclic, the equivalence relation on [1g is exactly what we need to form a class of fIﬁl.) Now, applying
we see that the right natural transformation must be a cup-product map, so by associativity of
the cup product, the entire natural transformation is a cup-product map.

Thus, analogously to what[Corollary 117 says for as, we can describe the projection from 2-cocycles to (s
purely via (restricted) cup products.

Remark 173. Noting that F: X — Z[G]™ implies that X is Z-free, there is a torus T = Homyz (X, G,,). It
is conceivable that one could realize the approach of [Remark 113 for our torus T.

6. LocAL GERBS

In the following two sections, we will use the results of (largely) in order to provide explicit
group laws for some of the Kottwitz gerbs [Kot14]. In this section, we will focus on abelian extensions of
local fields. The approch here is similar to the approach for global fundamental classes in [Bucl3|, though
we work in more generality than multiquadratic extensions.

6.1. Set-Up. Fix a finite abelian extension of local fields L/K which is not unramified.

Remark 174. Assuming that L/K is not unramified is a purely technical requirement; indeed, most of the
arguments go through in this case. Regardless, when unramified, there already exist descriptions of the local
fundamental class.

Then let K, be the largest unramified subextension, which we will give degree m; let 75 € Gal(L/K)
denote the Frobenius automorphism, which lets us set
Ky, = LK),
In particular, K, ,/K is totally ramified because, for example, the residue fields of K, and K have the
same order.
Example 175. For K = Q,,, we can take K,, = Q, ((pm_1) and K, = Qp ({p)-
This gives us the following tower of fields.

Quickly, we note that L/K , has Galois group generated by the Frobenius i and therefore has degree m,
so we have that K, and K, are linearly disjoint over K and

[L:K|=[L:K;,| [Kr,:K|=[Ky: K] [Kr,: K],
which implies that L = K , K, as well.
We provide some quick commentary on these extensions.

e The extension K,,/K is unramified of degree f := m; note we are assuming L # K, and hence
f < n. Its Galois group is thus generated by the Frobenius element defined by k.

o The extension K, ,/K is totally ramified of degree [K , : K]|. Because we are assuming this Galois
group is abelian, we may write

Gal(Ky,/K)~Ty x---xTy

where I'; = (1;) C Gal(K, ,/K) is a cyclic group of order n;.
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e Because K , /K is totally ramified and K,,/K is unramified, we have that the fields K., and K,,

are linearly disjoint over K. As such, L = K , K, has
Gal(L/K,,) ~ Gal(K,,/K) = (k)
Gal(L/K,,) ~ Gal(K ,/K)=T1 x--- xTy
Gal(L/K) ~ Gal(K,,/K) x Gal(K,,/K) = (k) xT'1 x -+ xT'y.
In light of these isomorphisms, we will upgrade Tk to the automorphism of L/K which restricts
properly on K,,/K and fixing K ,; we do analogously for the 7;. We also acknowledge that our
degree is
n=[L:K|=[Kp: K] Ky, :K]=f[Kr,: K|
For brevity, we will also set L; :== L{7# for each i, which makes the fields under L look like the following.

N,
AT

In particular, Gal(L/L;) = (7;) is cyclic for each i.
Now, the main idea in the computation is to use an unramified extension M := K, of the same degree n
as L/K. This modifies our diagram of fields as follows.

WM
<

77L

=
m
\

We have labeled the unramified extensions by “unr” and the totally ramified extensions by “ram.”
As before, we provide some comments on the field extensions.

e The extension M/K is unramified of degree n. As before, its Galois group is cyclic, generated by
the Frobenius element ox € Gal(M/K). Observe that o restricted to K,, is ok, explaining our
notation. In particular, o has order n, but Gk has order f < n.

o As before, note that K, and M are linearly disjoint over K because K ,/K is totally ramified
while M/K is unramified. As such, we may say that

Gal(ML/M) ~ Gal(K, ,/K)=T1 x--- xT,
GalML/K,,) ~Gal(M/K) = (oK)
Gal(ML/K) ~ Gal(M/K) x Gal(K» ,/K) = (oK) x 'y x --- x T'y.
Again, we will upgrade o and the 7; to their corresponding automorphisms on any subfield of M L.
e We take a moment to compute

GalML/L) ~{o%7 € Gal(ML/K) : o%7|, =1idL}.

Because L is K , K,,, it suffices to fix each of these fields individually. Well, to fix K ,, we need 7
to vanish, so we might as well force 7 = 1. But to fix K,,, we need 0%|k,, = 0% to be the identity,
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so we are actually requiring that f | a here. As such,
Gal(ML/L) = (o}).
These comments complete the Galois-theoretic portion of the analysis.

6.2. Idea. We will begin by briefly describe the outline for the computation. For a finite extension of local
fields L/K, let ur,/ € H*(L/K) denote the fundamental class.

Now, take variables as in our set-up in The main idea is to translate what we know about
the unramified extension M/K over to the general extension L/K. In particular, we are able to compute
the fundamental class uy g € H*(M/K), so we observe that, by

ML/K ML/K
InfM/I/( UM/K = [ML : M}'UIA[/K =Nn- UJWL/K = [ML : L]UIVIL/L = InfL/K/ UL/K.
As such, we will be able to compute ur,,x as long as we are able to invert the inflation map Inf: H 2(L/K) —
H?(ML/K). This is not actually very easy to do in general, but we are in luck because this inflation map
here comes from the Inflation—Restriction exact sequence

0— HX(L/K) ™ H2(ML/K) % H*(ML/L).

The argument for the Inflation—Restriction exact sequence is an explicit computation on cocycles (involving
some dimension shifting), but it can be tracked backwards to give the desired cocycle.

6.3. Computation. In this section we record the details of the computation.

6.3.1. Explicit Inflation—Restriction. The results and commentary here mirror [Bucl3, Section 2]. Through-
out this section, G will be a group (usually finite) and H C G will be a subgroup (usually normal).

We begin by recalling the statement of the Inflation—Restriction exact sequence; we will provide the proof
for completeness because we will use the proof for our computation.
Theorem 176 ([AW10, Proposition 5]). Let G be a finite group with normal subgroup H C G. Given a
G-module A, suppose that the H'(H, A) =0 for 1 < i < q for some index q > 1. Then the sequence

Inf Res

0— HY(G/H,A") = HY(G,A) =5 HI(H, A)

s exact.
Proof. The proof is by induction on ¢, via dimension shifting. For ¢ = 1, we can just directly check this on
1-cocycles. The main point is the exactness at H9(G, A): if ¢ € Z'(G, A) has Res(c) € B'(H, A), then find
a € A with
Res(c)(a) == h-a — a.
As such, we define f, € BY(G, A) by f.(9) == g - a — a, which implies that ¢ — f, vanishes on H. It is then
possible to stare at the 1-cocycle condition
(c— fa)(gg") = (c = fa)(9) + g~ (c = fa)(g')

to check that ¢ — f, only depends on the cosets of H (e.g., by taking ¢’ € H) and that im(c — f,) C A"
(e.g., by taking g € H).

For ¢ > 1, we use dimension shifting via the following lemma. Indeed, suppose the statement is true for
q. Then the short exact sequence

0 — A — Homg(Z[G], A) — Homz(Ig, A) — 0

induces vertical isomorphisms in the following commutative diagram.
0 —— HY(G/H,Homy(Ig, A)?) —— H(G,Homgz(Ig, A)) —— H?(H,Homy(Ig, A))
Js I Js
0 —— H"™' (G/H,A") ———— HI"Y(G,A) ———— H(H,A)
The top row is exact by the inductive hypothesis, so the bottom row is therefore also exact. |

Our goal is to make the above proof explicit in the case of ¢ = 2, which is the only reason we sketched
the above proofs at all. We begin by making the dimension shifting explicit.
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Lemma 177 ([Bucl3, Lemma 2.1]). Let G be a group with subgroup H C G, and let {ga}acx be coset
representatives for H\G. Now, given a G-module A, the maps

S ZY(H,Homg(Ig, A)) — Z*(H, A)
cr [(hA) = h- c(h)(h! - 1)]
[h—= ((W'ge—1) = h'-u((h)"' h)] < u
are group homomorphisms descending to the isomorphism §: H'(H,Homgz(Ig, A)) ~ H?(H, A). The map

dp above is surjective, and the reverse map is a section; when H = G, these are isomorphisms.

Proof. To show that dy descends to an isomorphism properly, we could track through dimension-shifting
by hand, or we can use the machinery we’ve built. Namely, setting X = Z in told us that the
I-cocycle x € Z1(G, Ig) defined by
x(0) = (1—0)
provides an isomorphism
(xU—=): H(G,Homg(Ig, A)) — HTHG, A).
Computing our cup product, we have
(xUe)(h,h') = (he(h')) (x(R))
=h-c(h)(h'(1-h))
=h-c(h)(h7" =1).
So we see that 6y = (x U —) on cocycles and therefore descends to the needed isomorphism. Additionally,
it is a homomorphism by properties of the cup product.
It remains to prove the last sentence. We run the following checks; given u € Z%(H, A), define ¢, €
C'(H,Homgz(Ig, A)) by
cu(h)(Wge —1) =R -u((K)"',h).
Note that this is enough data to define ¢, (h): I — A because I is a free Z-module generated by {g — 1 :
g € G}.
e We verify that ¢, is a 1-cocycle. This is a matter of force. Pick up h,h’ € H and goh” € G and write
(hew(R) (R ge — 1) + cu(hh') (" ge — 1) 4 cu(h)(h"ge — 1)
=h-cy(h) (W W ge — h™") + cu(hh) (1" go — 1) + cu(h)(h"ge — 1)
=h- (h_lh”u ((h”)_lh7 h’) — h™ u(h, h’)) +h"u ((h”)_l, hh') +h"u ((h”)_l, h)
=h'u((h")"'h,h') —u(h, h') + h"u ((R") "' ') + " ((R") "1 1) .
This is just the 2-cocycle condition for u upon dividing out by h”, so we are done.
e For u € Z2(H, A), we verify that §y(c,) = u. Indeed, given h,h’ € H, we check
Su(cy)(hyh') = h-cy(h) (}fl — 1)
=h-h~t-u(h,h)
=u(h,h').
So far we have verified that § has section u — ¢, and hence must be surjective. Lastly, we take H = G and
show that cs. = c to finish. Indeed, for g,¢' € G = H, we write

uc(9)(g = 1) =g - (mc) ((4) . 9)
=4g'(9)" - elg)lg' = 1)
=c(9)(g' — 1),
which is what we wanted. n
We also have used dimension shifting to show that H' (G/H7 HomZ(Ig,A)H) — H? (G/H7 AH) is an
isomorphism, but this requires a little more trickery. To begin, we discuss how to lift from Homgz(Ig, A)?

to Homgz(Z[G], A).
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Lemma 178. Let G be a group with subgroup H C G. Fiz a G-module A with H'(H, A) = 0. Then, for any
Y € Homg(Ig, A), the function h v+ hi) (hfl — 1) is a cocycle in Z*(H,A) = B(H, A), so we can define
a function ne: Homgz(Ig, A) — A such that
¢(h_1):h'n¢_nw
for allh € H. In fact, given ¢ € Homg(Ig, A)H, we can construct ¢ € Homgz(Z[G], A)™ by
¢(2) = oz —&(2)) + e(2)n,
so that @|j. = ¢

Proof. We will just run the checks directly.
e We start by checking ¢ € Homgz(Ig, A) give 1-cocycles c(h) = ¢ (h — 1) in Z1(A, H). To begin,
we note that ¢ € Homy(Ig, A)H simply means that any z — e(z) € I has
Uz —e(2) = (M))(2 —e(2)) = b (h™"2 = h7e(2))
for all h € H. In particular, replacing h with h~! tells us that

hp(s — e(2)) = (hz — he(2)).
Now, we can just compute
(dc)(h,h') = he(h') — c(hh') + c(h)
=he(h' —1)—c(hh/ = 1) +c(h—1)
=c(hh/ —h)—c(hh' —1)+c(h—1),
where in the last equality we used the fact that 1 € Homgz(Ig, A)". Now, (dc)(h,h’) manifestly
vanishes, so we are done.
e Note that ¢ € Homgz(Z[G], A) because it is a linear combination of (compositions of) homomor-
phisms.
e Note that any z € I has e(z) =0, so
P(z) =z =0)+ 01, = p(2),

SO QZ|IG = -
e It remains to check that ¢ is fixed by H. This requires a little more effort. Recall that ¢ €
Homy (Ig, A)f means that any 2 — £(2) € I has

hio(z = e(2)) = ¢ (hz — he(2))

for any h € H. Now, we just compute

(hD)(=) = b3 (h72)
=h(p(h'z—e(h™'2)) +e(h"2)n,)
= ¢ (z—he(2)) +e(2) - hn,
¢ (z—he(z)) +e(z)p(h = 1) +e(2)n,
= sﬁ(z —e(2)) +e(2)n,

The above checks complete the proof. |

And now we can now make our dimension shifting explicit.

Lemma 179. Work in the context of[Lemma 178 and assume that H C G is normal. We track through the
isomorphism

§: H' (G/H,Homy (I, A)") ~ H? (G/H, A™)
given by the eract sequence

0 — A" — Homgz(Z[G], A)¥ — Homgz(Ig, A" — 0.
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Proof. We begin with some ¢ € H' (G/H,Homg(I¢, A)"). To track through the 6, we define
c(gH) = c(gH)(z — &(2)) + ne(gme(2)

to be the lift given in [Lemma 178 Now, we are given that dc = 0, which here means that any z € Z[G] and
gH,g'H € G/H will have

0= (dc)(gH,g'H)(z — £(2))
0=(g9H -c(¢'H) — c(99'H) + c(gH))(z — £(2))
0=g-c(g'H) (92— g 'e(2)) — clgg H)(z — £(2)) + c(gH) (2 — £(2))
g-clgH) (97" —1)e(2) =g-c(g'H) (972 — e(2)) — clgg'H)(z — £(2)) + c(gH)(z — £(2))
g-c(¢H) (g7 = 1)e(z) =g-c(g'H) (972 —elg™'2)) — c(99'H)(z — £(2)) + c(gH)(z — £(2)).
We now directly compute that
(de)(gH,g'H)(2) = (gH - c(¢'H) — c(gg'H) + c(gH))(2)
=g-c(gH) (972 —el97"2)) + ge(grm)e(2)
—c(99'H)(2 — £(2)) = Ne(gq m)e(2)
+e(gH) (2 — (2)) + ne(gme(z)
=(g-c(¢’H) (97" = 1)+ g Ne(gr ) — Ne(gg' 1) + Ne(giny) €(2)

As such, we have pulled ourselves back to the 2-cocycle given by

u(gH7ng) =g C(gIH) (g_l - 1) +g- Ne(g'H) — Tle(gg' H) +77c(gH) .

We quickly note that this is in fact independent of our choice of representative g € gH: changing represen-
tative of g to gh for h € H will only affect the terms

h-c(g'H) (b1 = 1) +hijegrmy = c(g'H) (97" = h) +c(g"H) (h = 1) +neigrmy = ¢(g'H) (971 = 1) +negrm)

so we are indeed safe. This completes the proof. |
We now make explicit in the case of ¢ = 2.

Lemma 180 (|[Bucl3, Lemma 2.3]). Let G be a group with normal subgroup H C G. Fiz a G-module A with

HY(H,A) = 0, and define the function ne: Homgz(Ig, A)H — A of. Given ¢ € Z2(G, A) such
that Res$ ¢ € B2(H, A); in particular, suppose we have b € Homy(Ig, A) such that all h € H have

Res% (67 1¢)(h) = (db)(h) = h-b—h,
where 671 is the inverse isomorphism of, Then we find u € Z? (G/H, AH) such that
[Inf u] = [¢]
in H*(G, A).
Proof. The main point is that boundary morphisms § commute with Res and Inf. By construction, we have
that (Resg 67'¢) —db=0in Z'(H,Homyz(Ig, A)). Pulling back to Z*(G,Homgz (I, A)), we note that
d = (6""c—db) € Z'(G,Homgz (I, A))
vanishes on H by hypothesis. Because §~!c — db is a 1-cocycle, we are able to write
d(g99') = (9) + 9¢'(¢').

Letting ¢’ vary over H, we see that 6~ 'c — db is well-defined on G/H. On the other hand, for any h € H
and g € G, we note that g~ *hg € H, so

d(g)="¢ (g . g_lhg) =c (hg) = (h) + he(g),

implying that ¢/(g) € Homg(Ig, A)H.
We are now ready to apply [Lemma 179 which we use on ¢/, thus defining u := §(c¢’). Explicitly, we have

U(gH,g/H) =g- Cl(ng) (g_l - 1) +9g- Ne' (g H) — N’ (g9’ H) +nc’(gH) -
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This is explicit enough for our purposes. Observe that [Inf u] = [c] because [Inf ¢/] = [§71¢], and § commutes
with Inf. |

6.3.2. Computing the Cocycle. Given a finite Galois extension /" of local fields, we will let cp,r denote a
representative of the fundamental class in H?(Gal(E/F), EX).

We now return to the set-up in and track through in our case. For reference,
the following is the diagram that we will be chasing around; here G := Gal(ML/K) and H := Gal(ML/L).

H2(Gal(M/K), M)

llnf

0 —— H%(Gal(L/K),L*) —— 2 H>(G,ML*) — 8= H2(Gal(ML/L), ML*)

§ fs fs

0 —— HY(G/H,Homy(Ig, ML*)") 205 H1(G, Homy(Ig, ML*)) 2% HY(H,Homgy (I, ML*))

To begin, we know that we can write

c i 3. | 1 i+j<n,
MK\TKOK ) =T " 2= 0 sy

where 7 is a uniformizer of K. Inflating this down to H?(G, ML*) gives
(Inf epr/xc) (0?(17, O%T') = al== ],
Now, we use [Lemma 177|to move down to H'(G,Homgz(Ig, ML*)) as
a+[=b1]
6_1(InfcM/K) (U%T) (J%T’ — 1) = O'II)%TI . (InfuM/K) (U[ibl}(T/)_l,O'%lT> = 7TL . " . J7

where [k] denote the integer 0 < [k] < n such that k = [k] (mod n).

It will be helpful to see explicitly that the restriction to H = <0}: } is a coboundary. That is, we need to

find b € Homgz(Ig, M L*) such that

fa1
a o'+ b
571(IHfUM/K) (0’{( ) = Kb

Because I is freely generated by elements of the form g — 1 for g € G, it suffices to plug in some arbitrary

0'[1)(1’7'/ — 1, which we see requires

[fa1+[,b1]J (O’{(a«l . b) (Jllj(lfr/ _ 1)
s " =
b (01;(17" — 1)
af(alb (Ull)(l_falT/ - 1)

O’{(alb (J;(fal — 1) b (O’?%T/ — 1) .

We can see that b should not depend on 7/, so we define b (0% ) = b (0% 7" — 1); the above is then equivalent
to

S b
[fa1+[*171]J U{(alb(o—Kl fal)
T " = — - —
O’{(alb (cr;(fal) b (JII’%)
7 —bi—fa
ey | _ b (o)

b (J;(fal) U;(fali) (0;{{'1) 7
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where we have negated b; in the last step. At this point, the right-hand side will look a lot more natural if
we set T = O’I_(l, which turns this into

b (Tlf(al) b (ng)
L (/)
b (7’K1 1)
after taking reciprocals. Thus, we see that b should be counting carries of 7xs. With this in mind, we let

w be a uniformizer of K, and note that w is also a uniformizer of L because L/K, , is an unramified
extension. It follows that

I—faanrle

W[ML:L] S NML/L (MLX) .
Further, w!™Z:L] has the same absolute value as 7 because K. ,/K is a totally ramified extension of degree
[Kry: K] =[ML:M]=[ML: L]. Thus, 7/ww™ZL) and therefore 7 is a norm in Njpp,/r,(ML*) because
ML/L is unramified and so O € Ny (ML*). Thus, we find v € ML* such that

Narp/o(y) =
The point of doing all of this is so that we can codify our carrying by writing
la/f]—1

b= [ ™
=0

Tracking out b backwards to b, our desired b € Homy(Ig, ML) is given by

L[=al/f1-1

bogr—1=[[ o’}
=0

We take a moment to write out ¢ := § ' (Inf ¢py) i) /db, which looks like

5~ H(Inf
c(of) (0'1;(17'/ — 1) = —( ndbcM/K) (o) (O’%T/ — 1)

(5‘1(InfcM/K) (0RT) (0?{17' — 1)

N (o%T-b) (01};7" - 1) /b (01}%7" - 1)
rllait[=b1])/n]

ai,_ bi—a1 /-1 _ ~—a1_—1 by s _
oRT b(O’K T'T oM )/b(oKT 1

= w0/ (o) oy b(ok™)

b (0%7‘“)

Before proceeding, we discuss a few special cases.

e Taking 0?(17' = 7; for some 7;, we get
bt 1) = L/l (b L
c(1i) (O’KT 71) =7 ~b(0K) T

o b (k)
=0 (U?(l) /Tib (Ul;(l) .

In particular, ¢ (7;) (05" — 1) =1, provided that f > 1. Additionally, ¢(7;) (7' — 1) = 1.
Our general theory says that h — c(r;)(h — 1) is a 1-cocycle in Z'(H, M L*) (though we could
also check this directly), so Hilbert’s Theorem 90 promises us a magical element n; € ML* such

that
S fb
ofim b (U{(l)

i ;b (0}?1)
75




ABELIAN EXTENSIONS

for all a{( ' € H. This condition will be a little clearer if we write everything in terms of 75 = 0']_(1,

which transforms this into
h(r=fo bi—1  if, _ bi—1 ;

' _ b(TK > _ i-[ ) i—[ il ()

i 7ib (ﬁ;ﬂh) i=0 TiT;(f(’Y*l) i=0 T;g(’Y)

Because we are dealing with a cyclic group H, it is not too hard to see that it suffices merely for

b1 =1 to hold, so our magical element 7; merely requires

ox’ (m) _ m(y)

i Y

after inverting 7x back to og.
e Taking o7 = ok, we get
P -1
C(UK) (0’2;7'/ — 1) = WL(l'H_bl])/”J . [; (Ul;(l> S OK M
b (02(171>
In particular, 037’ = 7, " will give c(ok) (7; ' — 1) = 1. We will also want ¢(ox) (O’I_( ' — 1) for
0 < b; < f. We now have two cases.

— Suppose that L/K is not totally ramified so that f > 1. Using the fact that f <n and f > 1, it
is not too hard to see that everything will cancel down to 1 except in the case where by = f—1,

where we get
1

— Otherwise, our extension is totally ramified so that f = 1. Here, by = 0 is forced, so we are
computing c¢(ox)(7" — 1) = 1. (Our extension being unramified promises n > 1.)

Continuing as before, our general theory says that h + c(ox)(h — 1) is a 1-cocycle in Z'(H, ML),

though again we could just check this directly. It follows that Hilbert’s Theorem 90 promises us a

=0k ()

magical element nx € M L* such that

b P—1

Ul{(lm{ — glA+=fou])/n] p (00 71) (0% )

K KNS 1
NK b (‘71( 1 )
for all a};b ' € H. To simplify this condition, we once again split into two cases.
— Suppose that L/K is not totally ramified so that f > 1. Using f > 1, this collapses down to
S
O'{(bl L b (O'K 1)
K O'KI; (0’}?1_1)

As before, this condition will be a little clearer if we set 75 = a;{17 which turns the condition

into
7 fby _ . _ .
b b1—1 _ b1—1
T _ b(TK ) _ i—[ o™ i—[ ok (7)
o () i el i )

b Tlf{bl+1 because f > 1.) Again, because H is cyclic generated by Tlf(,

(Notably, 8(7{;’1) _
an induction shows that it suffices to check this condition for by = 1, which means that our

magical element nxg € ML* is constructed so that

Uz}f (77K) - oK (7)

Nk Y

where we have again inverted back from 7x to o
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— Suppose that L/K is totally ramified so that f = 1. Switching over to 7x as usual, we can
evaluate

b
TKlﬂK
NK

- )i
K

TK

~

b(7k)

_ s/ -1 TeO(R) - b(ri)
o K l; b1+1 :

When b; < n — 1, everything will cancel out. When b; = n — 1, then [;(T?(l+1) = 1 while

TKB(T?(I) 'B(TK) collects to [ ],

n—1

TrR(y) T =7t

b
TRNK
NK

=1

)

, so everything will still cancel out. So we want

for which ng = 1 suffices. As usual, it suffices to just look at by = 1 by an induction, so we are

asking for TNk /nx = 1.

e We will not actually need a more concrete description of this, but we remark that we can run the
same story for any g € G through to get an element 7y, € M L* such that

b
0}0{1179 _ 1
g c(g)(of* —1)
for any U{(bl € H. As usual, this follows from our general theory.

We are now ready to describe the local fundamental class. Piecing what we have so far, we know from

[Cemma 180 that we can write

cLyk(9.9)=g-clg) (97" -

This will be explicit enough for us.

Ngg’

1) 2 Mg,

6.3.3. Computing the Tuple. We now use our computation of cr/x representing uy, gk from the previous
subsection to compute the tuple corresponding to cr/x. Here are the values that we care about for our
specific computation; for consistency, we set 7y := ok and ng := f to be the order of 7.

o We write

o We write

No ki

_ OK"Ni "MK

CL/K(TiaO'K)

Nokos

=1c(oK) (Ti ,
OzO0K
_ TiNK -1

Nowox

e In particular, we know that we can set Sy to

o We write

Bio :

CL/K(Ti,UK)

cL k(0K Ti)
_ TiNK 'ni/nazak

OKNi MK Mok os

ﬁio =

i .Ti(nK)
ok (m) Nk

CL/K(TiaTj) =

-1 _1) VTN

Nrim

_ KM - MK
cryx(ok,7i) = oxe(r;) (o' —1) - LA

1y T
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e Thus, for ¢ > j > 0, we can set 3;; to

CL/K(Tia Tj)
cr i (75, 7i)
il Mif N,
i Nj/Mrir;

/Bij =

Y
By i Ty |
TN

e For «g, our element is given by
-1
g = H CL/K (U}(,JK)
i=0
f-1 i .
i=0 o
Recall from our general theory that 1, only depends on the coset of g in G/H, so we see that the
product of the quotients Noi. / Ngitt will cancel out.
To finish the computation, we have two cases.
— If L/K is not totally ramified, we know from our computation that this is 1 until i = f — 1,
which gives o (). As such, we collapse down to

f-1
ao = ok (1) - [[ o () = | ok () - o () |
1=0

— If L/K is totally ramified so that f = 1, then we computed c(o (0" — 1) = 0 always—note

we only have an ¢ = 0 term——so we are left with just |nx = ag)m( .

e For o; with ¢ > 0, our element is given by

nifl

Q; = H cr/k (17, 75)
p=0

nifl

- H Pe(r;) (Ti_p -1
p=0

)lffmwff

p+1
T,

Recalling that 7; has order n;, our quotient term 7,:/7,_i+1 will again cancel out. Additionally, the
cocycle ¢ always spits out 1 on these inputs, so we are left with

oi= TT 72 ) =7 )|

We summarize the results above in the following theorem.

Theorem 181. Fix everything as in the set-up. Then there exists some v € ML* such that Ny /p(v) =7
and elements in ng,n; € ML* for 1 <i <t such that

NK B

ol () _ [ox()/ L/K not totally ramified, o (n) _ ()
1 L/K totally ramified, i v

Then the tuple given by

)

O’{( () - a%) (nk) =0, L/K not totally ramified, p 5 N TN
QG = n; an ii = - —
Ti( 1')(771) else, T

where ng = f and 79 = ok, corresponds to the fundamental class up € H*(Gal(L/K),L*).
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We remark that we can replace a{( (v) with merely v (which still has norm p) while keeping all other

variables the same; this gives us the following slightly prettier presentation. Note that we have multiplied
the equations for 7, by a{{ on both sides.

Corollary 182. Fiz everything as in the set-up. Then there exists some v € ML* such that Nyp,p(y) = m
and elements in N, n; € ML* (for 1 <i <t) such that

_nx _ Jox(y)/v L/K not totally ramified, und ;.
U{( (1K) | L/K totally ramified, L (ny) T

Then the tuple given by

o a%) (nk) ©=0, L/K not totally ramified, and 8. T
7" () else, Y oy

o =

where ng = f and 79 = ok, corresponds to the fundamental class up € H*(Gal(L/K),L*).

For brevity later on, we will give a name to these conditions.
Definition 183. Fiz an extension L/K. The {o;}-tuples constructed in |Corollary 182 will be called
fundamental tuples.

We will show shortly that fundamental tuples actually give the entire equivalence class of {o;};—1-tuples
associated to the fundamental class.

Remark 184. This result is essentially a stronger version of Dwork’s theorem [Ser91, Theorem XIII.2].
Namely, Dwork and Serre are interested in computing the reciprocity map, which roughly means we only
want access to the as, but above we are interested in computing the full fundamental class.

Remark 185. The nes have a degree of freedom in that these elements are unique only up to multiplication
by a monzero element of ML) = L. As the Nes vary (with v fixed), it is not too hard to see directly from
the formulae that we will encounter a full equivalence class of tuples. We will not write this out.

Remark 186. Even when L/K is unramified, which we technically disallowed for our computation, we can
see that M = L and then v = 7 so that nxg = 1 are all forced, giving ag = 7. So indeed, the above formulation
does work for all abelian extensions L/K.

6.4. Tame Ramification. In this section, we work through very explicitly in a basic case.
Let p be an odd prime because the following discussion has no content in the case of p = 2. Set K = Q,

and K, = Qp((r) with f == [Qp(¢n) : Q).

The main simplification we will make which allows explicit computation is that we will set K, :== Q,((p).
Continuing with the set-up, we see L = Q,((p, (m) with n == (p — 1) - f; as such, set N’ := p™ — 1 so that
M = Q,({n). Here is the diagram of our fields.

P(CP? CN')

Q
/ \
Qp(vaQn) QP(CN')
\ /

)

QP @p (Cm

(<>/
\ /

Qp
So that we are able to isolate our set-up, we note that

Gal(Q(¢p)/Q) = (Z/pZ)~

is cyclic, so we choose some x € (Z/pZ)* to generate, which corresponds to the automorphism o ¢, = (7.
Namely, we may set 71 == o,.
Now, the reason we set K., = Q,((,) is that we will be able to set

v=(-p)/ Ve Qp(Cp)-
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Indeed, we sneakily set 7 = —p to be our uniformizer of Q, so that Nysp, 1 (v) =P~ = —p. Because it will
be helpful for us shortly, we will actually give a construction of (fp)l/ (»=1)_ for completeness.
Lemma 187. Let p be a prime. Then we can find some v = (—p)"/®P=1 in Qp(¢p). In fact, we can take
v = cw (mod w?) for any ¢ € F), where @ = (, — 1 is a uniformizer.
Proof. That a root 7 exists is well-known. The factorization

Pl 1= H (x —¢) (mod p)

ceFy

lifts to a factorization in Z, by [Neu99, Lemma II.4.6]. As such, as soon as we have one root 7 of zP~! + p,
observe that |y| = p'/®=1) = |w|, so 7 is a uniformizer as well, meaning that the ¢ in
(17 =cw (mod w?)

is nonzero and will vary across all representatives in F); as we exchange the root v with ;1 for various
Cpflo u
In light of we will just take v to have 47~! = —p with v = err (mod 72) for any particular
c € 5. This satisfies Npsz/1(7) = —p as discussed above.
We will now compute the tuple. We start with the unramified side because it is easier. Namely, v € Q,((,)

is fixed by the Frobenius automorphism og, so we may set i = 1 to have

NK 1= or(7)

ol () 2l

[50=7]

We now deal with ramification. We begin with a computational lemma, tying in what we have with Te-
ichmiiller lifts.

The corresponding «g is thus

Lemma 188. Fiz everything as above. Then (,_1 = 0,(7)/v is a primitive (p — 1)st root of unity and in
particular lies in Q. In fact, (,—1 =z (mod p).

Note that we are defining (,—; above, which is okay: in the worst case, we might have to adjust the
definitions of (n+ and (., to correspond with this particular (,—;, but otherwise (,_; may be any fixed
primitive (p — 1)st root of unity.

Proof. To see that ;1 is a (p— 1)st root of unity, we note that o, (v) = (,—1 -7, so an induction shows that
k k
Jz&”:: p—1 "7
Setting k = p — 1 shows that C[’j:ll =1,50 (-1 is a (p— 1)st root of unity.

We next show (,—1 =z (mod p); this will automatically imply that ¢, is primitive because it will force
Cp—1 to have at least the order of x (mod p), which is p — 1. Let w = (, — 1 be a uniformizer of Q,({,).
Because (1,7 € Q,, it is enough for v, (¢,—1 — x) > 0; as such, we will show that

?
(p—1 =z (mod w).
To see this, recall ¥ = cw (mod w?), so

Cp—1= 72(%) = ¢ ox() = sz(vw) (mod w).

However, o,(w) = ( — 1, so

0.(w) _ C:lg?c —1

w Gp—1

51+§p+-~-—|—g‘;_151+~-~+15x (mod w),

finishing. |

We are almost able to compute 7, :=n;. To do this, we pick up a quick lemma.
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Lemma 189. Let p and f be integers. Then

flp—1) _ 1
E ez
-1 @ -1
Proof. Observe
fp-1) _ 1 B! p—1
P =) plk= 1=p—1=0 (modp-1)
pf -1
k=0 k=0
This finishes. |
In light of the above lemma, we define
I pfP—1 1
(p-1@ -1
Note the sign here: it is very important! It follows that n, = (%, will have
N CA p/ -1 N'/(p—1
7 — lef _CN’( )_CN//(P ):Cpfh
Ok (7796) N/

which is indeed o, (7)/v. Thus, the corresponding « is

p—1
=Tt
—nf '

_ 21
= (yr

_N// f_q
=y (p'-1)

Lastly, we compute our 1o as

In total, we get the following nice result.
Theorem 190. Let p be an odd prime, and fit K = Q, and L := Qu((p,(m), where p { m. Further, set
Lo :==Q,(¢p) and L1 == Qpu(¢m) so that L = LoLy and Lo N L1 = K. Now, pick up the following data.

e Suppose the order of p modulo m is f.

o Let 0, G+ (5 be a generator of Gal(Q,((p)/Qyp)-

o Find vy € Qu((p) such that v*~! +p =0 and 0,(v)/y = (p—1. (Equivalently, set (p—1 = 0.(7)/7.)
Then the fundamental class uy,/x € H*(Gal(L/K),L*) is represented by the triple

(Oéo, aq, 610) = (77 Cp_fl_p Cp_fl_l) .

Remark 191. We verify Artin reciprocity for Qp(¢,)/Qp. Let ¢ € Z*(Gal(L/K), L*) represent the funda-
mental class. The explicit formula for oy tells us that

= H C (J;7Ux) = [UI] U R,ESUL/Qp = [Uz] U uL/Qp(Cm) = GZ}QP(Cm)(UI).
Taking norms down to KX, we see on one hand that

(1+p+-+p? 7 -1 1 -
HCPf 17 (e : )_C( VE=D _ -1 =2"! (mod p).

NQP(CHL /Qp O[l pf 1 - pf 1 — Sp—1 —
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On the other hand,
-1 -1 -1
Nay )00 0170, (¢ (72) = P11, (92) = b, ¢,) /0, (7)-
So 9@:(%)/@? sends 01 Gp — (G, to x~! (mod p), as predicted by Lubin—Tate theory.

6.5. Towers. In this section, we will use the notions but not the exact notation as in the set-up. Instead,
we will build a “tower set-up” below. Our goal is to be able to force some compatibility among the data in
the tuples of in towers. This is particularly simple in the case where we fix some unramified
extension and allow our ramification to ascend in a tower.
As such, fix a base field K and unramified extension K,,, and we also fix a tower of totally ramified
extensions
K::KW,O gK‘n’,l gKﬂ',Q C.--

For example, we might choose Lubin—Tate extensions for this purpose. For brevity, we set

Kw = U Kﬂ}i
i>0
to be the (very large) composite totally ramified extension. Now, for each i > 0, we define L; = K,,, K ;
for each and M; to be the unramified extension of degree [L; : K| over K; notably, [K,, : K] | [L; : K], so

K,, C M; for each i > 0. Here is our diagram.

o
-

AN

My
e
Ko,

NS
K

Arrows going up and to the left are unramified; arrows going up and to the right are (totally) ramified. Now,
we are interested in constructing a “compatible” system of tuples representing fundamental classes for the
ascending chain of extensions L; /K, Ly/K, L3/ K, etc.

For coherence reasons, we will also place a few assumptions on our Galois groups. Namely, we will assume
that

m
Gal(K,/K) = P )
i=1
is a direct sum of finitely many procyclic groups. For example, if we are using Lubin-Tate extensions, and
we are in characteristic 0, then this is automatic. Additionally, we will assume that our quotients are
m
Gal(Kr,:/K) = P (7ilx,)

i=1

for each ¢ > 0. This requirement, though strong, is essentially the only way we could hope for compatibility
among our tuples—namely, it tells us that each L;/K has Galois group generated by the same elements
(up to restriction) and hence have more or less the same requirements to yield a fundamental tuple. As an
example, this requirement is satisfied when K = Q, and K; = Q,((,:); in fact, m € {1,2} in this case.

The main focus of the construction is to construct compatible « elements, but the notion of compatibility
will in fact extend. As such, we will codify this into the following definition.

Definition 192. Fiz everything as above. Then a sequence {x;}2, of elements x; € M;L; is compatible in
towers if and only if

NMi+1Li+1/M1',L1',+1 (xi+1) = Zj-
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This definition is written down sequentially so that verifying its existence is easy.

Lemma 193. Fiz a uniformizer nig € K. There is a sequence {7;}52, of elements compatible in towers such
that v € MoLo = K., is Y0 = Tk -

Proof. This comes down to a norm argument and an induction. Extend a valuation vg: K — Z to all
fields above. Suppose we have constructed -; such that 7; is a uniformizer of M;L;. We claim that we can
construct ;41 to also be a uniformizer of M;1L;11 and with

NMi+1 Lig1/M;Litq (’Yi-‘rl) = Y-

This claim will finish the proof inductively.
Now, observe that the extension M;L;11/M;L; is a totally ramified extension, so if we let @ denote a
uniformizer of M;L; 1, we have

6.1) v (w[MiLHl:zwiLi]) = u(y).
Continuing, M;41L;11/M;L;1+1 is an unramified extension, so in fact w continues to be a uniformizer up in

M;y1L;11. As such, we see that it suffices to construct v € M; 1 L;1 such that

_ i
NM@'+1 Lit1/M;Lia (w)

Nty Loy /M Loy ()

But the right-hand side is a unit because it has valuation 0 from[(6.1), so we can construct a unit u for the
left-hand side as well because the norm map surjects from units to units in unramified extensions. In total,
~Yi+1 = uw is the element we are looking for. ]

However, the definition of compatibility does not actually tell us that each of these +; will behave the way
that we need them to as required by The compatibility is also a little unnatural because it
only moves one step at a time. To fix both of these issues, we have the following.

Lemma 194. Suppose that the sequence {z;}32, is compatible in towers. Then for any nonnegative integers
p > q, we have

Nas,z,/m,L, (Tp) = 4.

Proof. This will require us to actually describe the Galois groups involved. Set ox € Gal(K"™ /K) to the
Frobenius automorphism on K, but extend ox to all K by acting trivially on totally ramified extensions.
Additionally, for brevity we set

f=[Kpn: K] and e = [Kr,;: K]

for each ¢ > 0. Now, the extension M,L,/M,L, is unramified and hence has Galois group generated by its
Frobenius element. The Frobenius element of ML, is equal to the Frobenius element of M, because the
extension M;L;/M; is totally ramified, and because M,/K is unramified, we may compute the Frobenius
element of M, as

0_%\4(1:1(],
where [My : K] = [Ly : K| = [Lg : Kz g] - [Krq: K] = [Kp, : K] - [Krq : K] = feq. As for the order of
Gal(M,L,/M,L,), we first compute, for any ¢ > 0,

[MiLZ : Lz] = [LZ : K] = [LZ : K] = [Msz : Ml] = [Kﬂ-’i : K] = €4,

so the degree we want is e, /e,. Thus,

ep/eq—1

Nas,r,/m,L, (Tp) = H ‘7{:“(%)-
=0
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Now, we show that this equals x, by induction on p. When p = ¢, there is nothing to say. Then, supposing
we have the equality at p, we write

ept1/eq—1
N (2pt1) = C
Mpt1Lpt1/ MLy \Tp+1) = Ok (Tp+1
i=0

ep/eq—lepti/ep—1

H U{(eq(a(ep/eq)'i‘b) (xp+1)

b=0 a=0

ep/eq—1 ep+1/ep—1

o feqb fepa

S I .
b=0 a=0

ep/eq—1 ep+1/ep—1

o feqb fepa

ST (T e ).
b=0 a=0

Doing the same Galois theory, we see Gal(M,11Ly11/MpLyt1) is cyclic generated by a{f” of order e,11/ep,

so the inner term is NMp+1Lp+1/Mpr+1(xP+1)v which we know to be z,. Now, z, € M,L,, so in fact the
entire product collapses to

NMD+1LP+1/Mqu+1(xp+1) = NMPLIJ/M(ZLP (iCp) =g

which is what we wanted. This completes the proof. |
In particular, our sequence {v;}5°, compatible in towers with vy = 0 will have

Narniyn.(vi) = Nagn o, (i) =70 = 7

for each i > 0, so these v; € M;L; do in fact satisfy the needed requirement of

Thus, we have described how to construct our v terms in the tower, from which the rest of the fundamental
tuple follows. However, we do remark that it is possible to choose the 7 terms to be compatible in towers as
well.
Lemma 195. Fix everything as above. Further, fix some o € Gal (Ui>0 Li/K). Then there exists a sequence
{ni}2, compatible in towers such that -

(6.2) - =

for each i > 0.

Proof. Well, to begin we have vy = g, which is fixed by o, so the right-hand side is 1, meaning that we
might as well take ny = 1. We now claim that, given 7; satisfying |(6.2)| which is a unit, we can construct
MNi+1 with

NMi+1Li+1/MiLi+1 (771‘+1) =N

also satisfying (for 4 + 1) which is a unit. For brevity, set N := Nas. 1., /mi1.,,- To begin, we note
that n; is a unit in M;L; 1 as well, so because M;41L;1/M;L;11 is unramified, we may simply guess any
n € M;+1L;41 such that

N(n) = n;.
We now need to correct for [(6.2)] Well, we start by noting we’re pretty close because

n o(vit1) ) _  Npg o(N7it1)
N(J{((n)/ Yi+1 >o'};(Nn)/ N5it1

i g (%‘)
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Now, M;+1L;y1/M;L;11 is unramified and hence cyclic, and we know that its Galois group is generated by
a{fi as computed earlier, so Hilbert’s theorem 90 allows us to find some u € M;11L; 1 such that

n /0(%+1): u
o/ vier ol

Quickly, note that we may multiply u by any element in M; L;; without adjusting the equality. Thus, taking
w to be a uniformizer of M;L;,1, we note that we can divide out u by some number of ws to force u to be
a unit because the extension M;1L;41/M;L; ;1 is unramified, making w also a uniformizer of M;1L;11.
This is all to say that we may assume that v is a unit.

Now, we note that

u e;—1 O'fku e;—1 e;—1 v

_ K _ fk f Ik _

KU i JK( Ju k=0 k=0 OV
—_———

vi=

Because u is a unit, v is as well. In total, we see that

n /0(%‘+1)_ u v

. T _fes f
Yi+1 o' OV

ot (n)

now implies that
nfv_ o(yis1)
a{((n /v) Yivr
Thus, we set 1,1 := /v, which we know to be a unit because both  and v are. This completes the inductive
step and hence the proof. |

As such, we define {1,;}52, for each o € Gal (|U;~, Li/K) as constructed above, and we know these to
be compatible in towers.

To finish our discussion, we note that because the expressions for the o; and 3;; are multiplicative and
because norms commute with automorphisms in abelian extensions, choosing the s and s to be compatible
in towers will imply that the entire fundamental tuples will be (pointwise) compatible in towers.

As an example, we write this compatibility out for «ag; the rest of the terms are similar. We define

-1
Qo = Vi H Uﬁ(nam)
k=0

in accordance with |[Corollary 182l To check that this is compatible in towers, we set N := Nz, r, /0,00
for some index 7 and compute

F-1
N(ao,i41) =N (%‘H : H U];((UUK,iJrl))
k=0
-1

= Nvipr - [[ ok Nnoi41)
k=0

-1
=% H Ullc((nok,i)
k=0

= 0,5,

which is what we wanted.

7. GLOBAL GERBS

In this section we provide a concrete description of the Kottwitz gerbs £ and &3 from [Kot14] associated
to the global extension Q((,~)/Q when p is a prime.
The outline is as follows. Namely, we will mostly make explicit the construction described in[subsection 2.4]
In our toy example, computing &; is also fairly easy because our extension is cyclic; indeed, we can compute
a representative ¢; for a; € fI2(G7Az/LX).
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For &, it is relatively straightforward to give some representative co for ag € H 2(G,Homgz(Z[VL],A})) by
using, say, to get representatives for the local fundamental classes and then inverting Shapiro’s
lemma as in to finish. In fact, in our toy case this is easier because all relevant extensions are
cyclic.

However, the main difficulty here is in melding co and ¢; to make the diagram

7V —— Z

cz(g,g/)l Jicl(gagl)

A — AX/LX

commute for all g,¢' € Gal(L/K). In the approach below, we will fix ¢; to begin and then choose a co
which will make this diagram commute. From here, we induce ¢3(g, ¢') for g,¢' € Gal(L/K) by filling in the
rightmost arrow in the morphism of short exact sequences, as follows.

0 —— Z[VL]o — Z[VL] Z 0
i c1(9,9") lcfz(g,g’) icl (9,9")
0 L* AY AY/L* —— 0

Doing this will compute a representative s for as € H2(G, Homz(Z[Vp]o, L)) and hence &s.

7.1. Computing &. We continue in the context of fubsection 2.4] in the case of K := Q and L = Q(Cpr);
for brevity, set ¢ := (p». The goal of the computation is to fully reverse [Lemma 33[to be able to write down
a 2-cocycle in Z2(G,Dy(Ar)) representing i, which will then specify a gerb in the correct equivalence class
of £5. As such, for each u € Vi, we choose some v(u) € Vi, above .

7.1.1. Extracting Elements and Setting Notation. We are going to choose our local fundamental class repre-
sentatives to be compatible with a choice of global fundamental class for L/K. However, this will require
extracting certain magical elements of L*, so we will go ahead and extract these before getting into the
computation.

For clarity, we will go ahead and state all the elements we will construct, and then we will spend the rest
of this subsection constructing them.

(1) We choose a generator o € G := GaL(L/K).
(2) For a specific infinite place v(0o) of L, we select &, € L&) such that

foo =ip(—1) -ipz  (mod Ng, A7)

(3) For each subgroup H C G and ideal class ¢ € CI L we will need to find a prime L-ideal TH e
representing ¢ while splitting completely in L.

(4) Given a finite unramified place u € Vi under v(u) € V, set q to be the prime L& -ideal above w.
Finding the correct tp,q-1], we need to select a generator cw,, for gy (q-1;.

All of these elements above will be found somewhat non-constructively.

We now construct through in order. To begin, we need to write down G := Gal(Q(¢)/Q)
in some concrete way, so we pick a generator = € (Z/p"Z)” (recall that p is odd) so that o: ¢ + (% is a
generator of G of order n := ¢ (p*) = (p — 1)p* L. To be able to properly localize, for each prime ¢ # p, we
define k; > 0 to have

zFi = ¢ (mod p)
so that o®e: ¢+ (7. We also set d, := ged(ky,n) so that (o%a) = (09) with order n, == n/d,,.
Additionally, we let 8 = (1 — ¢) denote the prime of L above (p) of K; notably, L/K is totally ramified
at (p), so there is in fact exactly one prime 3 here. In particular, we can check that

eploy07) = w15
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is a 2-cocycle in Z*(G, Ly / K ;) representing the local fundamental class in H2(G, Lg,). Passing ey through
Ly < Ap — A /L, we see that

Z'gpcp((fi, O'j) = Z'q3$7|-i:j

has cohomology class of global invariant 1/n and therefore represents the global fundamental class uy,,/x €
H*(G,AY/L%).

We now move on to choosing £, as mentioned in [item 2] The following conjures the element that we
need for infinite places. Set 7 := ¢"/2 to be the “conjugation” action on L.

Lemma 196. Let v = v(c0) be our chosen infinite place, and set G, = {1,7}. Then there exists £oo € L{T)
such that

ﬁoo = ’L'v(—l) . Z'spl’ (mod N(.,.)AZ)
Proof. Tt is a fact that we can represent the local fundamental class of L, /K., by
co(th, 7)) = (—1)L%J

Indeed, H2 (Gy, L)) ~ ﬁO(Gv, L}) = R*/RZ, and the above representative of ¢, chooses —1 to represent
the negative real numbers in R* /R+g.
Now, embedding this into A} /L*, we see that
iyCo(T8,T7) = iy(—1) [ 5]
has global invariant 1/2 and therefore should live in the same cohomology class as Resg, ispcgp. In particular,
we place [r] € H %(G,,Z) and note that
[iveo] U [7] = [Resg, ipcp| U [7]

as elements in ﬁO(GU, AT /L*). Rearranging, this implies that

[1] = [io(=1) - ipa]

as clements in HO(G,, AT /L*). Now, this group is A} /L* modded out by N¢, A}, so we can unwind this
as promising some £, € L* such that

€oo =iy(—1) -ipz  (mod Ng, AT).
It remains to show that £, is fixed by 7. Well, the above turns into
oo = 1p(—1) -ipx-a-Ta
for some a € A}, and this equality has each factor on the right-hand side fixed by 7. |

Remark 197. For certain primes, one can choose £, from the circulant units of Q((,), making £ effectively
computable. In particular, [Dum20, Proposition 1] tells us that this is possible whenever # Cl1 H is odd; this
fails first for Q(Ca9). In [Dav69], it is conjectured that this is possible for infinitely many primes.

Continuing, we note that, because G, is preserved by conjugation, we have
A7)
as well, so we set £y, = g€oo. Because £ is preserved by 7, the choice of g € G yielding gv is irrelevant.

We are going to want to “inflate” &, to be helpful with larger subgroups H C G, containing {1, 7}, for
which we establish the following lemma.

9o = tgp(—1) -ipz (mod Ng

gv

Lemma 198. Fix everything as above. Picking any infinite place v | oo and subgroup H C G containing T,

the element

gv,H = H gg'u

g(T)EH/(T)
has
&omeL? and o0 = ispx#H/2 . H iw(—1) (mod NyAT).
weHv
Technically, we must choose some coset representatives for H/(7) to define &, g, but because &, is fixed
by 7, they all yield the same element &, g € L.
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Proof. By construction,
fv = Z‘gpl’ . Z‘v(fl) . N<7.)a
for some a € A} . Now, we choose coset representatives {gi,...,gm} for H/(7) so that

m

gv,H = H gkgv
k=1

= < H gkifpr) < H gkiv(—l)> ( H gr(a - m))
k=1 k=1 k=1
= < H igk‘ﬁ(gkﬂf)> ( H igkvgk(l)> ( H gra - gk7a>
k=1

k=1 k=1

m
= Zspl‘#H/z ( H igkv(_1)> NHCL.

k=1

Quickly, we show that the (multi)set of giv is the same as Hv. Well, gv = v if and only if g € (7), so the
stabilizer of v in the H-set Hv is (7). It follows that there is a (canonical) isomorphism H/(7) ~ Hv of
H-sets, which is what we wanted.

Thus,
o = iqu#H/Q ( H iu,(—1)>NHa.
weEHv
To show &, iy € L, we observe that the above factors are each fixed by H, finishing. ]

Next we turn to our finite unramified places, which are the subject of [item 3| and [item 4] The following
is the construction for [ftem 3l

Lemma 199. Fiz everything as above. For each subgroup H C G and ideal class ¢ € C1LY, there exists a
prime LY -ideal ty,c satisfying the following constraints.

o vy . has ideal class c.
o ty . splits completely in L.

Proof. This is an application of the Chebotarev density theorem. Let M be the Hilbert class field of L,

yielding the following tower of fields.
ML
M L
LH

K

The main claim is that MNL = L. Certainly MNL contains L, so we make the following two observations.
e Because M N L is a subextension of the unramified extension L¥ C M, the extension L C M N L
is also unramified.
e Because the extension L C L is totally ramified (at the place over (p)), the only way for a sub-
extension to be unramified is for the subextension to be L.
Combining the above two observations forces M N L = L.
It follows that M and L are linearly disjoint over L¥ | so

Gal(ML/L") ~ Gal (M/L") x Gal (L/L") ~ C1L¥ x H.
Thus, choose g € Gal(M/L*) corresponding to ¢ € Cl L and then use the Chebotarev density theorem to

find a prime L”-ideal v such that Frob, = (g,1). We claim that v . :== v will do the trick.
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For concreteness, let SR be a prime of M L above t, and set Ry, .= RN M and Ry :=RN L. Then
Frobg,, /« = Resy Frobgy /. = g,
so t has the correct ideal class. Similarly,
Frobg, /» = Resy, Frobg . = 1,

so t splits completely up in L. |

Now, let (¢) # (p) be a finite prime of K, and choose some place v := v(u) € Vi, above (q) corresponding
to the prime Q. Intersecting down, set q :== Q N L%,

We will want to choose a well-behaved uniformizer of q to represent our local fundamental class. Choosing
q € q turns out to cause difficulties when ¢ is not inert in L. Instead, we use[Lemma 199|to find the constructed
LCv-prime t, such that t, splits completely in L and qr, is principal. As such, we find @, € L% such that

vy = (@u)-

Observe that if we work with gv(u) instead of v(u) for some g € G, we can analogously write

(99)(gtu) = (97u),

S0 we set Wyy(y) = gw, for g € G. Note that this is well-defined: gv(u) = g’v(u) implies that g~'¢’ € G,,
50 ¢ g, = Wy, 50 g, = §'w,.

7.1.2. Choosing Local Fundamental Cocycles. We now choose our representative of o € H 2(G,Homy(Z[VL],AT))
by working up through For this, we must find explicit 2-cocycles to represent the various
G(u)(Ly(u)/Ku)s for u € V. Some of these will be easy. For example, for the finite place v = v((p)) =B,

we can set

eplo' 07) = a L5

to represent up, k€ }AIQ(G, L%), S0 we set ¢, = ipCp.
Additionally, for v = v(c0), we set

ool 77) = (~1) %)

to represent uy, s € H 2(G, LY). However, we won't want to use i,c, for our 2-cocycle. Instead, we recall
that

[ivCoo] U [7] = [in(=1)] = [§co /isp]

as elements of H Y(Gy, AT). Thus, [iycso] is also represented by

Coo (77, 79) = (€no i) L7
i+7

by cupping with (7%,77) — | 52|, which represents the generator of H2(G,,7).

Lastly, we let u = (¢) # (p) denote a finite (unramified) place of Vi, and we set v := v(u) associated to
the finite prime Q. For brevity, set H := G, and note H = (c%¢) because o ¢ > (¥¢. Now, because our
chosen w, is a uniformizer of 9 N L, we can set

5]

(oFat, oFad) s oy "0
for 0 < i,j < ng, to represent uy i, € H2(H,LX). Tt will be helpful to be able to change between
generators, so we pick up the following lemma.

Lemma 200. Let G = (o) be a finite cyclic group of order n. Further, suppose k € Z has ged(k,n) = 1.
Then define x,xa € Z*(G,Z) by

X (o%,07) = V-;JJ and i (oM, 0M) = V—H’J’

where 0 <i,j < n. Then [x] = kx| in H*(G,Z).
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Proof. 1t is well-known that
(7.1) (= U[x]): HYG,Z) —» H*(G,Z)

is an isomorphism. Now, for m € Z, we see that [m] U [xx] = [mxx], so we see that we can actually invert
the above isomorphism explicitly because

Z(ka 0 =m Z Xk 70 =m,

geG £Lk=0

so [ = [ U [oF] = {dec c(g,ak)} describes the inverse of |(7.1)l As such, we pick up x and compute

n—1
> xlg.0") =D x (0" 0") =k
geG £=0
Thus, [k] U [xx] = [x], which is what we wanted. [ |

As such, we set xq, € Z*(G,7) by Xd, : (odqi, quj) — L%J Then [Lemma 200| tells us that
[qu] = (kq/dq)[qu]-

Thus, we find y, € Z with y, - kq/dqg =1 (mod ng) so that we can represent «(L,/K,) by

va | 5]

([wu] Uygxa,): (qui, quj) — Wy
For brevity, let this 2-cocycle be ¢, € Z*(H,L}).
Again, we won’t want to represent i,ur, /x, € H 2(H,A7) by iycq. To find the desired representative, we
begin by embedding w, € L* to A}, yielding

Wy = H Y Ty

weVy,

We claim that if v' € V7, is a finite place not lying over (p), q, nor t, then
(7.2) II iw=
weHv'

is a norm in NyA7. Indeed, all places in Hv' are unramified (they don’t lie over (p)), and the fact that v’
avoids both g and v implies that w, € O for each w € Hv'. In particular, there is some a,s € L,/ such that
wy, = Ny, a, so

Z’U/CL’U H iho hay = H ihov’ <h0 H ha'u’) = H Loy W,

heH [hol€H/H,, heH,, weHv'

where the last equality used the fact that o, is fixed by hy € H. Now, multiplying elements of the form|(7.2)|
together (infinitely many multiplications at different places are okay because we are working with idéles), we
conclude that

(7.3) @y = iy@y - ip@y - | [iw@e [] twwe  (mod NyAj).
wle w|oo
We deal with the remaining terms one at a time, in sequence.

Lemma 201. Fiz everything as above, with finite place u not above (p) chosen. Then there exists &, € L™
and e, € 7 such that
£y = iywy -ipz®™  (mod NyAj).

Proof. Looking at we have to deal with places above t and places above co. We deal with these
separately.
Let’s begin with the places above t. Fix some v’ above t. Because t is totally split in L, we have H,, = {1},

zvfwu H Tho! Ty = H b Wy

heH w|oo
90
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So the places over t actually dissolve into a norm, implying

Wy = GyWy * IpWy - H i@y, (mod NgAY).
w|oo
Next we turn to the infinite places. We begin by fixing some infinite place v’ | co. We have two cases.
o If 7 ¢ H, then we see that

NHiv’wu = H ihv’hwu = H Z'wzvua
heH weHv!
where the last step is because hv' = h/v’ for h,h’ € H implies h = h’. Thus, these are all norms.
e Otherwise, 7 € H. For concreteness, associate v’ to the embedding o: L — C; note hv is associated

to the embedding L ML 5C. In fact, o(L) C R because L is fixed by 7 € H, so we’ll consider
i\ O(Eupton) € AT,

where the sign €, € {£1} is chosen to ensure o (g, w,) > 0. Thinking concretely, VEup 0y
is a Cauchy sequence of elements of L¥ under the metric induced by o: L — R, whose square
approaches &, ,yow, > 0. Notably, we may choose a Cauchy sequence for our square root from L%
because o (ey, v @y,) > 0.

Applying h: L, — Ly, to this Cauchy sequence, we get another Cauchy sequence, but this time
the Cauchy sequence is under the metric induced by ch~': L¥ — R and approaches Eu,v OhTy,.
However, these metric are the same on L, and hw, = w,, meaning that applying h here merely
produced another VEuw 0y, € Ly,r. The whole point of this is to be able to write

Ny ) o(eypwy) = H hiy\/o(Eyv@u)

heH

H Tho! (\/U(Eu,v’wu) : T\/U(Eu,v’wu))

h(r)eH/()

= [ iw(euwma)

weHv!

In total, we see that

(lisu,v’)/Q
1 ivwu= I iwleuw) = (€omiga#12)

weHv weHv!

by
We now synthesize. If 7 € H, then we take £, =1 and e,, = 0 so that|(7.3)| gives

Wy = Gy - iy, (mod NgAT).

When 7 € H, this is a little more complicated. For notational reasons, we will let V, denote the set of
infinite places in Vg, letting us write

I wwu= II I imumu

wWE Voo [v']€Voo /H wEHY'
(1—6,%/”/)/2
= ]I (5v’,H . imx_#Hﬂ)
[v)€Vao /H
(A—ey pr)/2 - _
= H Sor b : H jqpa~ #H/20=2w0)/2 (mod NyAY).
[v)€Vao /H [v€Vao /H
So we can collapse this product down to &, ! - ipa® as above. Plugging into [(7.3)| gets the result. |

Lastly, we fix the i term. For this, we use the following lemma.
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Lemma 202. Fiz everything as above. Suppose that we have a subgroup H C G and power e € Z such that
[ipa] = [1]

as elements of HO(H, A} /L*). Then
ipz® =1 (mod NyA7T).
Proof. The point is to show that #H | e. Let H = (¢?) for a fixed d | n. We have already established that

z‘+jJ

n

(0%, 07) igpx_L

represents the fundamental class of H2(G, AY /L*), so restricting implies that
itj
n/d

(0% oY) ispmft
represents the fundamental class of ﬁQ(H, AY /LX) ~ 7Z/#HZ. Cupping with [0%] € I/{f*2(H, Z) reveals that

iz ! is a generator of fIO(H, AT /L*) of order #H.
[ip]® = [1]

Thus,

as elements of H° (H,AF/L*) implies that #H | e. In particular, we conclude that #H | e. To finish, we
NHimlL'e/#H = ’isp.’[e,

see that

finishing.
We quickly remark that has the following amusing corollary.

Corollary 203. Fix everything as above. Let
p’—1
=Y al

=0

be a totally positive unit in Og(¢), with a; € Z for each i. Then
p”—1

Z a; =1 (mod p).
i=0

Proof. Because the a; are integers, it suffices to show that
p¥—1 p’—1 ’
= Z a; =1
=0

§=ZaiCi=

=0

(mod ),

where B := (1 — () is the prime above (p). For this, we note that
= H in€ = ipé  (mod NgAY)
|

veVry
after noting that all infinite places give norms (because ¢ is totally positive) and all finite unramified places

give norms (because ¢ is a unit). Applying [Lemma 202 we find £ =1 (mod ), finishing,.

We now return to our computation. Currently, we have some &, and e, such that
(mod NgAT).

EuTy = Ty @y - tpx®™
However, we know abstractly that the 2-cocycles i,c, and Resc, both represent the fundamental class of
H?(H,A7 /L*), which means that they need to have the same cup product with [adQ], giving the equality
[ivate] = [ima™]
1

as elements of ﬁO(H, A¥/L*). Combining,
(1] = i i) = [iga®e®e 1] = [iga]te®s™

as elements of HO(H, A7 /L*). Thus, [Lemma 202|lets us conclude that
(mod NyAT).

ipr¥i =ipx
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Thus,
(Euwoy)¥" = iywye ipr  (mod NyAj).

In total, we can choose

[ (O'i, aj) = (lrwle [ipx) VTT;J

to represent iyur, /x, € H2(H, A%).
To synthesize all places, we set

1 u = (p), dy, u=q#p is finite,
(74) Wy = 9 oo U = 00, and dy =41 U =p,
e’ u ¢ {(p), oo}, n/2 wu= o0,

so that
Cy (Jduzv Jdu]) = (wu/iqu) Lﬁd]uJ

in all cases.

7.1.3. Inverting Shapiro’s Lemma. The next step in reversing is to invert the Shapiro’s lemma
isomorphism

H? (G, AF) ~ H?(G, Colndg  (A}))

for each place u € V. Until the end of this section, we will fix the place u € Vi and set v := v(u) € V, and
H = G, = Gy, for brevity. It is known that (e.g., see [Kall8]) this inverse morphism can be constructed
as the composite
H? (H,A}) % H?(H, Colnd§ AY) °% H?(G, Colnd§; AY),

where ¢: A — Colnd% AY takes a to v(a): g — (glgem)a.

Thus, we have two maps to track on the level of our 2-cocycles. For the time being, we will ignore that
we have chosen a specific 2-cocycle ¢, € Z2(H,A}) and track everything through abstractly. To track ¢, we
start by computing

(ve) (B 1) = g = (geu(h, H)) o
Next we must track through cor. This is more difficult; we follow [NSWO08|. To begin, we choose represen-

tatives for cosets in H\G, letting Hg denote the representative of H\G; for coherence reasons, we require
He = e, where e € GG is the identity. With this notation, we may compute

— — 1 1
(corvey) (g1, 92) = Z (Hg)™" - (cu) (Hgngggl s Hg9192H 99192 ) .
HgeH\G

Now, the G-action on Colnd% AY takes f: G — A to (g9f): @ — f(zg). So when we plug in gy € G, we get

—_— 1 1 ——1
(coriey) (g1,92) (90) = [ (eew) (H991H991 . Hgg192Hgg192 )(90H9 )
HgeH\G

— 1 — 1 I\ Logma—1
11 (gng Cu (H991H991 Hgg19:Hgg19: )) ot et
HgeH\G

The only opportunity for a factor in the product to not output 1 is when goHig_1 € H, which is equivalent
to Hgy = Hyg, yielding

-1 -1 -1
(corecy) (91,92) (90) = goHgo cu (Hgonggogl s Hgog192H gog192 ) -
This will be explicit enough for our purposes.
Continuing, we go from Z2 (G,Colndgv A7) up to Z%(G,Morse(H\G,AJ)), for which we note that

fe CoIndgv A7 should be sent to Hg — gf (g_l). (This is well-defined because f(hg) = hf(g) for h € H
here.) This gives the 2-cocycle

1 1 1
(91,92) = Hgo — Hgy' ¢y <H95191H95191 JHgy g192Hgy * 9192 > :
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The above immediately extends to a 2-cocycle in Z?(G, Homz(Z[G,\G],A})), which then turns into the
2-cocycle

1 1 1
(91,92) = gov = Hgy ' cu (Hgolnggolgl Hgo  9192Hgy 9192 >

in ¢y € Z?(G,Homgz(Z[V,,], A})).
Only now do we let the place u € Vi vary, extending co accordingly to

1 1 1
(75) 02(91792): gOU(U) = Gv(u)gal Cy (Gv(u)golgle(u)golgl aGv(u)QSIQIQQGv(u)galglg2 )
in ¢y € Z?(G,Homy(Z[V,],A})); this is the representative of as we are looking for.
Example 204. If g1,9o € H and go = e, then
c2(g1,92): v(u) = ¢y (91, 92),

as needed; notably, we used the requirement that He = e.

7.1.4. Finishing Up. We will now be more concrete to our example. Because G is cyclic, and G, () is cyclic
generated by o%, we can set

G0t = o

for each 0 < i < d,. This gives the 2-cocycle

an

i+[;§1du H L [ Li-%—j-%—i;c]du J - Li+[;:]du J] "J

“L
¢ (0%, 07) : o%(u) = 0% (w, /ip)

in c; € Z?(G,Homyz(Z[VL],A})) after tracking through |(7.5)
As a last addendum, we go ahead and compute the a associated to ¢o. Namely, we want to compute

a(cv(u)) = ﬁ c(o',0) (cv(u))
i=0
n—1 “Liﬂd;]du”nu i |:Li+1+(i[;5]duJ _ Lin:]danuJ

>

n
= 0wy fipx)i=0 “

It turns out that the giant sum is just 1, which we outsource to the following lemma.

Lemma 205. Let n,d > 0 be positive integers. Then, for any c € [0,d), we have

pof [la k=T <P

. n
=0

Proof. Note that each term in the sum is either 0 or 1 because the terms take the form L‘ITH’J where
0 < a,b < n. As such, we are counting the number of nonzero terms in the sum.
Well, we claim that the term is nonzero if and only if ¢ = nd —c— 1. Note that n,d > 0 and ¢ < d implies

that nd — ¢ — 1 is a valid input in [0,nd — 1). Anyway, we start by showing that, if the term

Ul”fﬂﬁ [ - L"TfﬂnJ

n

is nonzero, then ¢ = nd — ¢ — 1. Note that V"’}%J — {”‘TCJ must be positive for this to be possible, or else
the entire numerator is less than n. However, for this to be positive, we need i + 1 + ¢ to be a multiple of d,
which means

i=—-c—1 (mod d).
414 i+
el s

Even still, we don’t get much from this, only that L L J = 1. As such, we're going to need

55+
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for our term to be nonzero. Of course, i < nd and ¢ < d, so iJjTC < n, so we don’t even have to worry about

modding out by n here. As such, we really just need ”TC > n — 1, which translates into
i >nd—c—d.
Combining this with the fact that i < nd and i = —¢ — 1 (mod d), we see that we are forced to have
i=nd—c—1.
We finish by remarking that ¢ = nd — ¢ — 1 will give

{H”ﬁ]ﬁ (=] - LTJLJ _ {”‘HlJ 1

n n
as discussed above. This completes the proof. |
In total, our value of & comes out to be
a®: g (u) = 0w, fipe.

For brevity, we set wyeq(y) = 0°w,. By construction, w, € L%, so w, does not depend on the exact choice
of ¢ among coset representatives in G/G,. So we can write more succinctly that

a@: v w, fip |

This completes the computation.

7.2. Computing ;. In this section we continue the computation with L := Q((,») and K = Q from
subsection 7.1} Namely, at the end we computed that

¢ (0"07) v ((,uv/iqu)L ]
represents g € H2(G,AY). We now recall that

ci(o’,07) =gz~ L5

represents the global fundamental class o, € H 2(G, A} /L*). However, our careful choice of ¢y and ¢1 implies
that the following diagram commutes for all g,¢" € G.

These two morphisms induce a unique morphism ¢ (g,¢’): Z[V5]o — L* as follows.

0—— Z[VL]O Emd Z[VL] Z 0
i c3(9,9") lCQ(!Lg/) Jq (9.9")
0 L A% AXJL* —— 0

In fact, because we have
gci(g'.g") - ci(g.g'9") _
ci(9.9') - ci(99'.9")
for all g,¢',¢" € G and i € {1,2}, the uniqueness of the induced arrow c3 implies that the same relation
must hold for ¢ = 3 above. In particular, c3 is a 2-cocycle, and by construction c3 represents as.
We can even write down c3 explicitly. Indeed, given v — v € Z[VL]o, we have

it

ca(0%,07) (v —v) = (woJwu )L 5] € 1X,

so we have

es(ot,07) (v = ') = (wy fwn) L)

In particular, our value of o comes out to be

a®: (v =) = wyfwy |
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We quickly recall that wgey(y) = 0wy, where w, was defined in

[CE56]
[Tat66]

[Dav69)]

[AS78]

Tig81]
[Bro&2]

[Ser91]
[PR94]

[Neu99]
[NSWOS]

[AW10]

[Tat10]

[Bucl3]

[Neul3]

[Kot14]
[Kallg]

[Dum20]

[Mil20]
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APPENDIX A. VERIFICATION OF THE COCYCLE

In this section, we verify [Theorem 130} As such, in this section, we will work under the modified set-up,
forgetting about the extension &€ but letting ({a;}, {fi;}) be some {o;};-tuple.
Here the formula looks like

C(g’g/) = H < H Jzk—i_bk)( H Uzk>0’§ai)g§bﬂ')ﬂij ﬁ( H O—Zk-ﬁ-bk)ai[ai:ibiJ ,

1<j<i<m \ 1<k<j j<k<i i=1 \ 1<k<i

where g = [[, 07" and ¢’ =[], ol with 0 < a;,b; < n; and g¢; == |(a; + b;)/n;i]. To make this more digestible,

we define
9i = H ok

1<k<i

for any g =[], 0i" € G. Also, for extra brevity, we will define
(aibj) . _(a;) (b5)
Bij = Uia 0, ! Bija
so we can write down our formula as

@) | | TT el 5]
cg.9) =1 ] @d8:""| |[[ggier ™ |
=1

1<j<i<m

Now, given g, ¢’,¢"” € G, we would like to check

/i

?
gc(g’,9") - c(9,9'9") = c(gg'.9") - c(9,9"),
where g =[], 0/ and ¢’ =[], Ufi and g” =[], 05" with 0 < a;,b;,¢; < n;.

A.1. Carries. We will begin our verification by dealing with carries; we start with the following lemma,
intended to beef up our relation |(4.2)|

Lemma 206. Given indices 1 > j with a;,a;,¢;,q; > 0, we have

(azaj) (ai+qiniaj) J;j(ai) B (a;a;) (as,aj+qjn;) Qi @
By = Bij B and B =By g T 3 .

Q;

Proof. This is a matter of force. For one, we compute

aitnigi—la;—1

(ai+niqi,aj) P _q
Bis e O e 2

p=0 q=0
a;—1a;—1 aj—la;+n;q;—1
— p_q0 P93, .
=\ II IL otofs | | II 11 etoiss
p=0 ¢=0 qg=0  p=a;

a;—1 i
= Bf;iaj) ( 11 oiNwe, (&;—)) :
q=0

Now, using the relation Ny, (8i;) = ai/0j(a;) from|(4.2)} this becomes

a;—1 q,_ i
/B(q'i+niQi7aj) _ B(f}iaj) H g%
ij ij oitla,

q=0
@
_ /B(aiaj) & '
) 0% ’

97

which rearranges into what we wanted.
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For the other, we again just compute

a;j—1laj+n;q;—

Bi(;i,a]‘-i'njqj) _ H H olo? ﬁ”

a;—la;—1 a;—laj+tn;q;—1
pd
IL W teios JULL AL otois

p=0 ¢=0 q=q;
aifl qi
= ﬂi(]{‘liaj) (H a'f NL/Lq(ﬁij)> .
p=0

This time, we use the relation Ny, (8i;) = oi(a;)/c;, which gives

a;—1 pt+1 qi
/By(?’i,aj+anj) _ ﬂl.({uaj) l I op " (aj)
Y N p:() 0’5)(@])

_ gl (9 (@) )"
1] aj ’

which again rearranges into the desired. |

We are now ready to begin the computation, dealing with carries to start. Use the division algorithm to
write

a; + bi = n;uU; + ; and bz —+c; = n;v; + Yis

where u;,v; € {0,1} and 0 < z;,y; < n; for each i. We start by collecting remainder terms on the side of
gc(g'.9") - clg,9'9").
(1) Note

m

b;

gelg g =g | I gig/85 -glﬂgigi’ ”]
1<j<i<m i=1

so we set
m
el ||

to be our remainder term.
(2) Note

a;ityg
clg.gg") =| [ wdigl85™ ll_[glgigé’oaL " J]

1<j<i<m

(as.b; ) a v; m a. +yiJ

ibi+ j Ti

= H glg;g;/ﬁ & “ gig}g§’ (Uaija) [H glg;ggl @; ]
i

1<j<i<m
Vi a ity
_ ’on (alb +cj) o aj 1 n; J
| T s | | T sl (S H%gz oL
1<j<i<m 1<j<i<m [

so we set

ron 8] v ’on a ﬂllJ
Ry=1| ] gigjgj( = > nggzgz 'l
0 Qj

1<j<i<m

to be our remainder term.
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(3) Lastly, we collect our remainders. Observe

Vi a+yz‘J
) [nggigi’ P ]
]

[ m m a Vi a+,.

(0. 1., O' )a niyz

- Hg;-g;'( I i ) | [l ™
j=1

=41 (o 0,177 )o} a;

Ry = Hg}g§-’< II -

i=j+1

B g \ | [ ==
= H939§'< || B ) [Hgigigé’% 1
i=1 i=1

i=j+1 gi+105

a a;ity;

m
= H j §"gﬁ1a [Hglgigi/ a; " J]~

We now note that g;j;10; = gja; because «; is fixed by o;. As such,

m giav a +‘yiJ
11999/ “] ng’ R ] [nggigé’ a; ™ 1
L

RiRy; =

which is nice enough for us now.
Now, we collect remainder terms from ¢(gg’, ¢"’) - ¢(g,g’).

(1) Note

m zite;
cog gV =| I @desy h_hmqi%"oziL J]
=1

1<j<i<m

w0 [ ()
a1 04,Cy ng
= I 9diajs ™ giglg] | = [Tigig!

' i=1

| 1<j<i<m
[ Cj Wi J— iteq
i+bs, 04 Qi O
=| I aga/pytree | ( — > lH 9919} @ z J] 7
| 1<j<i<m 1<j<i<m v
S0 we set
cj Ui m z;+c;
ooy e
Ry=| [] wdd] (;) lH gigégi’a,-[ / J} .
1<j<i<m ¢ i=1
(2) Note
( m
ib; ;
clo.g) =1 ] adiBS™ [nggi l‘],
1<j<i<m i=1
SO we set

Ry =

H 9ig; “]
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(3) Lastly, we collect our remainder terms. Observe

w; m
H%(Hg ) [Hgig
=1
U?'iai

)5 )
1 )O‘z
> [H gig

'p iteci
g

)

oal

R3 =

Cj—1
]1

. 0’]

/l/

i9; &
J} |

///L
7

i9; &

H gj1%i

Jlgj

2] e

’L

H 9i9; (
H 9i9; gioi”

/!
K2

I/I

9:9; @

’U«L

Thus,

11 UL
gl [

U1

wet [

z;+
n;

/
(3

R3Ry =

H 9ig;

=1
m

—ng

which is again simple enough for our purposes.

[t

i

///

glgl 7 ?

We now note that, for each 1,

///[

i9i &
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zitc,

n;

J]

: {
[H 9i9:9; o
=1

Jl

i

z;+c;

n;

W

¢ ites

g

"'L

o]

i rﬁ-ciJ _ Vﬁ_bi—’—qJ - Vﬁ_yiJ
by how carried addition behaves. It follows that
74+y1 [‘1+L1J
Ry Ry = ngg{gi’ a, nggig{’ "4 = R3R,.
Thus, it suffices to show that
gclg',g") clg,9") 2 clgg’,g") c(9,9)
Ry Ry R3 Ry ’

which is equivalent to

II

1<j<i<m

!

99

i

bic;
5( ) 9i9;9;

H ﬂ_({livbj+0j)

1<j<i<m

[

1<j<i<m

by the work above.

A.2. Finishing. We need to verify that

11 11

1<j<i<m 1<j<i<m

~

1

gl]

i

irbj+
g’LgJ ]B(a CJ)

5(b iC5)

[I

1<j<i<m

9

as discussed in the previous subsection.

itbicj ibj
gighgl B o) T sd;85"”
1<j<i<m
i+bi,c; ibj
gighgl B o) 11 9ig; B
1<j<i<m

Before beginning the check, we recall the relations on the fs from |(4.3)[ can be written as

o2(Bs1) _ 01(Bs2) o3(B21

)

Bs1 Bs2 Ba1

because we only have one triple (4,7, k) of indices with i > j > k.

directly, so we quickly show a more general version.
100
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Lemma 207. Fiz indices with i > j > k, and let a;,a;,a; > 0. Then
a]B ajay) akﬁ(az‘l] ai/B(aJak

51(;: iak) 52(;17%) ﬁj(_zjak)

Proof. We simply compute
(Z,ak) akﬁ oo a;—1 r+lﬁj%ﬂk) ap—1 Up+1ﬁ(aia.7‘)

p=0

ap—1laj—la;— p+l_q _r
II 11 H ﬁjk s
r P9 _ra. .

Uko o! ﬂ]k 0400} Bij

p=0 ¢q=0 r=0

ap—1a;—1q;— O'ﬂ O'ﬁ
v [ OiBik kB
HHH% Z(ﬁjk »3z'j>

p=0 ¢q=0 r=0

r=0 ﬁ(a] o)

U
J . —
ﬁ('zjak) ﬂ(a a,) H
J

where in the last equality we have use the relation on the fSs. Continuing,
ot B oppl “ﬁl (Hl T m)
BB e \ o rmo T5OROEPik
a;— q+1ﬂ(a1ak)

11~

q=0 qﬁ aick)

a, B(a iak)

B(a iak)

which is what we wanted. ]

)

We now proceed with the check, by induction. More precisely, we claim that any m’ < m gives

’ // lc ) / // (a1 bj+ci) | * o (al+b1,c ) alb )
g’ﬂl/"rl H gzgj ! H glg]g_] ! = H glgzg] ! H glg_]
j<i<m’ Jj<i<m’ Jj<i<m' Jj<i<m'

which we will show by induction on m’. For m’ = 1, there is nothing to say because there are no indices
> 7.

So now suppose we have equality for m’ < m, and we give equality for m” := m’ + 1. That is, we want
to show that

bi ibite;) 7 i+bi, b
gz [I 9diBS - T] agiesi™* ) 2 I edbelsi™ = I agiBs™
j<i<m’41 j<i<m/+1 j<i<m/+1 j<i<m/+1

but by the inductive hypothesis it suffices for
bi i+ i+bi, ib;
g |1 agl8y " T1 gigjayBl ™+ I wggsy™ 11 agss™

j<i<m/+1 j<i<m/41 7 j<i<m/+1 j<i<m/+1
WHe) (bi C]) 1o (aiybj+cj) B 1o (ai+bi1cj) ' (aibs)
gm1 [ 9ig)B 11 9i9)8 I 9igie;8 I 998
j<i<m/’ j<is<m/’ j<i<m/’ j<is<m/’

which is collapses to

b;
gm’+1 H g;g;/ﬁ( )

j<i<m’+1 (a 1,bi+cj) (am//-i-bm//,CJ (ap,bj)
"9 (b cj) H gm”g] m“ H gm”g"”“gﬁ m''j H gm//g]
9m’+1 H 9;9 i<m/’ j<m/’ i<m/’
j<i<m/’
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because the terms with i < m” = m’ 4+ 1 got cancelled in the rightmost three products. Rearranging, this is
the same as

b; tt Fb 0, m//b
gm”+1 H g;g;/ﬁ( C) H gm”gm//g] 67(731/ CJ) H gm”gjﬂ,,(n//

j<i<m/+1 ? j<m’’ j<m’’
I (btbg) o ’ (a 1,bj4cj)
Im/4+1 H gzgj H gm”gj m”j
j<i<m/’ j<m’’

Peeling off the i« = m” = m’ + 1 terms from the left-hand side numerator, we’re showing

b 771//%*bnlu 7n”b
g [ dhglB” 1T g gt B DT gmrgiBle

j<i<m/ l j<m!’ j<m!
/// (bc)_ / (buc) (CL 1,bite;)”
Im’+1 H gig] ! H gm”+1gmng m'’j ’ H gm”gj m”j ’
g<i<m/’ j<m’’ j<m’’
We take a moment to simplify the left-hand side with by writing
bic b; nla,rmc;
, ” //B( ) ) // Criiﬁin”j// 5) B(a 1by)
g [T gl | == | =om 11 dig :
m'+1 B(b icj) m B(am”%) O.CJﬂ(am”bt)
j<i<m/’ g<is<m/’ m'’j 7 Pm'q
11 Cj ) 77L a b
- H I o (%2 ) I o (2
= gm” g i m1Cj) gl g] cj p(a,,mb;)
j=1 i=j+1 ﬂm//] = Uj Bm”i
i 1 plamrc;)  m! b;
H gm +1gj /Bm// J H /6717/7;/, )
= 1" .
gm q" (@i c5) 7 11 (1 bs)
] 1 gj+1 jFm'j i=1 9:9; m'’
i / i //CJ / (a //bj)
— g H gmugj B ) H g 'ﬁfrnf/nj
- m
’ (am//cj) / (@pr11bj)
| j<m’ 954195 B’ j<m 9595 Bty

after doing a lot of telescoping. Now, we can remove g,,~ everywhere to give

H gm“g] (a ”+bm” CJ) H ﬁ ”b)

1 //C] //b )
gm//gJ Bm”] H Bm” l j<m! J<m”
11 g(@prrcs) ! 1 (am”b ) m”c7) / (amu bj+c;)’
J<m” gj+1gJ ﬁm”J j<m 9595 Brof gm”+lgg m'j gj
j<m’’ j<m!
or

(a //+b 1 CJ) / //b )

/ 17 (a //C') H gm//gj m’j H g] TYL//

/3 m J
gm//gj m'’j 7 j<m’’ ]<m”
’ 1" (am”CJ) (bm//c ’ m// bj+c;)”
j<m” 954197 B! H I 4197 P 959;
j<m’’ j<m!!

Rearranging, we want

a bj+c +b,,17,c
9;95//6( m!’s 5) 7 g;n”gg/ﬁ m" 1,¢5)
’ (a,,1bj) neg) (a,,rrcj) 11 a(brre;)’?
j<m’’ gggg /Bm” ngrl ]Bm”] /) j<m’ gm”gj 5m” ! gm”+1gj m'’j ’
which is
5((1 11,b; -‘rcj) ﬂ(am//-‘rbm//,cj')
H ron m'’j 7 H / 11 m'’j
939; Qprrby) | by plagmrcs) | Im9; (aprrcs) _aprr p(byrrcy)
j<m// /Bmll] ﬁm//] j<m// ﬁm//j m// Bm//
However, by definition of the Bi(;y), we see that
B(am//,bj-‘r(:j) B(G 1 b ,C5)
m//j m//

3lamirbs) 5<am~cj> - Blmrres) | pam glbmire;) =1,

m'’j m'’j m'’j m'’j

so everything does indeed cancel out properly. This completes the check.
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APPENDIX B. COMPUTATION OF ker F

In this section we give a proof of As such, we will use all the context from the statement and
proceed directly with the proof; as mentioned earlier, we may add (b) back to our list of generators because
it is induced by (c). Pick up some z = ((CEZ)Z, (yij)i>j) € ker F, which is equivalent to saying

x; N; — Z%JT + Z ?ng i =0

Jj=i+1

for each index i. We want to write z as a Z[G]—hnear combination of the elements from (a)-(e). The main
idea will be to slowly subtract out Z[G]-linear combinations of the above elements (which does not affect
z € ker F) until we can prove that we have 0 left over. We start with the z; terms, which we do in two steps.
(1) We begin by dealing with the z; terms. Fix some index p, and we will subtract out a suitable
Z]G)-linear combination of the above generators to set x, = 0 while not changing the other z; terms.

Well, using the element

(a’) KpTp,
we may assume that x, has no o, terms because 0, = 1 (mod T},). Then for each ¢ < p, we can
subtract out a suitable multiple of

(c) Tykip + NpApg

to make it so that we may assume x,, has no o, terms because o, =1 (mod T;). Similarly, for each
q > p, we can subtract out a suitable multiple of

(d) Tyrip = NpApg

to make it so that we may assume x, has no o, terms because o, =1 (mod 7).
(2) Thus, the above process allows us to assume that x, € Z, and the above linear combinations have
not affected any x; for i # p. We now use the fact that z € ker F. Indeed, we know that

TpNp — ZprT + Z YipTj = 0.

Jj=p+1
Applying the augmentation map ¢: Z[G] — Z, sending €: o; — 1 for each index ¢, we see that z, € Z
implying that x, remains fixed. On the other hand e: Tj — 0 for each index j and €: N, + ny, so
we are left with
npry = 0.
Because n, # 0 (it’s the order of 0,), we conclude that x, = 0. Applying this argument to the other
x; terms, we conclude that we may assume z; = 0 for each i.

It remains to deal with the y;; terms, which is a little more involved. For reference, we are showing that

_Zyz]T + Z y]z i =0

J=i+1

for each index ¢ implies that z = ((0);, (yij)bj) is a Z[G]-linear combination of the terms from (b) and (e).

We will now more or less proceed with the y;; by induction on m, allowing the group G (in its number of
generators m) to be changed in the process. For m = 1, there is nothing to say because there is no y;; term
at all. For a taste of how we will use we also work out m = 2: our equations read

—y21T1 =0 and Y2112 =0.
—_—— —

i=1 i=2
Thus, y21 € (ker T1) N (ker T) = (im Nyp) N (im Na), which is im Ny N2 by [Lemma 155
We now proceed with the general case; take m > 2. Let G’ := (09, ...,04,), which has m — 1 generators.

By the inductive hypothesis, we may assume the statement for G’. Explicitly, we will assume that, if
m—1
(Yij)i>j>2 € Z[G’}( 2') are variables satisfying

Zwa + Z YT =0

j=i+1
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for each index i > 2, then y;; are a linear combination of terms from the elements from (b) and (e) above,
only using indices at least 2.
We will again proceed in steps, for clarity.

(1)

To apply the inductive hypothesis, we need to force y,, € Z[G’] for each pair of indices (p,q) with
p > q > 2. Well, we use the relation (e) so that we can subtract multiples of

Ty Ap1 — Tidpg — Tt

In particular, this element will subtract out 77 from y,, while only introducing chaos to the elements
yp1 and Y41 in the process. Thus, subtracting a suitable multiple allows us to assume that y,, has
no o1 terms while not affecting any other y;; with ¢ > j > 2.

Applying this process to all y;; with ¢ > j > 2, we do indeed get y;; € Z[G'] for each i > j > 2.
We are now ready to apply the inductive hypothesis. For each index ¢ > 2, we have the equation

i—1 m
j=2 Jj=i+1

Because each y,, term with p > ¢ > 2 features no o1, applying the transformation oy + 1 will affect
no term in the sums while causing ;171 to vanish. Thus, we have the equations

i—1 m
=2 it ) iy =0

j=2 j=it1
for each index i > 2. Because y;; € Z[G'] for i > j > 2 already, we see that we may apply the
inductive hypothesis to assert that the y;; are Z[G’]-linear combinations of terms from (b) and (e)
(only using indices at least 2).

Subtracting these linear combinations out, we may assume y;; = 0 for each ¢ > j > 2.

To take stock, our equations for 7 > 2 now read

—ynTi =0,

which simply tells us that y;; € im Ny for each i > 2. As such, we pick up w; € Z[G] so that
yi1 = w; Ny for each ¢ > 2; because o1 N7 = N1, we may assume that w; € Z[G'] for each i > 2.
Now the equation for i = 1 reads

m
> vy =0,
j=2

or

m
i=2
Sending o1 — 1, we see that w; and T; are both fixed because they feature no o1s, so we merely have

m
nq Z ’LUlTl =0.
=2

Dividing out by n1, we are left with

=2

At this point, we may appear stuck, but we have one final trick: taking indices p > ¢ > 2, subtracting
out multiples of

(Tydp1 — Tidpg — TpAqr) - N
will not affect the y,, term because T7.N;. Indeed, subtracting this term out looks like
TyN1dp1 — TpNiAg1,

which after factoring out N; takes w, — w, — T, and wq — wq + T).
104



ABELIAN EXTENSIONS

In particular, fixing any ¢ > 2 and then applying this trick for all p > ¢, we may assume that w,
does not feature any o, terms for p > ¢. Thus, looking at our equation

i wiT; =0,
i—2

we are now able to show that w; € kerT; = im INV; for each i > 2, which will finish because it shows
yi1 € NiNi. Indeed, starting with ¢ = 2, we see that wy features no o, for p > 2, so we may take
op — 1 for each p > 2 safely, giving the equation

’wQTQ = 0,

finishing for wy. Thus, we are left with the equation

i w;T; = 07
=3

from which we see we can induct downwards (this has fewer variables) to finish.

The above steps complete the proof, as advertised.
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