
Predicting Gas Temperature in Protoplanetary

Discs

Jason Zheng (jkzheng@umich.edu)
Mentored by Maria Han Veiga (mhanveig@umich.edu),

Arthur Bosman (arbos@umich.edu)

August 27, 2022

Abstract

Predicting gas temperatures in protoplanetary discs is an important
area of research in astrophysics. A model that is accurate, efficient, and
generalizable to new cases provides an understanding of how properties of
these discs are related to the eventual planet. Existing models to predict
gas temperature are inefficient. We use feed-forward neural networks to
efficiently achieve this goal.

Contents

1 Introduction 2
1.1 Existing Models . 2
1.2 Improvements From Existing Models 3

2 Preliminary 4
2.1 Supervised Learning . 4
2.2 Neural Networks . 4

2.2.1 Activation . 4
2.3 Loss . 5
2.4 Universal Approximation . 5

3 Data 6
3.1 Data Sets . 6
3.2 Data Normalization . 6

4 Training Processes 7
4.1 Regularization . 7
4.2 Crossvalidation and Reporting 7

5 Results 8
5.1 Presented Metrics . 8
5.2 Performance and R2 Score . 8
5.3 Crossvalidation Folds . 9
5.4 Model Visualization . 9

6 Conclusion and Future Explorations 10
6.1 Conclusion . 10
6.2 Future Explorations . 10

1

mailto:jkzheng@umich.edu
mailto:mhanveig@umich.edu
mailto:arbos@umich.edu

1 Introduction

A protoplanetary disc is a large circumstellar rotating disc of gas and dust in
space surrounding a newly formed star [wik]. Protoplanetary discs are young
and gas-rich, and possess the physical properties necessary to form a planetary
system, as opposed to debris disks, which are older and less gaseous, and typ-
ically do not form planetary systems [Bos]. Protoplanetary discs are integral
to the modern theory of stellar and planetary formation; thus, understanding
how they form and change is crucial. An understanding of the physical and
chemical properties of these discs allows us to predict the properties of the
eventual formed planets[BvDDH12]. One of the very important properties of
these discs is gas temperature and its distribution across the disc. Predic-
tion of gas temperature based on other variables is an important part of our
understanding.

Currently, computational models exist to model the relationship between
gas temperature, dust temperature, and chemical properties of discs such as the
behavior of agents like [C], [C+], [CO], and [O][BvDDH12] [Bru13]. They inves-
tigate the dependence of planetary properties on carbon prevalence, gas/dust
ratio, and other properties. These models seek to understand the “chemistry
and excitation of simple species (C,C+, CO, and O) in the disk around a pre-
main-sequence Herbig Ae/Be star.”[BvDDH12] Unfortunately, current models
do not model the crucial gas temperature effectively, as gas temperature is
sensitive to the assumptions made about chemical behaviors, as well as certain
design implementations. [Bru13]

1.1 Existing Models

An existing model used to study protoplanetary discs comes from Simon Brud-
erer et al. in 2013 [BvDDH12][Bru13], which uses a series of successive calcu-
lations to compute many variables. The model divides a disc into geometric
cells, and calculates each cell individually. The resulting representation pro-
vides information about geometric trends across a disc.

The model inputs a gas density distribution, and calculates dust temper-
ature. Then, using an initial guess of gas temperature, it computes UV radi-
ation, several chemical properties of agents acting as coolants, and finally an
updated guess of gas temperature from the balance between heating and cool-
ing rates. However, due to the codependency between UV radiation and gas
temperature, the gas temperature processes must be recalculated many times
until convergence.

Formally, the mean UV intensity across a cell is calculated as

Jλ =
1

4πV

∑
i

Iλ,i4si
1− e−4τλ,i
4τλ,i

, (1)

where V represents the volume of the cell, λ represents the input flux, and
4si ,4τλ,i represent the distance and optical depth for a photon package i,
respectively[BvDDH12].

The prevalences of certain molecular species are obtained from the solutions
of the equation

dn(i, t)

dt
=

∑
i

kijn(j, t) +
∑
jl

kijln(j, t)n(l, t) (2)

for a species i, time t, where kij , kijl represent the rates of destruction and
formation of a species, respectively. This equation is solved for

dn(i, t)

dt
= 0. (3)

2

Figure 1: Dust and Lines (DaLi) gas temperature calculation[BvDDH12]. The
calculations of UV Field through Gas Temperature must be performed many
times.

Finally, from the previous results, the gas temperature is obtained from
balancing the heating and cooling rates:[BvDDH12]

dε

dt
=

∑
i

Γi −
∑
i

Λi = 0 (4)

where ε represents the internal gas energy, and Γi,Λi represent the heating and
cooling rates of the cell, respectively. The entire process is visualized in Figure
1.

Due to the strict conditions for convergence, the calculation of gas tempera-
ture represents a significant bottleneck in the efficiency of the entire model. At
times, a single protoplanetary disc can take up to a full day to model[HV22].

Furthermore, the current model is often inaccurate in predicting gas tem-
perature. The final predicted temperature is very sensitive to assumptions
made about chemical properties, as well as the implementation of gas models.
As a result, the “calculated temperature is prone to large uncertainty” and
contains a “scatter of a factor of a few”[Bru13] across observations.

1.2 Improvements From Existing Models

Instead, we have applied machine learning techniques to learn a direct model
to approximate these gas temperatures given the existing dataset of known
temperatures. Our model, which we present in later sections, approximates
gas temperature significantly faster with reasonable accuracy.

The rest of this report is organized as follows: In section 2, we establish the
theory of supervised learning and neural networks that underlies our project.
In section 3, we describe the data used and its treatments. In section 4, we
analyze processes used in our training and their implementations. In section

3

5, we present the results of our training. In section 6, we conclude and present
possible future works.

2 Preliminary

2.1 Supervised Learning

To learn our model, we employed supervised learning, a subcategory of machine
learning in which we learn a function that maps an input to an output based on
example input-output pairs[RN09]. In supervised learning, we adopt a function
mapping points to labels based on a set of given labeled points. Formally, given
a set {(x(i), y(i))}ni=1, where each x(i) ∈ Rd represents a point and each y(i) ∈ R
represents a label, we seek to learn a model fθ : Rd → R that accurately
simulates the relationship between points and labels. For a particular point

x(i), each x
(i)
k is called a feature.

In our model, the number of features in each point d = 190. We used a
neural network to learn the model.

2.2 Neural Networks

A neural network is a model that approximates a continuous function by ap-
plying successive composed linear transformations and nonlinear “activation”
functions to an input. Formally, for some L ≥ 2, n0, . . . , nL ≥ 1, σi : R → R
for each 1 ≤ i ≤ L, we define the network function fθ : Rn0 → RnL as

fθ(x) = σL(W (L)σL−1(. . . (W (2)σ1(W (1)x+ b(1)) + b(2)) · · ·+ b(L)), (5)

where for 1 ≤ i ≤ L − 1 each σi : R → R is often nonlinear[Vei22]. The
activation function of the last layer, σL, is sometimes linear. This network
function is highly adaptable, and can fit the needs of our problem by selecting
the hyperparameters

• σ1, . . . , σL, the activation functions

• n0, . . . , nL, the sizes of each layer

• L, the total number of layers in the network.

In a training process, a training algorithm iteratively learns the parameters

• W (l) ∈ Rnl·(nl−1), the linear weights

• b(l) ∈ Rnl , the layer biases,

for each 1 ≤ l ≤ L, in an attempt to approximate a true function f : Rn0 →
RnL .

2.2.1 Activation

Because activation functions give neural networks their nonlinearity and sub-
sequent flexibility, it is important that they are chosen carefully. There are a
few desirable features when selecting these functions. Activation functions are
more effective when they are:

• Differentiable: The training algorithm will need to compute the derivative
in the gradient descent step

• Monotonically increasing[Jai19].

4

Figure 2: Nonlinear ReLU (Rectified Linear Unit) activation function.

In our model, we used the ReLU (Rectified Linear Unit)[Bro20] activation
function (Figure 2), defined as

f(x) = max(0, x), (6)

in all layers 1 ≤ i ≤ L − 1 because it is very quickly differentiable. This
property of the activation function is crucial- derivatives need to be calculated
many times throughout training, so they must be computationally inexpensive
to compute[Jai19].

2.3 Loss

Loss functions are used to evaluate a network after the training cycle has com-
pleted. A loss function inputs a set of given labels, provided by the dataset,
and a set of predicted labels, computed by the network, and outputs a real
number representing the model’s performance[Sei22]. A lower loss indicates a
more effective model. Like activation functions, the particular loss function
used is an engineering decision. We used MSE (Mean Squared Error), defined
as

MSE =
1

n

n∑
i=1

(y
′

i − yi)2, (7)

where n represents the number of points, and for each 1 ≤ i ≤ n, yi represents
the true label of point i, and y

′

i represents its computed label[Sei22]. We
use MSE (Figure 3) because it disproportionately penalizes large errors while
forgiving small ones.

2.4 Universal Approximation

We now present an important theoretical property of neural networks. The
Universal Approximation Theorem (UAT), proved in 1989, is an extremely im-
portant result in machine learning that establishes neural networks as universal
models of approximation. [Cyb89]

Theorem 2.1 Any continuous function f : Rn → Rm can be approximated
within ε by a feed-forward neural network for any ε > 0 iff its activation func-
tion σ is non-polynomial.

The UAT is impactful because it guarantees that a solution exists for any ap-
plied problem fitting its bounds. However, the theorem comes with important

5

Figure 3: Mean Squared Error (MSE) loss. MSE = 1
n

∑n
i=1(y

′

i − yi)2.

caveats: First, for an arbitrary function, it provides no guarantee for the effi-
ciency of a corresponding network. In practice, for a complicated f and small
ε, the resulting network may be too large and computation-intensive to be use-
ful. Furthermore, the theorem is nonconstructive. Although it guarantees the
existence of a sufficient network for an arbitrary f, ε, it does not provide the
hyperparameters necessary to achieve this approximation. In practice, we are
almost always left to find them ourselves.

3 Data

3.1 Data Sets

To learn our model, we used a dataset of approximately 1, 080, 000 vectors in
R191, provided by Arthur Bosman at the University of Michigan Department of
Astronomy[Bos22], to perform supervised learning. The dataset was generated
using existing models of predicting gas temperature[BvDDH12]. Each vector
describes the properties of a cell of gas, or a small geometric subdivision, of
a protoplanetary disc, as well as includes its gas temperature. We used the
Pandas library to randomly split the set into three smaller sets as follows:

• A training dataset, consisting of approximately 74% of the total set

• A validation dataset, consisting of approximately 19% of the total set

• A testing dataset, consisting of the remaining approximately 7% of the
total set.

We used the training set to learn the model, the validation set to evaluate
the model between epochs, and the testing set to provide a final unbiased
evaluation after the training cycle to compare different models. The testing set
was only used once the model would no longer be changed. Furthermore, each
dataset was separated into a set of features, x(i) ∈ R190, and a set of labels,
y(i) ∈ R.

3.2 Data Normalization

Before starting the training cycle, it is important to first normalize the data
sets to have 0 mean and 1 variance in order to provide easier interpretation of
values and maintain consistency across features[Ala20].

6

The training set was normalized as follows: For each of the 190 feature
dimensions and the label dimension, we added and multiplied by a constant
factor to achieve 0 mean and 1 variance. For each point x(i) ∈ R191, each

feature x
(i)
d was computed as

x
(i)
d := (x

(i)
d − µd)/σd, (8)

where µd and σd represent the mean and standard deviation of feature d across
training points, respectively.

The validation set was normalized analogously using the mean and standard
deviation of the training set, in order to preserve consistency. Thus, each

feature x
(i)
d was normalized as

x
(i)
d := (x

(i)
d − µdtrain)/σdtrain , (9)

where µdtrain and σdtrain represent the mean and standard deviation of feature
d in the training set, respectively.

The test set labels were not initially normalized, in order to preserve the
unbiased model. However, because our neural network was trained on normal-
ized data and computes a nonlinear function, it was necessary to normalize test

set features to have a consistent scale. Thus, each x
(i)
d was computed as

x
(i)
d := (x

(i)
d − µdtrain)/σdtrain , (10)

where µdtrain and σdtrain represent the mean and standard deviation of feature
d in the training set, respectively. However, when reporting results and final
metrics, these normalizations were inverted and labels were reported in the
original scale.

4 Training Processes

4.1 Regularization

We performed regularization to limit overfitting the model to training data.
Specifically, we implemented early stopping, a process in which the training
cycle terminates when it detects that the model’s performance on validation
data is decreasing[Bro19]. We used MSE score, defined in a previous section,
to evaluate the effectiveness of each model.

Because MSE score as a function of epoch is not monotone and can be
locally erratic, it would not be appropriate for our cycle to terminate at the
first decrease in performance. Instead, the early stopping algorithm evaluates
the model on validation data every 5 epochs and stops training when the score
has increased from its last computation[i2t19]. Furthermore, since validation
metrics tend to be volatile in the first epochs of the training cycle, we added
an arbitrarily chosen “grace period” of 8 epochs at the beginning of the cycle
in which early stopping was not considered. Formally, the final model was
selected through Algorithm 1.

4.2 Crossvalidation and Reporting

Because our training cycle includes significant randomness in the assignment of
points to different datasets, we performed crossvalidation to ensure the model
generalizes well to new data.

In each program run, the training cycle is run in 5 total folds, with the
validation and testing sets making up a distinct portion of the total set in each
fold. The final testing metrics are reported as the best of the 5 iterations,
with the corresponding model representing the final recorded parameters. This

7

Algorithm 1 EarlyStopping(numEpochs)

Require: numEpochs ≥ 1
1: epoch← 0
2: bestLoss← 0
3: bestModel← currentModel
4: while epoch < numEpochs do
5: learnModel() . Updates current model
6: if epoch == 8 then
7: bestLoss← currentV alidationLoss() . Calculates MSE Loss
8: bestModel← currentModel
9: else if epoch > 8 ∧ (epoch− 8)%5 == 0 then

10: if currentV alidationLoss() > bestLoss then
11: return currentNet
12: else
13: bestLoss = currentV alidationLoss()
14: bestModel = currentModel
15: end if
16: epoch← epoch+ 1
17: end if
18: end while
19: return bestNet

practice accounts for statistical differences across portions of the data set and is
likely to produce more consistent results. A visualization is provided in Table
1.

5 Results

All program runs were conducted with a 5000 batch size and 0.002 learning
rate to maintain consistency. The final learned model was relatively consistent
across runs.

5.1 Presented Metrics

In our training cycle, the algorithm decides when to terminate based on val-
idation MSE loss. However, we instead present the final metrics as an R2

regression score, a number between 0 and 1 representing the quality of the
regression model.

Formally, the R2 score of a model is defined as

R2 = 1−
∑n
i=1(yi − y′i)2∑n
i=1(yi − ȳ)2

, (11)

where n represents the number of points in the testing set and for each 1 ≤
i ≤ n, yi represents the actual gas temperature of point i, y′i represents its
temperature predicted by our model, and ȳ = 1

n

∑n
i=1 yi represents the mean

gas temperature across all testing points. We report R2 score instead of MSE
loss because R2 is not sensitive to constant scaling factors in data and is more
intuitive to understand model performance[Hal21].

5.2 Performance and R2 Score

Figure 4 shows the R2 score of our model over time on both training and
validation data.

8

Figure 4: Training and testing R2 coefficient as a function of epoch number.

Due to the nature of our early stopping algorithm, described in a previous
section, the training cycle computes the R2 score for more epochs than neces-
sary to produce an optimal model. The algorithm computes R2 score every 5
epochs after epoch 8 and terminates when it detects a performance decrease.
Thus, in pictured graph, the algorithm selected the model trained at epoch 13.

5.3 Crossvalidation Folds

The preceding graphs present the metrics of a single training cycle. In prac-
tice, 5 total crossvalidation folds were run, each with varying final metrics, in
order to find the best model. Table 1 shows the final testing R2 for each fold
of 6 program runs, illustrating how performances varied depending on which
training/validation set was selected.

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 0.805 0.870 0.843 0.908 0.845
2 0.744 0.902 0.872 0.868 0.819
3 0.801 0.833 0.905 0.839 0.827
4 0.803 0.825 0.865 0.861 0.815
5 0.781 0.801 0.871 0.901 0.845
6 0.810 0.866 0.780 0.834 0.837

Table 1: Final testing R2 for each fold of 6 program runs. Note the nontrivial
difference between folds of the same run.

5.4 Model Visualization

In addition to R2 score, we also present an intuitive visual representation of
each testing point’s predicted gas temperature by our model as a function of
its actual gas temperature. Figure 5 shows this relationship.

9

Figure 5: Actual vs. Predicted gas temperature for testing points. 10, 000
randomly selected points of 83, 906 total included for best visual representation.

6 Conclusion and Future Explorations

6.1 Conclusion

In conclusion, protoplanetary disks are subjects of active study in astrophysics,
and predicting gas temperature is crucial to understanding the relationship be-
tween disks and their eventual planetary systems. An existing model developed
by Simon Bruderer et al. in 2013 [Bru13] uses an iterative method of solving
several equations to predict gas temperature, but this method is inefficient and
often inaccurate. We have developed a new model using supervised learning
and neural networks to predict gas temperature quickly.

6.2 Future Explorations

We include a few areas of possible further explorations and improvements to
our model.

Firstly, as is obvious in Figure 5, our model appears to be ineffective at
predicting points with exactly 10, 000◦K true gas temperature. The network’s
predicted temperatures for this subset are not drastically better than a simple
random guess between 0◦K and 10, 000◦K. An additional observation is that
there are more points with 10, 000◦K true temperature than any other value,
suggesting a pattern in the underlying model used to generate this dataset.
A possible future exploration is to analyze the points with 10, 000◦K true
temperature to understand why our model predicts them poorly and how it
can be improved.

Furthermore, our model also seems to be not very effective at predicting
points near 0◦K. One possible solution to this problem is to modify the loss
function to add additional penalty for poorly predicting points with low true
temperature.

References

[Ala20] Mahbubul Alam. Data normalization in machine learning, Dec
2020.

10

[Bos] Arthur Bosman. Protoplanetary disks.

[Bos22] Arthur Bosman. Private correspondence, Jun 2022.

[Bro19] Jason Brownlee. A gentle introduction to early stopping to avoid
overtraining neural networks, Aug 2019.

[Bro20] Jason Brownlee. A gentle introduction to the rectified linear unit
(relu), Aug 2020.

[Bru13] Simon Bruderer. Survival of molecular gas in cavities of transition
disks-i. co. Astronomy & Astrophysics, 559:A46, 2013.

[BvDDH12] Simon Bruderer, Ewine F van Dishoeck, Steven D Doty, and Gre-
gory J Herczeg. The warm gas atmosphere of the hd 100546 disk
seen by herschel-evidence of a gas-rich, carbon-poor atmosphere?
Astronomy & Astrophysics, 541:A91, 2012.

[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303–
314, 1989.

[Hal21] Jeff Hale. Which evaluation metric should you use in machine
learning regression problems?, Sep 2021.

[HV22] Maria Han Veiga. Private correspondence, Jun 2022.

[i2t19] When do we apply early stopping and how it is helpful?, Oct 2019.

[Jai19] Vandit Jain. Everything you need to know about ”activation func-
tions” in deep learning models, Dec 2019.

[RN09] Stuart J. Russell and Peter Norvig. Artificial Intelligence. Pearson
Education, 2009.

[Sei22] George Seif. Understanding the 3 most common loss functions for
machine learning regression, Feb 2022.

[Vei22] Maria Han Veiga. Fully connected neural networks. Mathematical
Foundations of Machine Learning, pages 133–134, 2022.

[wik] Protoplanetary disk.

11

	Introduction
	Existing Models
	Improvements From Existing Models

	Preliminary
	Supervised Learning
	Neural Networks
	Activation

	Loss
	Universal Approximation

	Data
	Data Sets
	Data Normalization

	Training Processes
	Regularization
	Crossvalidation and Reporting

	Results
	Presented Metrics
	Performance and R2 Score
	Crossvalidation Folds
	Model Visualization

	Conclusion and Future Explorations
	Conclusion
	Future Explorations

