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Abstract. In recent years, the diffusion process plays a significant role in Ma-

chine Learning, and introduces broad applications in areas such as distribution
sampling and non-convex optimization. In this report, we focus on degenerate

overdamped Langevin dynamics on 3-dimensional matrix Lie groups such as

SE(2) and SO(3), which have some nice properties. Under some assumptions
on the degenerate overdamped Langevin dynamics, it has been shown that

for some feasible function V , the distribution corresponding to the dynamics

will converge to a stable distribution π ∝ exp (−V ). We simulate the degener-
ate overdamped Langevin dynamics on Lie groups and compare it with other

diffusion processes, which implies possible applications in Computer Vision,

Machine Learning, Sample Generation, etc.
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1. Introduction

1.1. Langevin Dynamics.
Langevin dynamics is an approach developed by physicist Paul Langevin, used to
model the dynamics of molecular systems. In recent years, Langevin dynamics has
been extensively applied in the fields of optimization theory[10][36], machine learn-
ing[12][30][34] and related fields [9]. Below gives the motivation to use Langevin
dynamics in non-convex optimization.

Given an unconstrained optimization problem

(1.1) minimize f(x).

where f : Rn → R is convex and twice differentiable. Assume (1.1) is solvable,
which means there exists an optimal point x∗ such that infx f(x) = f(x∗), and by
convexity x∗ must be unique [8]. In order to find the optimal point x∗, a basic
approach is the Gradient descent method (GD).

Algorithm 1 Gradient descent method

given x0 ∈ dom f
set small η > 0
while ∥∇f(xj)∥2 > η do

∆xj = −∇f(xj)
Choose step size s.
xj+1 = xj + s∆xj

end while
return x ≈ x∗

If in GD we set s = ∆t, where ∆t is a small constant, then the algorithm is a
discrete-time simulation for the ordinary differential equation dXt = −∇f(Xt)dt
with the initial condition X0 ∈ dom f and constraint t ≥ 0.

One key limitation of the GD is that it performs unsatisfactory in non-convex
optimization. Still consider the solvable unconstrained optimization problem (1.1),
but this time assume f is non-convex. In this case, the direction of −∇f is not

Figure 1. This figure illustrate
what local minimum, global
minimum and saddle point
look like in a non-convex op-
timization. [Source: Ayoosh,
2018 [23]]

Figure 2. This figure shows
how start point of GD influ-
ence its result. One ends up
in the global minima while the
other in a local minima.
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guaranteed to point to the global minimum but only a local minimum or even a
saddle point, and a local minimum is not necessarily a global minimum for non-
convex function. Therefore, the performance of the GD is totally determined by
the chosen initial point, and in complicated cases it might be almost impossible to
find an initial point such that the GD could reach the global minimum.

To deal with this limitation, a method called Stochastic Gradient Langevin
Dynamics (SGLD) was introduced [10][21], which is an adaption of Langevin
dynamics (a type of diffusion process, see Appendix B.2). Instead of taking de-
terministic descent steps, the SGLD adds a random noise on each descent step to
help jump out from a local minimum or saddle point.

Algorithm 2 Stochastic Gradient Langevin Dynamics (SGLD)

given x0 ∈ dom f
while stopping criteria not satisfied do

∆xj = −∇f(xj)
Choose step size s.
Choose noise size S
xj+1 = xj + s∆xj +

√
2Sη, η ∼ N (0, 1)

end while
return x ≈ x∗

If in SGLD we set s = ∆t, S = ∆t ·M , where ∆t is a small constant and M is
a constant, then the SGLD becomes a discrete-time simulation for the overdamped
Langevin dynamics

dXt = −∇f(Xt)dt+
√
2MdBt.

This report puts special interests in other extended forms of overdamped Langevin
dynamics, such as degenerate overdamped Langevin dynamics on Lie groups, and
would summarize possible applications.

1.2. Matrix Lie groups.
Matrix Lie groups are important in many engineering fields, including robotic con-
trol [11], computer vision [32][33][37] and medical image processing [13][14][20].
Some specific Lie groups can be used to represent engineering structures.

For example, SE(2) group is the group of rigid transformations in the 2D plane,
which is a geometric transformation of a Euclidean space that preserves the Eu-
clidean distance between every pair of points [A.2.2]. In [13][14], linear and non-
linear left-invariant diffusions on invertible orientation scores are discussed, which
are used to deal with left-invariant parabolic evolutions on SE(2) and contour
enhancement, an important topic in medical image processing. In [11], the use
of information theory on SE(2) is presented, which implies application in mobile
robotic control.

SO(3) group, or 3D rotation group, is the group of all rotations about the origin in
the three-dimensional Euclidean space R3 under the operation of composition (or
the matrix multiplication) [A.2.3].

For the parameterization of SO(3) group, one naive approach is to use Euler an-
gles [C.2], treating the rotations as the composition of several elementary rotations
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around the Cartesian axes, which is widely used in traditional engineering fields.
Nevertheless, such a representation could ignore the symmetry property of the
SO(3) group, which is not desired in SO(3) estimation. To estimate the Gaussian
distributions on SO(3), Fisher matrix [28] and Bringham distributions [22] were
introduced in deep learning as probabilistic rotation estimators for orthonormal
matrix and quaternion representations of SO(3), respectively. The main problem
for the two methods is that they are not closed under convolution, which makes
deep learning inefficient. To avoid this defect, [26] adopts the isotropic Gauss-
ian distribution on SO(3), denoted IGSO(3)(µ, ε

2), to improve Denoising Diffusion
Probabilistic Models on SO(3) for Rotational Alignment.

In this report we mainly focus on real matrix Lie groups, which feature some nice
properties. Each real matrix Lie group is a closed subgroup of GL(n,R), which
means it can be represented by a subset of all invertible n × n squared matrix
including the identity matrix, and closed under group inversion (matrix inverse)
and group multiplication (matrix multiplication).

One of the most important property of Lie groups is its connection with Lie algebras,
which also builds a connection between the matrix Lie group and the Euclidean vec-
tor space. Each Lie group induces a corresponding Lie algebra, which is the tangent
vector space of the Lie group. This makes matrix Lie group parameterizable using
coordinates in Euclidean vector space. For example, SO(3) can be parameterized
using a 3D vector in R3, and SE(2) can be parameterized by a 3D vector in S1×R2

[See appendix A].

1.3. Overdamped Langevin Dynamics on Lie groups.

The convergence analysis of Langevin dynamics is important in both theory and
application [27]. This section gives several forms of Langevin dynamics, and discuss
their convergence behaviors. For some forms of Langevin dynamics, one significant
method is the Gamma calculus (or Bakry- Émery iterative calculus), which provides
the Ricci curvature lower bound to study the convergence behavior [2].

1.3.1. Overdamped Langevin dynamics on Euclidean space.

An overdamped Langevin dynamics on Euclidean space is defined by:

(1.2) dXt = −∇V dt+
√
2dBt,

where Xt ∈ Rn, V ∈ C2(Rn,R) and Bt an n-dimensional Brownian motion, with
the corresponding Fokker-Planck Equation:

(1.3)

∂p(x, t)

∂t
=

n∑
i=1

∂

∂xi
[(∇V )i(x)p(x, t)] +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
p(x, t)

= ∇x(p(x, t)∇V (x)) +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
p(x, t).

where p(x, t) is a smooth probability density function of (1.2) with a smooth initial
condition:

p(0, t) = p0(t),

∫
p(x, t)dx = 1, p0(t) ≥ 0.
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Assume further that (1.2) has a unique invariant distribution π(x), solving the (1.3)
such that

(1.4) 0 = ∇x(π(x)∇V (x)) +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
π(x).

The solution of above PDE gives π ∝ exp (−V ), and the convergence rate is expo-
nentially fast under some Lyapunov conditions [4].

1.3.2. Overdamped langevin dynamics on Lie groups.

For amatrix Lie group G with degree of freedom n+m, the Itô overdamped Langevin
dynamics on G is defined as:

(1.5) dXt = b(Xt)dt+
√
2a(Xt)dBt,

where

b(Xt) = −a(Xt)a(Xt)
⊺∇V + (

n+m∑
j=1

∂

∂xj
(a(Xt)a(Xt)

⊺)ij)
n+m
i=1 .

Remark. See B.3 for the conversion between Itô SDE and Stratonovich SDE. For
convenience, all SDEs in this report are Itô SDE.

where Xt ∈ Rn+m, V ∈ C2(Rn+m,R), a ∈ R(n+m)×n which represents a collec-
tion of left invariant fields of G, and Bt a n-dimensional Brownian motion. The
corresponding Fokker-Planck Equation is

(1.6)
∂

∂t
p(x, t) = −∇x(p(x, t)b(x)) +

n+m∑
i=1

n+m∑
j=1

∂2

∂xi∂xj
((a(x)a(x)⊺)ijp(x, t)),

where p(x, t) is smooth with initial conditions similar as (1.3). Assume further the
existence of unique smooth invariant distribution π solving the PDE, which gives
π ∝ exp (−V ). One can rewrite (1.6) such that [16]

(1.7) ∂tp(x, t) = ∇ · (p(x, t)a(x)a(x)⊺∇ log
p(x, t)

π(x)
).

If m = 0, then we call (1.5) the non-degenerate overdamped Langevin dynamics
on Lie groups (For convenience, use non-degenerate Langevin in later sections). If
m > 0, then we call (1.5) the degenerate overdamped Langevin dynamics on Lie
groups (For convenience, use degenerate Langevin in later sections).

The convergence analysis of non-degenerate Langevin has been well studied us-
ing various approaches, including the Entropy method [1]. For the degenerate
Langevin, [16] [18] analyzed the convergence behavior via a modified entropy dissi-
pation method. Section Section 2 will show the basic ideas.

We are interested in Langevin dynamics on Lie groups as it might imply applications
in many fields, which will be presented in Section Section 4. In fact, (1.2) can
be seen as a Langevin dynamics with no additional control other than the drift
term, while (1.5) follow some Riemannian (non-degenerate) or sub-Riemannian
(degenerate) structural control, respectively. Section 3 will present the simulations
of some examples, and compare the difference of results among the various forms
of Langevin dynamics.
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2. Main Theory

2.1. Entropy Dissipation.

2.1.1. Toy model.

This section presents the entropy dissipation of an 1-dimensional Langevin dynam-
ics using Gamma Calculus method, which shows the exponentially fast convergence
rate of the distribution under some assumptions.

Definition 2.1.
Consider an 1-dimensional Itô diffusion process

dXt = b(Xt)dt+ σ(Xt)dBt.

For any functions h, g ∈ C∞(R), define the following operators [3]:

L(g) = b · ∂xg +
1

2
σ2∂xxg, (infinitesimal generator)

Γ1(h, g) =
1

2
[L(hg)− h · L(g)− g · L(h)], (Carré du champ operator)

Γ2(h, g) =
1

2
[L(Γ1(h, g))− Γ1(h, L(g))− Γ1(g, L(h))].

For the 1-dimensional overdamped Langevin dynamics dXt = −∇V dt+
√
2dBt, let

h = g, we have

L(g) = −∇V · ∇g +∇2g,

Γ1(g, g) = (∇g)2,
Γ2(g, g) = (hess g)2 + (hess V ) · (∇g)2︸ ︷︷ ︸

Ricci Curvature =Ric(∇g,∇g)

.

This coincides with the Bochner’s formula C.1. In fact, in the convergence analysis
for the higher dimensional cases, C.1 is used in the proof.

Definition 2.2.
Let ρ be a distribution and π be the invariant distribution, define the Kullback-
Leibler divergence (or KL-divergence) between ρ and π by

D(ρ) =

∫
ρ log

ρ

π
dx =: D(ρ|π),

and define the Fisher-information functional by

I(ρ) =
∫ 〈

∇ log
ρ

π
,∇ log

ρ

π

〉
ρ(x)dx.

Assumption 2.3 (Curvature dimension inequality (CDI) [3]).
Assume ∃ λ > 0 s.t. Γ2(f, f) ≥ λΓ1(f, f) for all smooth f .

Assume the CDI holds, then the Entropy Dissipation for 1-dimensional over-
damped Langevin dynamics

dXt = −∇V dt+
√
2dBt,

follows

(1) d
dtD(ρt) = −I(ρt);

(2) d
dtI(ρt) = −2

∫
Γ2(log

ρt

π , log
ρt

π )ρtdx;
6



(3) D(ρt) ≤ 1
2λI(ρt); (Logarithm-Sobolev Inequality)

and the details are presented in C.1. Then the exponential decay result holds:

D(ρt) ≤
1

2λ
e−2λtI(ρ0).

which illustrates the KL-divergence between ρt and π is bounded by a term expo-
nentially decayed w.r.t. time t.

Remark. This result can be extended to more general Langevin dynamics on higher
dimensional euclidean space with similar methods [17].

2.1.2. Entropy dissipation for degenerate overdamped Langevin dynamics.

For the degenerate Langevin (1.5), the classical Gamma calculus method is not
valid [2], and [16][18][19] extended the improved Gamma-z calculus method for the
Lyapunov exponential convergence analysis, which was first proposed in [6]. More
assumptions are added for the exponential entropy dissipation in this degenerate
case. Below summarizes two key assumptions, and for other assumptions check
[16][18].

Assumption 2.4.
{a1, . . . , an} in (1.5) satisfies the weak Hörmander condition:

Span{a1(x), . . . , an(x), [ai1 , . . . , [aik−1
, aik ] . . . ] : 0 ≤ i1, . . . , ik ≤ n, k ≥ 2} = Rn+m

where [·, ·] is the Lie bracket operator (A.1).

Assumption 2.5 (generalized curvature dimension inequality (GCDI)).
Suppose R ≥ k(aa⊺ + zz⊺) for k > 0. Denote the smooth initial distribution by
ρ0, where R is the Ricci matrix defined in [16], and z ∈ R(n+m)×m is designed to
satisfy other assumptions.

Remark. An intuitive understanding of Assumption 2.4 is that with limited di-
rections on a sub-Riemannian manifold, one can generate other directions on the
manifold via Lie bracket operations. In other words, the vector fields {b, a1, . . . , an}
can generate full rank Lie algebras for any x ∈ Rn+m. For GCDI, the matrix z can
be viewed as a complement of the matrix a in (1.5), such that the combination of a
and z form a basis for the whole manifold, and the inequality is again a guarantee
for the generalized Logarithm-Sobolev inequality.

2.2. Examples.

2.2.1. Degenerate Langevin on Heisenberg Group.
The Heisenberg Group is the group of matrices of the form1 x z

0 1 y
0 0 1

 ∈ R3×3, x, y, z ∈ R

with the following generators (the basis of its Lie algebra):

A1 =

0 1 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 0 1
0 0 0

 , A3 =

0 0 1
0 0 0
0 0 0

 ,

and it admits left invariant vector fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z
, z =

∂

∂z
.
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that form an orthonormal frame of left invariant vector fields for the left invariant
metric on H3 [5]. Note

[X,Y ] = Z, [X,Z] = [Y, Z] = 0.

Take a(Xt) =

 1 0
0 1

− 1
2y

1
2x

 into (1.5), where a is the matrix form of A1 and A2,

and thus Assumption 2.4 is satisfied, we get

(2.6) dXt = −a(Xt)a(Xt)
⊺∇V dt+

√
2a(Xt)dBt, a(Xt) =

 1 0
0 1

− 1
2y

1
2x


since

n+m∑
j=1

∂

∂xj
(a(Xt)a(Xt)

⊺)ij = 0, i = 1, . . . , n+m

Explicitly expand all the terms, we get

dX
(1)
t = (−∇xV +

1

2
y∇zV )dt+

√
2dB

(1)
t ,

dX
(2)
t = (−∇yV − 1

2
x∇zV )dt+

√
2dB

(2)
t ,

dX
(3)
t = [

1

2
y∇xV − 1

2
x∇yV − 1

4
(x2 + y2)∇zV ]dt−

√
2

2
ydB

(1)
t +

√
2

2
xdB

(2)
t .

Remark. In [16], a proof of the conditions for the exponential convergence rate of
distributions for degenerate Langevin on Heisenberg group is provided.

2.2.2. Degenerate Langevin on SE(2) Group.

For the left-invariant vector fields of SE(2), [14] gives

A1 =
∂

∂θ
, A2 = cos θ

∂

∂x
+ sin θ

∂

∂y
, A3 = − sin θ

∂

∂x
+ cos θ

∂

∂y
,

w.r.t the coordinates (θ, x, y), with the lie bracket relationship:

[A1, A2] = A3, [A1, A3] = −A2, [A2, A3] = 0.

Take a(Xt) =

1 0
0 cos θ
0 sin θ

 into (1.5), where a is the matrix form of A1 and A2, and

thus Assumption 2.4 is satisfied, we get

(2.7) dXt = −a(Xt)a(Xt)
⊺∇V dt+

√
2a(Xt)dBt, a(Xt) =

1 0
0 cos θ
0 sin θ

 ,

since
n+m∑
j=1

∂

∂xj
(a(Xt)a(Xt)

⊺)ij = 0, i = 1, . . . , n+m,
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which implies

dX
(1)
t = −∇θV dt+

√
2dB

(1)
t ,

dX
(2)
t = −(cos2 θ∇xV + sin θ cos θ∇yV )dt+

√
2 cos θdB

(2)
t ,

dX
(3)
t = −(sin θ cos θ∇xV + sin2 θ∇yV )dt+

√
2 sin θdB

(2)
t .

In fact, we can also choose A1 and A3 for the matrix a, as Assumption 2.4 would
also be satisfied. Furthermore, if we take all of A1, A2, A3 and consider the non-
degenerate Langevin case, the corresponding Itô form is

(2.8) dXt = −∇V dt+
√
2a(Xt)dBt, a(Xt) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

where a is the matrix form of A1, A2 and A3, Bt is the 3-dimensional Brownian
motion.

Remark. The exponential convergence rate of distribution for (2.7) and (2.8) haven’t
been checked yet, but for computational convenience in later simulations section we
will mainly focus on the SE(2) case. The analysis for SE(2) will be provided in the
future, which is expected to follow similarly to Heisenberg group and Displacement
group case in [16].

3. Simulations

This section shows the results for the simulations of Langevin dynamics on Lie
groups and Euclidean space, and compare their final distributions along with gen-
erated paths. All simulations are done by using Euler-Maruyama Method [24],
which is a commonly used numerical method in simulating Itô SDE.

3.1. Generating Gaussian distribution.

Consider the following Multivariate Gaussian distributions:

N1 ∼ N (µ1; Σ1), µ1 = [−20, 20,−10], Σ1 =

1.0 0 0
0 1.0 0
0 0 1.0

 ;

N2 ∼ N (µ2; Σ2), µ2 = [−20, 20,−10], Σ2 =

1.0 0.5 0
0.5 1.0 0
0 0 1.0

 ;

N3 ∼ N (µ3; Σ3), µ3 = [80, 60,−30], Σ3 =

9.0 0 0
0 9.0 7.0
0 7.0 6.0

 .

In the simulation, we try to generate the desired Gaussian distribution from a
random initial distribution. In other word, in (1.2) (2.7) and (2.8), we set

(3.1) exp (−V ) =
exp (− 1

2 (x− µi)
⊺Σ−1

i (x− µi))

(2π)3/2 |Σi|1/2
, ∇V = Σ−1

i (x−µi), i = 1, 2, 3,

and generate numerical simulations.

Figure 3 shows the final distributions of the simulations. (a)-(c) are the samples
of Gaussian distribution N1, N2, N3 generated by python numpy package with 750
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(a) Target, N1 (b) Target, N2 (c) Target, N3

(d) (1.2), N1 (e) (1.2), N2 (f) (1.2), N3

(g) (2.7), N1 (h) (2.7), N2 (i) (2.7), N3

Figure 3. The generated samples, sample size N = 750, see Sample Mean and
Covariance Matrix table for details.

points, respectively, which are the desired distributions. (d)-(f) are the final distri-
butions generated by (1.2), and (g)-(i) are the final distributions generated by (2.7).
All initial points are set to be [0, 0, 0], and the parameters (time, step numbers) of
simulations are set sufficiently large so that the distributions converge.

Compare figures on each column of Figure 3, it can be easily seen that they all
follow the same Gaussian distribution, with small noises generated by sampling,
which shows the overdamped Langevin dynamics produce the desired results in
Sample Generation.

In addition to the final distributions, we are also interested in how the distribu-
tions converge to the invariant distribution, or the paths generated by overdamped
Langevin dynamics. Figure 4 shows the paths generated by (1.2, green), (2.7, blue)
and (2.8, red), where (a) (b) (c) corresponds to the generation of different Gaussian
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distributions N1, N2, N3, and the starting point for each path is set to be [0, 0, 0].
It can be seen even though the final distributions are the same, the paths generated
are different.

Remark. Note here the green paths and red paths look similar. This is because in
the special case of SE(2), the drift term −a(Xt)a(Xt)

⊺∇V dt in (2.8) coincides with
(1.2) since a(Xt)a(Xt)

⊺ = I.

(a) Paths, N1 (b) Paths, N2 (c) Paths, N3

Figure 4. Generated Paths, N = 10

(a) x-axis (b) y-axis (c) z-axis

Figure 5. Convergence of axis w.r.t. time, N2, N = 10

Figure 5 shows the generation of paths in Figure 4 (b) with respect to time. Sim-
ilarly, blue lines represent the simulation of (2.7), green lines represent (1.2), and
red lines represent (2.8). It can be seen that for (1.2) and (2.8), the simulated
paths converge exponentially fast to the invariant distribution, while the paths of
(2.7) converge slower. One simple reason is that V (3.1) is strictly convex in R3,
and Curvature Dimension Inequality 2.3 holds, which guarantees the exponential
convergence behavior for (1.2) and (2.8). However, the Generalized Curvature Di-
mension Inequality 2.5 is not trivially hold for this V in (2.7). Further investigations
need to be conducted.
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3.2. Generating Partially Wrapped Gaussian.

In [25], Partially Wrapped Normal Distributions are introduced for SE(2) estima-
tion, where the p.d.f is simplified to

f(x, µ,Σ) =

∞∑
k=−∞

N (x+

2πk0
0

 ;µ,Σ)

=

∞∑
k=−∞

exp(− 1
2 (x− µ)⊺Σ−1(x− µ))

(2π3/2 |Σ|1/2)
,

where x = x +

2πk0
0

 , k ∈ Z, with x ∈ [0, 2π) × R2, µ ∈ [0, 2π) × R2, and

symmetric positive definite Σ ∈ R3×3. Note that PWND can be generated by
N (x;µ,Σ) in R3 for SE(2), since in the (θ, x, y) coordinates θ + 2πk for k ∈ Z
have no difference [appendix A.2.2]. However, the function V = − log f in the
overdamped Langevin dynamics is not necessarily strictly convex (we will check in
the future for the convexity) when we adapt the PWND, and we are interested in
the results of simulations in this case.

(a) (b) (c)

(d) (e) (f)

Figure 6. Partially Wrapped Gaussian distribution, N = 500

Figure 6 shows the results of simulations, and we generate the samples as in [25]
using numpy package, which is represented by blue quivers, while the green quivers
represent the samples generated by the simulations of (2.7). We use µ = [1, 10, 5]⊺in
all cases. In the first row, we apply translation first and rotation later, in the second
row we do it vice versa. Each arrow indicates the transformation applied to the
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vector [1, 0]⊺, and we set the parameters of PWND for each column as follows:

Column 1: c11 = 0.3, c22 = 1.0, c33 = 1.0, ρ12 = 0.1, ρ13 = 0.1, ρ23 = 0.1

Column 2: c11 = 3.0, c22 = 1.0, c33 = 1.0, ρ12 = 0.1, ρ13 = 0.1, ρ23 = 0.1

Column 3: c11 = 3.0, c22 = 1.0, c33 = 1.0, ρ12 = 0.9, ρ13 = 0.9, ρ23 = 0.9

Figure 6 indicates that (2.7) works well even for this more complicated case.

3.3. Discussions.

The above simulations show examples that when V = − log (π), where π is a
probability density function, with some initial sets of points, the distributions in
(1.2) (2.7) and (2.8) all converge to the invariant distribution π. In addition, as
shown in the previous two subsections, the convergence rate of (1.2) and (2.8) are
both exponential w.r.t. time t.

There are still some limitations of the above simulations. First, we only simulated
overdampled Langevin dynamics on SE(2) and R3. In fact, we tried the simulations
on other Lie groups, but failed in many cases. For Heisenberg group, when the
mean of the target distribution and initial points are both close to [0, 0, 0], then
everything performs as desired, while in other cases either the distributions do
not converge as expected (or converge too slowly) or numerical errors occur (see
Figure 7). One possible explanation is that (2.6) includes 2-degree polynomial
terms which makes the simulation numerically unstable, as the Heisenberg group is
unbounded. For SO(3) and more complicated Lie groups, the left invariant fields
are also unsatisfactory for numerical simulation.

In addition, we only considered Gaussian and modified Gaussian distributions,
which only guarantee exponential convergence rate for overdamped Langevin dy-
namics on R3, and we didn’t find good distributions such that the Generalized
Curvature Dimension Inequality 2.5 holds for the SE(2) case.

(a) (b)

Figure 7. Simulations of (2.6). See Sample Mean and Covariance for Heisenberg
Case for details.

4. Future Works

The convergence behavior of overdamped Langevin dynamics illustrates that one
can generate samples for almost all continuous probability distributions from any
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initial sample. Furthermore, the overdamped Langevin dynamics on Lie groups con-
siders manifold structure, and can also generate the desired sample as overdamped
Langevin dynamics. The main differences between them are the convergence rate
and generating path (or geometric control). Future works could be conducted
mainly from the following two perspectives.

From a forward perspective, we want to find a set of satisfactory functions V for
(2.7) such that it both satisfy Generalized Curvature Dimension Inequality 2.5 and
is useful in application. To achieve this, we may either find an equivalent statement
of GCDI or shrink it to a sufficient condition with more straightforward expression.
For example, understanding the convexity in Lie group structure may be helpful
as convexity of V is a necessary condition of CDI 2.3 for the overdamped Langevin
dynamics in Euclidean space.

In addition, as presented in the Introduction section, overdamped Langevin dynam-
ics plays an important role in non-convex optimization. It could be interesting to
incorporate the overdamped Langevin dynamics on Lie groups into SGLD and see
how is performs compared to the original method, and this might be introduced to
more complicated methods such as Replica Exchange Langevin Diffusion [12].

From a backward perspective, one may use neural networks to learn and approx-
imate the overdamped Langevin dynamics, which is known as diffusion model. In
this model, an explicit formula of V is not expected. Instead, given a family of data
sets, assuming they are sampled from the same distribution x0 ∼ q(x), one could
add small Gaussian noises in T steps so that xT ∼ N (0; I), with the conditional
probability q(xt|xt−1) on each step determined by a prefix noise size, which con-
structs the forward diffusion process. If the forward process can be reversed, then
one can generate new samples following the original distribution from an initial
Gaussian distribution.

However, it is technically impossible to directly compute the explicit form of the
reverse process (or in each step compute the p(xt−1|xt)). Therefore, neural networks
are used to learn the conditional probability pθ(xt−1|xt) ≈ p(xt−1|xt), which is an
approximation of the reverse diffusion process [35].

Currently diffusion model mainly focuses on the approximation of reversible Langevin
dynamics on Euclidean space, and no work has been done for Lanegvin dynamics on
Lie groups. It is very promising that introducing overdamped Langevin dynamics
on Lie groups in diffusion model might improve the effectiveness of the model on
data in medical images and computer vision (pose estimation, object tracking, etc),
where a lot of Lie group structures are used. With some additional geometric con-
trol, one could restrict the neural networks to follow Lie group structure. Further
investigations need to be conducted.
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Appendix A. Matrix Lie Groups

A.1. Lie group and Lie algebra.

The exponential of a matrix X ∈M(n,F) is defined by Taylor series:

exp(X) = I +

∞∑
k=1

Xk

k!
,

where M(n,F) denotes the set of all n× n matrices. Similarly, the Logarithm of a
matrix g ∈M(n,F) is defined:

log(g) =

∞∑
k=1

(−1)k+1

k
(g − I)k, for ∥g − I∥ < 1.

Definition A.1 (Lie bracket).
A Lie bracket or commutator on a Lie algebra is a binary operation:

g× g → g, (X,Y ) → [X,Y ] = XY − Y X,

with properties:

[X,Y ] = −[Y,X],

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]. (Jordan Identity)

Definition A.2 (Lie algebra).
A Lie algebra is a vector space g over F equipped with the Lie bracket operator
satisfying the following axioms (∀ x, y, z ∈ g, a, b ∈ F):

• Bilinearity: [ax+ by, z] = a[x, z] + b[y, z], [z, ax+ by] = a[z, x] + b[z, y].
• Alternativity: [x, x] = 0.
• Jacobi identity: [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0.

Definition A.3 (Matrix Lie Group and Lie algebra).
A Lie group G is a smooth manifold whose elements satisfy the group axioms. A
Matrix (Linear) Lie group is a closed subgroup (submanifold) of G ⊆ GL(n,F),
and the Lie algebra of G is defined as:

g = Lie(G) = {X ∈M(n,R)| ∀ t ∈ R, exp(tX) ∈ G}.
which is also the tangent vector space of G at I (the identity matrix), denoted
by Te(G). In addition, the dimension of G = dim g [15].

Definition A.4 (generators).
Note that dimG = dim g is finite, we can find a basis {G1, . . . , Gk} of the Lie

algebra g, which is called the generators. ∀ g ∈ g, we can write g =
∑k

i=1 ciGi,
and define the map:

alg : Rk → g ⊂ Rn×n, c →
k∑

i=1

ciGi.

Some papers also use ∧ instead of alg such that c∧ = alg(c), and use ∨ to represent
the inverse map such that (c∧)∨ = c.
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Figure 8. Mappings between the Lie group G = M and its Lie algebra (set ε to be
the identity matrix). Note that g = m is a vector space (assume dim g = n), then

we may define isomorphisms alg(·) = (·)∨ : Rn → g and alg−1(·) = (·)∧ : g → Rn.
See A.2 for examples. [Source: [31]]

A.2. Examples.

A.2.1. SO(2) group.

SO(2) is the group of rotations in 2D space., with generators

G =

(
0 −1
1 0

)
,

and any element of its Lie algebra so(2) can be represented by

θ ∈ R, θ× = θG ∈ so(2).

and its exponential map

exp(θ×) =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2).

The action of an element of SO(2) on a 2D object is to rotate it with θ degrees
w.r.t. the origin counter-clockwisely.

A.2.2. SE(2) group.

SE(2) is the group of rigid transformations in the 2D plane, which is represented
by linear transformations on homogeneous 3-vectors:

R ∈ SO(2), t ∈ R2,

C =

(
R t
0 1

)
∈ SE(2) ⊂ R3×3.

The matrix representation is:

x = (x y ω)⊺ ∈ R3,

C · x =

(
R t
0 1

)
· x

=

(
R(x, y)⊺ + ωt

ω

)
.

The action of an element of SE(2) on a 2D object is equivalent to rotate it by
θ degrees counter-clockwisely w.r.t. the origin and then do translation. In the
above equations (x, y) denotes the current position of the object, and t denotes the
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direction of translation, R is a SO(2) rotation matrix, and ω is the translation step
size. The Lie algebra se(2) has 3 degrees of freedom, with generators:

G1 =

0 0
0 0

1
0

0 0 0

 , G2 =

0 0
0 0

0
1

0 0 0

 , G3 =

0 −1
1 0

0
0

0 0 0

 .

Every element in se(2) can be represented by:

(u1 u2 θ)
⊺ ∈ R3,

u1G1 + u2G2 + θG3 ∈ se(2).

As before, we can also derive a closed form for the exponential map:

v = (x y θ)⊺ = (u θ)⊺ ∈ R3

alg(v) =

0 −θ
θ 0

x
y

0 0 0

 ,

exp(alg(v)) = exp

(
θ× u
0 0

)
=

(
exp(θ×) V u

0 1

)
=

(
R V u
0 1

)
,

R = exp(θ×) =

(
cos θ − sin θ
sin θ cos θ

)
V = (

∞∑
i=0

(−1)iθ2i

(2i+ 1)!
) ·

(
1 0
0 1

)
+ (

∞∑
i=0

(−1)iθ2i+1

(2i+ 2)!
) ·

(
0 −1
1 0

)
=

(
sin θ
θ − 1−cos θ

θ
1−cos θ

θ
sin θ
θ

)
.

Consider the log(·) function in the other direction:

A =
sin θ

θ
,

B =
1− cos θ

θ
,

V −1 =
1

A2 +B2

(
A B
−B A

)
,

log

(
R t
0 1

)
= alg

(
V −1 · t
θ

)
∈ se(2).

A.2.3. SO(3) group.
SO(3) is the group of rotations in 3D space, represented by 3×3 orthogonal matrices
with unit determinant. One can denote:

SO(3) := {X ∈ GL(3,R) : R⊺ = R−1, detR = 1}.
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The Lie algebra so(3) is the set of skew-symmetric 3× 3 matrices, with generators:

G1 =

0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G1 =

0 −1 0
1 0 0
0 0 0

 .

The mapping alg : R3 → so(3) sends 3− vectors to their skew matrix:

ω =

ab
c

 ∈ R3,

alg(ω) = ω× =

 0 −c b
c 0 −a
−b a 0

 = aG1 + bG2 + cG3 ∈ so(3).

We can use a interesting property of skew-symmetric matrices, for ω ∈ R3:

ω3
× = −(ω⊺ω) · ω×,

so that

ω2i+1
× = (−1)iθ2iω×,

ω2i+2
× = (−1)iθ2iω2

×.

The tangent vector ω camn be interpreted as an axis-angle representation of rota-
tion: its exponential is the rotation around the axis ω/ ∥ω∥ by ∥ω∥ radians (denote
θ =

√
ω⊺ω):

exp(alg(ω)) = exp(ω×)

= I +

∞∑
i=0

[
ω2i+1
×

(2i+ 1)!
+

ω2i+2
×

(2i+ 2)!
]

= I + (
sin θ

θ
)ω× + (

1− cos θ

θ2
)ω2

×

=

1− (b2 + c2)( 1−cos θ
θ2 ) −c sin θ

θ + ab( 1−cos θ
θ2 ) b sin θ

θ + ac( 1−cos θ
θ2 )

c sin θ
θ + ab( 1−cos θ

θ2 ) 1− (a2 + c2)( 1−cos θ
θ2 ) −a sin θ

θ + bc( 1−cos θ
θ2 )

−b sin θ
θ + ac( 1−cos θ

θ2 ) a sin θ
θ + bc( 1−cos θ

θ2 ) 1− (a2 + b2)( 1−cos θ
θ2 )

 .
Finally we note that ∀ R ∈ SO(3), one can express

R = I − aG1 + bG2 − cG3.

Thus the exponential map can be inverted to give a backward logarithm from SO(3)
to so(3) and also θ:

log(R) =
θ

2 sin θ
· (R−R⊺),

ω = Log(R) =
θ(R−R⊺)∨

2 sin θ
,

θ = cos−1 (
tr (R)− 1

2
).

In addition to the above Lie algebra parameterization, there are also some other
ways to parameterize SO(3) in engineering, such as Euler angles and Quaternions
[See C.2].
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Appendix B. Langevin Dynamics

B.1. Itô Process.

Theorem B.1 (The 1-dimensional Itô Formula).
Let Xt be an 1-dimensional Itô process given by

dXt = u(x, t)dt+ v(x, t)dBt.

Let g(t, x) ∈ C2([0,∞)×R) (i.e. g is twice continuously differentiable on [0,∞)×R).
Then

Yt = g(t,Xt)

is again an Itô process, and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt) · (dXt)

2,

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt.

Remark. For the definition of Itô process and proof of Itô formula, check the details
in [29] (Øksendal, 2014).

B.2. Diffusion process.

Definition B.2 (Itô diffusion).
A (time-homogeneous) Itô diffusion is a stochastic process

Xt(ω) = X(t, ω) : [s,∞)× Ω → Rn

satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s; Xs = x,

where Bt is m-dimensional Brownian motion and b : Rn → Rn, σ : Rn → Rn×m

satisfy the Lipschitz condition

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D |x− y| ; ∀ x, y ∈ Rn,

for some constant D > 0. The vector field b is called the drift coefficient of X; the
matrix field σ is called the diffusion coefficient of X. Note that b and σ do not
depend upon time; otherwise, X would be referred to only as an Itô process.

Lemma B.3 (Itô and Stratonovich conversion).
Given an N-dimensional Stratonovich SDE:

dXt = a(t,Xt)dt+

M∑
j=1

bj(t,Xt) ◦ dB(j)
t

and an Itô SDE with the same solution:

dXt = a(t,Xt)dt+

M∑
j=1

bj(t,Xt)dB
(j)
t

where Xt ∈ RN , a, a ∈ RN , bj ∈ RN , j = 1, . . . ,M , B
(j)
t be an 1-dimensional

Brownian motion for j = 1, . . . ,M . The conversion formula is [7]:

ai(t,Xt) = ai(t,Xt) +
1

2

N∑
k=1

M∑
j=1

bkj(t,Xt)
∂

∂xk
bij(t,Xt), i = 1, . . . , N.
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Figure 9. This figure shows an example of diffusion process. The black line is the
path of 1-dimensional ODE dXt = 1

Xt+1dt with X0 = 0, while the colorful lines

are the paths of 1-dimensional diffusion process dXt = 1
Xt+1dt +

√
Xt
2 dBt.

Appendix C. Supplement

Lemma C.1 (Bochner’s formula).
Consider Riemannian Manifold (M, g), g : TM → Rn,

(C.2) Γ2(f, f) = (hessf)2 + Ric(∇f,∇f)︸ ︷︷ ︸
Ricci Curvature

.

for smooth f : M → R [3].

C.1. Sketch of proof for 2.1.1.
The Fokker-Planck Equation is given by:

∂tp(x, t) = ∇ · (∇V (x) · p(x, t)) +∇2p(x, t)

= −∇ · (∇ log π(x) · p(x, t)) +∇(p(t, x)∇ log p(x, t))

= ∇(p(t, x)∇ log
p(x, t)

π(x)
).

For convenience, we use ∂t for
∂
∂t , ∇ for ∂

∂x .

(a)

d

dt
D(p(x, t)) =

d

dt

∫
p(x, t) log

p(x, t)

π(x)
dx

=

∫
(∂tp(x, t)) log

p(x, t)

π(x)
dx+

∫
∂tp(x, t)dx

=

∫
∂tp(x, t)(log p(x, t)− log π(x))dx+ ∂t

∫
p(x, t)dx

=

∫
∂tp(x, t) log

p(x, t)

π(x)
dx

=

∫
∇ · (p(x, t)∇ log

p(x, t)

π(x)
) log

p(x, t)

π(x)
dx

= −I(p(x, t)).
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(b)

d

dt
I(p(x, t)) =

∫
Γ1(log

p(x, t)

π(x)
, log

p(x, t)

π(x)
)∂tp(x, t)dx+ 2

∫
(∇ log

p(x, t)

π(x)
, ∂t∇ log

p(x, t)

π(x)
)p(x, t)dx

=

∫
Γ1(log

p(x, t)

π(x)
, log

p(x, t)

π(x)
)∂tp(x, t)dx+ 2

∫
(∇ log

p(x, t)

π(x)
,∇ log

∂tp(x, t)

π(x)
)p(x, t)dx

=

∫
Γ1(log

p(x, t)

π(x)
, log

p(x, t)

π(x)
)∂tp(x, t)dx+ 2

∫
(∇ log

p(x, t)

π(x)
,∇ log

∂tp(x, t)

π(x)
)p(x, t)dx

=

∫
Γ1(log

p(x, t)

π(x)
, log

p(x, t)

π(x)
)∂tp(x, t)dx− 2

∫
1

p(x, t)
∇ · (p(x, t)∇ log

p(x, t)

π(x)
)∂tp(x, t)dx

= −2

∫
Γ2(log

p(x, t)

π(x)
, log

p(x, t)

π(x)
)p(x, t)dx.

Remark. For the last equality, check [17] for details by taking γ = 0 to
change the non-reversible case to reversible case.

(c) With (b) and assumption 2.3, one has

d

dt
I(p(x, t)) = −2

∫
Γ2(log

p(x, t)

π(x)
, log

p(x, t)

π(x)
)p(x, t)dx

≤ −2λ

∫
Γ1(log

p(x, t)

π(x)
, log

p(x, t)

π(x)
)p(x, t)dx

= −2λI(p(x, t)|π(x))

= 2λ
d

dt
D(p(x, t)|π(x)).

Note that

−I(p(x, t)) =
∫ ∞

t

d

ds
I(p(x, s))ds

≤ −2λ

∫ ∞

t

I(p(x, s))ds

= −2λ

∫ ∞

t

− d

ds
D(p(x, s))ds

= −2λD(p(x, t)).

Then it follows that by solving

d

dt
I(p(x, t)) ≤ −2λI(p(x, t)),

one gets

I(p(x, t)) ≤ e−2λI(p(x, 0)).
The entropy dissipation follows

D(p(x, t)) ≤ 1

2λ
I(p(x, t))

≤ 1

2λ
e−2λI(p(x, 0)).

Following the inequality between KL-divergence and L1 distance, we have∫
∥p(x, t)− π(x)∥ dx ≤

√
2D(p(x, t)) ≤

√
1

λ
I(p(x, 0))e−λt.
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C.2. Euler angles and Quaternions of SO(3).

Euler angles is a method to parameterize the elements of SO(3). Using coordinates
(ψ, θ, ϕ), ∀ R ∈ SO(3), we could write

R = Rz(ϕ)Ry(θ)Rx(ψ)

=

cos θ cosϕ sinψ sin θ cosϕ− cosψ sinϕ cosψ sin θ cosϕ+ sinψ sinϕ
cos θ sinϕ sinψ sin θ sinϕ+ cosψ cosϕ cosψ sin θ sinϕ− sinψ cosϕ
− sin θ sinψ cos θ cosψ cos θ

 ,

where we have:
A rotation of ψ radians about the x-axis is defined as

Rx(ψ) =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 .

Similarly, the rotation of θ radians about the y-axis is defined as

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .

Lastly, the rotation of ϕ radians about the z-axis is defined

Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 .

Quaternion can encode the axis-angle representation of rotation matrix in four
numbers. In 3-D space, according to Euler’s rotation theorem, any sequence of
rotations about a fixed point is equivalent to a single rotation by a given angle θ
about a fixed axis (Euler axis).

In fact, the Quaternion representation shows that P : S3 → SO(3) is a double
covering and P ′ : S3/{±1} → SO(3) is a homeomorphism. For a rotation of angle
θ about the normalized rotation axis r⃗, the quaternion representation is given by
q = cos θ

2 + i sin θ
2xr + j sin θ

2yr + k sin θ
2zr, and we define its inverse by q−1 =

cos θ
2 − (xri+yrj+zrk) sin

θ
2 . For a general quaternion q = qr+qii+qjj+qkk, and

consider point p ∈ R3, we have the quaternion rotation p′ = qpq−1 = Rp, where

R =

1− 2(q2j + q2k) 2(qiqj − qkqr) 2(qiqk + qjqr)
2(qiqj + qkqr) 1− 2(q2i + q2k) 2(qjqk − qiqr)
2(qiqk − qjqr) 2(qjqk + qiqr) 1− 2(q2i + q2j )

 .
Note that all terms of R are of second-order w.r.t. q, and thus it is invariant up to
the sign.
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C.3.

Sample Mean and Covariance
Sample Mean Covariance Matrix

(a) [−19.98, 20.02, 9.99]

 1.023 −0.019 0.035
−0.019 1.061 0.042
0.035 0.042 0.969


(b) [−19.99, 20.06, 10.02]

0.972 0.490 0.004
0.490 1.026 −0.021
0.004 −0.021 0.960


(c) [79.96, 59.84,−30.08]

8.999 0.063 0.006
0.063 9.958 7.761
0.006 7.761 6.603


(d) [−20.02, 20.03, 10.07]

 1.120 0.007 −0.073
0.007 0.984 −0.008
−0.073 −0.008 0.983


(e) [−20.05, 20.03, 10.03]

 1.064 0.515 −0.056
0.515 1.007 −0.029
−0.056 −0.029 1.009


(f) [79.81, 59.16,−30.73]

 9.580 0.116 −0.041
0.116 8.864 6.936
−0.041 6.936 6.130


(g) [−19.97, 20.00, 10.01]

 1.039 −0.021 0.022
−0.021 1.034 −0.048
0.022 −0.048 0.978


(h) [−19.97, 19.99, 9.99]

 0.998 0.488 −0.020
0.488 1.007 −0.036
−0.020 −0.036 0.918


(i) [80.03, 58.51,−31.19]

 9.111 −0.038 −0.065
−0.038 8.739 6.810
−0.065 6.810 5.868
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C.4.

Sample Mean and Covariance for Heisenberg Case
Sample Mean Covariance Matrix

Target for (a) [0, 0, 0]

1.0 0.9 0
0.9 1.0 0
0 0 1.0


(a) [0.04, 0.02, 0.05]

 1.051 0.925 −0.012
0.925 1.008 −0.020
−0.012 −0.020 0.928


Target for (b) [2, 2, 2]

1.0 0. 0.
0. 1.0 0.
0. 0. 1.0


(b) [1.94, 1.95, 2.03]

 1.088 −0.038 −0.034
−0.038 0.980 −0.024
−0.034 −0.024 1.028
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