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Abstract

Using the transfer principle, we classify the periodic points on the regular n-gon and double
n-gon translation surfaces and deduce consequences for the finite blocking problem on rational
triangles that unfold to these surfaces.

1 Introduction

The group GL+(2,R) acts on the moduli space of translation surfaces. This action is generated by
complex scalar multiplication and Teichmüller geodesic flow. The stabilizer SL(X,ω) < SL(2,R)
of a point (X,ω) in the stratum is called the Veech group. The Veech group is also the image of
the affine diffeomorphism group Aff(X,ω) under the map D : Aff(X,ω)→ SL(2,R) which sends an
affine diffeomorphism to its constant derivative. If the Veech group is a lattice, (X,ω) is called a
Veech surface.

Definition 1.1. Let (X,ω) be a Veech surface. A periodic point is a point p ∈ (X,ω) that is not a
singularity of ω such that the orbit of p under the affine diffeomorphism group is finite.

Remark 1.2. A version of this definition which includes the singularities of ω first appeared
in [GHS03]. Our definition is the one used in [Api20]. Under the original definition, an equivalent
notion of a periodic point is a point marked by a holomorphic multisection of the universal curve
over a Teichmüller curve. See [Mö06, Lemma 1.2] for details.

Consider the following translation surfaces. For n even, the regular n-gon is the regular n-gon
with opposite sides identified, and for n odd, the double n-gon is two copies of a regular n-gon
differing by a rotation by π with parallel sides glued together. The regular 8-gon and the double
5-gon are depicted in Figure 2. The rotation by π on both the regular n-gon and double n-gon is
the hyperelliptic involution. The Weierstrass points are the fixed points of this involution. For
the regular n-gon, the Weierstrass points are the center, midpoints of the sides, and the vertices.
For the double n-gon, the Weierstrass points are just the midpoints of the sides and the vertices.
In [Vee89], Veech proved that both of these families of translation surfaces are Veech surfaces.

This main theorem of our paper classifies the periodic points of the regular n-gon and double
n-gon.

Theorem 1.3. Let n = 5 or n ≥ 7. The periodic points of the regular n-gon and double n-gon are
exactly the Weierstrass points which are not singularities of the flat metric.

Remark 1.4. This was already shown in the cases n = 5, 8, 10 by Möller in [Mö06, Theorems 5.1,
5.2].

1



The proof can be broken down into two main steps. First, we use the transfer principle to reduce
the problem to classifying periodic points on an explicit set of line segments on (X,ω). Then we
examine how these segments intersect different sets of cylinders and use flat surface techniques to
deduce which points on these lines are periodic.

The regular n-gon and double n-gon are special cases of a larger infinite family of Veech surfaces
called the Veech-Ward-Bouw-Möller surfaces [BM10]. An interesting next step would be to classify
periodic points on these surfaces. We believe our methods would be applicable to these surfaces
since they also have presentations as gluings of regular n-gons [Hoo13, Wri13].

Theorem 1.3 has immediate consequences for the finite blocking problem in translation surfaces
and billiards.

Definition 1.5. Two points P,Q on a billiard table (resp. translation surface) M are finitely blocked
if there is a finite set of points S ⊂M such that all billiard trajectories (resp. straight line segments
which do not contain singularities in their interior) from P to Q pass through a point in S.

The following corollaries will be proven at the end of the paper.

Corollary 1.6. When n = 5 or n ≥ 7, the pairs of finitely blocked points on the regular n-gon and
double n-gon are any point that is not a singularity and its image under the hyperelliptic involution.

Via the unfolding construction of Katok-Zemlyakov [ZK75], the billiard flow on the (π2 ,
π
n ,

(n−2)π
2n )

triangle unfolds to the regular n-gon or double n-gon when n is even or odd respectively. The

( 2πn ,
(n−2)π

2n , (n−2)π2n ) triangle unfolds to the regular n-gon, the double n-gon, or a double cover of one
of these surfaces. Therefore, an immediate consequence of the previous corollary is the following.

Corollary 1.7. When n is greater than or equal to 8 and even, the only pair of finitely blocked

points on the (π2 ,
π
n ,

(n−2)π
2n ) (resp. ( 2π

n ,
(n−2)π

2n , (n−2)π2n )) triangle is the vertex corresponding to the
angle π

n (resp. 2π
n ) and itself. When n is greater than or equal to 5 and odd, there are no finitely

blocked points on the (π2 ,
π
n ,

(n−2)π
2n ) (resp. ( 2π

n ,
(n−2)π

2n , (n−2)π2n )) triangles.

Acknowledgements

This work was done at the 2020 University of Michigan REU. We are grateful to Alex Wright as a
co-organizer of the REU and supervisor of the project and for helpful conversations. This material
is based upon work supported by the National Science Foundation Graduate Research Fellowship
Program under Grant No. DGE 1841052 and the National Science Foundation Grant No. DMS
1856155.

2 Proof

To classify the periodic points, it is useful to know the Veech group. In [Vee89, Definition 5.6,
Theorem 5.8] (see also [MT02, Theorem 5.4]), Veech calculated the Veech groups of the regular
n-gon and double n-gon. Let

r =

(
cos πn − sin π

n
sin π

n cos πn

)
, s =

(
1 2 cot πn
0 1

)
.
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Figure 1: A cylinder decomposition for the regular n-gon when n = 4k + 2.

Theorem 2.1. For n even, the Veech group of the regular n-gon is generated by 〈r2, s, rsr−1〉 and
isomorphic to the (n/2,∞,∞) triangle group. For n odd, the Veech group of the double n-gon is
generated by 〈r, s〉 and isomorphic to the (2, n,∞) triangle group. In particular these groups are
lattices in SL(2,R). In the former case the quotient of SL(2,R) by the lattice has two cusps and in
the latter case one cusp.

Lemma 2.2. Let (X,ω) be the regular n-gon or double n-gon. The ratios of circumferences (or
heights) of any two cylinders in the same direction is irrational.

Proof. When n = 4k + 2, we may label the k + 1 cylinders depicted in Figure 1 by j = 1, . . . , k + 1
from top to center. The circumferences are

cj = 2 sin
(2j − 2)π

n
+ 2 sin

2jπ

n
, for j < k

ck+1 = 2 cos
π

n
.

We get that for i, j < k + 1,
ci
cj

=
sin(2i− 1)π/n

sin(2j − 1)π/n
,

which is irrational by [McM06, Page 7]. When j = k + 1, we have

ci
ck+1

= 2 sin(2i− 1)π/n,

which is irration by Niven’s theorem. A similar trigonometric calculation shows the claim for all
other values of n and other cylinder directions.

Now we prove the lemma for heights of cylinders. Define the modulus of a cylinder to be the
ratio of the height and circumference. By [Vee89, Equations 5.2 and 5.4], the ratio of moduli of
cylinders in the same direction is rational. Since the ratio of circumferences is irrational, the ratio of
heights is irrational.

Note that there are simpler proofs of Corollary 2.4 below than by using Lemma 2.3, but Lemma
2.2 will be used in the proof of Corollary 1.6.
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Lemma 2.3. Let (X,ω) be the regular n-gon or double n-gon. There is no translation surface
(X ′, ω′) such that there is a nontrivial translation cover π : (X,ω)→ (X ′, ω′).

Proof. The cover π must send a cylinder with circumference c to one with circumference c/m, where
m is some positive integer. By Lemma 2.2 any two cylinders in the same direction have an irrational
ratio of circumferences, must be sent to distinct cylinders in (X ′, ω′).

For n = 4k + 2, the regular n-gon M belongs to H(k − 1, k − 1) which is a locus of genus k
translation surfaces, and there is a cylinder direction on (X,ω) with k + 1 cylinders. Thus, (X ′, ω′)
has k + 1 cylinders in that direction and at most 2 singularities.

The shears of these k + 1 cylinders span a (k + 1)-dimensional subspace in H1(X,Σ;C). Since
there are at most 2 singularities, the kernel of the projection H1(X,Σ;C)→ H1(X;C) is dimension
at most 1, so the space of shears of the cylinders projects to an isotropic subspace of absolute
cohomology of dimension at least k. Thus, (X ′, ω′) has genus at least k, so πω must be degree 1.
A similar argument holds for n = 4k and n = 2k + 1 since (X,ω) belongs to H(2k − 2), and there
exists a cylinder direction with k cylinders.

Corollary 2.4. For the regular n-gon and double n-gon, the affine diffeomorphism group is isomor-
phic to the Veech group.

Proof. Let SL(X,ω) be the Veech group, Aff(X,ω) the affine diffeomorphism group, and Aut(X,ω)
the group of translation automorphisms. They fall into an exact sequence

0 Aut(X,ω) Aff(X,ω) SL(X,ω) 0.

It suffices to show that Aut(X,ω) is trivial. This follows from Lemma 2.3 since the translation cover
(X,ω)→ (X,ω)/Aut(X,ω) must be trivial.

By Corollary 2.4, the hyperelliptic involution, which corresponds to − Id ∈ SL(X,ω), is in the
center of the affine diffeomorphism group. Thus, the Weierstrass points are periodic points. The
difficulty in proving Theorem 1.3 lies in showing that all other points are not periodic. We first use
the transfer principle to rule out all points except finitely many lines.

Proposition 2.5. Let Γ be the Veech group of the regular n-gon or double n-gon (X,ω). If n is
even, all periodic points must lie on the Γ orbit of one of the following two segments: the segment
connecting the center of the polygon to a vertex of the n-gon and the segment connecting the center
to the midpoint of an edge, as shown in Figure 2 left. If n is odd, all periodic points must lie on the
Γ orbit of a horizontal saddle connection shown in Figure 2 right.

Proof. First we relate the action of the affine diffeomorphism group Aff(X,ω) on (X,ω) to the
action of Γ on R − {0}. Let φ ∈ Aff(X,ω) with derivative A ∈ Γ. Let α be a segment on (X,ω).
Let P,Q be the endpoints of α, where P is a point fixed by SL(X,ω). The holonomy hol(α) lies
in R− {0}, and holonomy of the segment φ(α) is Ahol(α). Since the endpoints of φ(α) are P and
φ(Q), if Q is a periodic point, then there is an ε > 0 such that for any φ ∈ SL(X,ω) any segment
connecting P and φ(Q) has holonomy greater than ε. Thus, we may determine that Q is not a
periodic point by showing the orbit of hol(α) under Γ is dense.

Let G,H be groups such that G ×H acts on a space X . Because these actions commute, we
will denote the action by G with a left action and the action by H by a right action. The transfer
principle states that the closed (resp. dense) orbits of G×H on X are in bijection with the closed
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Figure 2: After using the transfer principle, the dashed lines are the only ones left to rule out.

(resp. dense) orbits of G on X/H and the closed (resp. dense) orbits of H on G\X . Under these
correspondences, a G×H orbit of x ∈ X will be mapped to a G orbit of xH or an H orbit of Gx.

In our context, G is Γ, X is SL(2,R), and H is the unipotent subgroup U :=

{(
1 s
0 1

)
: s ∈ R

}
. It

is a classical result that the only U orbits of Γ\ SL(2,R) are closed or dense, and the closed orbits
are horocycles around the cusps.

Consider the case when n is even. Since Γ is the (n/2,∞,∞) triangle group by Theorem 2.1,
there are two cusps of Γ\ SL(2,R). The closed orbits in Γ\ SL(2,R) around the cusps are the U
orbits of

Γ

(
λ 0
0 1/λ

)
and Γ

(
cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

)(
λ 0
0 1/λ

)
,

where λ > 0. Under the bijection these correspond to the Γ orbits of(
λ 0
0 1/λ

)
U and

(
cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

)(
λ 0
0 1/λ

)
U,

We identify SL(2,R)/U with R2 − {0} by sending a matrix A ∈ SL(2,R) to A

(
1
0

)
. These are

the Γ orbits of the lines y = 0 and y = tan(π/n)x in R2 − {0}. We choose the point P to be the
center of the n-gon, which is fixed by Aff(X,ω) ∼= Γ since it is fixed by the generators of Γ listed in
Theorem 2.1. If Q is a periodic point, the holonomy of α must lie on the Γ orbit of either y = 0 and
y = tan(π/n)x, so Q must lie on the Γ orbit of one of the lines described in the proposition.

For n odd, we let P be the unique singularity of X. It is fixed by Aff(X,ω). Since Γ is the
(2, n,∞) triangle group, there is one cusp of Γ\SL(2,R). By a similar argument as the case above,
the closed orbits around cusps correspond to the Γ orbit of the line y = 0 in R2 − {0}. The only
points that have this holonomy are the Γ orbits of the lines described in the statement of the
proposition.

We will hold to the convention that all our cylinders are closed; that is, they contain their
boundary.
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Figure 3: The three cylinders in Lemma 2.8.

Definition 2.6. Let C be a cylinder and B be one of the boundary circles of the cylinder. A point
p ∈ C has rational height in C if the distance between p and B is a rational multiple of the height
of C.

The following lemma appeared in [Api20, Lemma 5.4].

Lemma 2.7. Let (X,ω) be a translation surface and φ be a parabolic in the Veech group SL(X,ω).
Let C be a cylinder in the corresponding parabolic direction. A point p ∈ C has finite orbit under φ
if and only if p has rational height in C.

Proof. We can rotate the translation surface so that the cylinder is horizontal, so we may assume the

parabolic is of the form

(
1 s
0 1

)
. Let h and c be the height and circumference of C respectively. Since

φ must preserve C, it must be that s = kc/h for some integer k. We may choose flat coordinates
so that the bottom boundary of the surface is on the x-axis. Then φ maps a point (x, y) ∈ C to
(x+ ykc/h, y) ∈ C, where the x coordinate is taken modulo c. Thus, (x, y) has finite orbit if and
only if y is a rational multiple of h.

Lemma 2.8. Let C2 and C3 be two parallel cylinders sharing a boundary saddle connection B and
let C1 be another cylinder which intersects each of C2 and C3. Suppose that PQ is a line segment
lying inside the intersection of C1 and C2 ∪ C3 and which intersects B at a single point R, so that
PR lies inside C1 ∩ C2 and RQ lies inside C1 ∩ C3, as illustrated in Figure 3. Suppose that P has
rational height in C1 and C2 and Q has rational height in C1 and C3. If the heights of the cylinders
C2 and C3 do not have a rational ratio, then there are no other points on PQ that have rational
height in C1 and rational height in either C2 or C3.

Proof. Assume for the sake of contradiction that there is a point S on PR other than P with
rational height inside both C1 and C2. Let us construct a right triangle PQU inside C1 as shown
in Figure 4 with hypotenuse PQ and sides perpendicular and parallel to the boundary circles of
C1. Because the triangles SQT and PQU shown in Figure 4 are similar and the points P and Q
are assumed to lie at a rational height in C1, it follows that the length of PS is a positive rational
multiple of the length of PQ. Since PS also lies inside C2, the same kind of argument implies that
the length of PS is a rational multiple of the length of PR. It follow that the lengths PR and PQ
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Figure 4: The triangles SQT and PQU are similar.

Figure 5: The cylinders dividing candidate lines in the even case.

have a rational ratio. Reversing the argument, this shows that the heights of C2 and C3 have a
rational ratio, contradicting the assumption. The argument would be similar had S been inside C1

and C3.

Proof of Theorem 1.3. Let Γ be the Veech group of the regular or double n-gon. By Proposition 2.5,
any periodic points must lie on the Γ orbits of the line segments described in the proposition and
depicted in Figure 2. Since Γ takes (non) periodic points to (non) periodic points, it suffices to
consider only the segments pictured, which we call the “candidate lines”. We will show that all
points other than the Weierstrass points on the candidate lines cannot be periodic.

The case of the regular n-gon is depicted in Figure 5. The two candidate lines PQ and PR lie
entirely inside a horizontal cylinder bounded by dotted lines in Figure 5 and each of them is divided
in two by the cylinders delimited by dashed lines. By the Veech dichotomy [Vee89, Theorem 1.4]
(see also [MT02, Theorem 5.10]), the Veech group contains parabolic elements which act by Dehn
twists along each of these two cylinder directions. Since the endpoints of the candidate lines are
periodic, it follows from Lemmas 2.7 and 2.8 that there can only be periodic points on the interiors
of the candidate lines if the heights of the two parallel cylinders in Figure 5 have a rational ratio.
However, by Lemma 2.2, the ratio of any two heights is irrational.

For the double n-gon, the candidate lines are permuted by the hyperelliptic involution. As a
result, it suffices to prove that the candidate lines in a single n-gon contain no other periodic points.
Consider a candidate line PQ which is not the topmost edge of the polygon, as depicted on the
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Figure 6: The cylinders dividing candidate lines in the odd case.

left in Figure 6. The argument of the previous paragraph applies to such a candidate line with
the cylinders shown in the same diagram. For the edge of the polygon, we turn to the diagram on
the right in Figure 6. By applying a Dehn twist along the cylinder marked with a dotted line, the
candidate line PQ is sent to the two segments PR and ST . The cylinder decomposition shown in
the diagram now applies to these two segments.

Proof of Corollary 1.6. Let (X,ω) be a translation surface that is not a translation cover of a
torus. Let (Xmin, ωmin) be the lowest genus translation surface such that there exists a translation
cover πω : (X,ω) → (Xmin, ωmin) and (Ymin, qmin) the minimal quadratic differential such that
there exists a half translation cover πq : (X,ω) → (Ymin, qmin). The surfaces (Xmin, ωmin) and
(Ymin, qmin) exist by [Mö06, Theorem 2.6] and [AW17, Lemma 3.3]. Theorem 3.5 in [AW17]
states that the only pairs of finitely blocked points on (X,ω) are two points that have the same
image under πq, or pairs of points that are periodic points or singularities.

By Lemma 2.3, (X,ω) is not a torus cover, so (Xmin, ωmin) exists, and in fact (X,ω) =
(Xmin, ωmin) exists by the same lemma. By [AW17, Lemma 3.3 and its proof], since (X,ω) =
(Xmin, ωmin) has an involution, (Ymin, qmin) is the quotient of (X,ω) be this involution.

By [AW17, Lemma 3.1], all pairs (p, q) where p is not a singularity and q is its image under the
hyperelliptic involution are finitely blocked. (Note that the statement Lemma 3.1 does not cover the
case when p = q is a Weierstrass point that is not a singularity. However, the proof is identical.)
Using [AW17, Theorem 3.5] and the computation of (Ymin, qmin), we get the only possible pairs of
finitely blocked points not listed above are given by two points that are either periodic points or
singularities, and by [AW17, Theorem 3.15] the blocking set must be the set of periodic points and
singularities. By Theorem 1.3, these points are exactly the Weierstrass points and singularities of the
flat metric. Because the regular n-gon is convex, a singularity can be connected to any singularity
or Weierstrass point by a segment that does not have a Weierstrass point on the interior. Similarly,
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this is true for the double n-gon because all the singularities and Weierstrass points lie on a single
convex n-gon. This shows that a singularity is not finitely blocked from any other point. Similarly,
two distinct Weierstrass points are also not finitely blocked. Thus, the only finitely blocked points
are the ones listed in the statement of the corollary.

Proof of Corollary 1.7. Let T be a billiard table that unfolds to a translation surface (X,ω). Two
points p and q on T are finitely blocked if and only if every preimage of p is finitely blocked from
every preimage of q on (X,ω). The points listed are the only ones with this property.
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