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1 Introduction

The goal of any mechanics problem is to determine how things move. This text
will consider the Lagrangian and Lagrange d’Alembert approach using variations
and constraints rather than the traditional Newtonian approach of forces. This
allows for insight into more complicated systems including those with nonholo-
nomic constraints such as the rolling without slipping condition. This approach
will be applied to 2 scenarios, that of the collision a planar ellipse makes with a
wall, and the frictional collision of a circular disk against a wall, describing the
effect of spin on the rebound trajectory.

2 Preliminaries

2.1 Lagrangian Mechanics

Lagrangian Mechanics uses variational techniques on the path of a moving body
to determine its equation of motion. This is done by optimizing the path inte-
gral of the Lagrangian function; typically this is given by L = T - U, where T
is the kinetic energy of the body, and U its potential energy, although a more
rigorous definition will be provided later.

Definition 2.1 The Configuration Space of a given mechanical system is the
topological manifold, denoted here as Q, describing the position of the system.

For example, a sphere moving in space might have the configuration space

Q = R3 × SO(3)

where R3 describes its position in space, and SO(3) describes its rotational
orientation.
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Definition 2.2 Hamilton’s Principle states that a body will move such that

δ
b∫
a

Ldt = 0

where the variations are taken over smooth curves in Q.

Hence we see here the optimization of the Lagrangian.

From Hamilton’s Principle, using principles from the calculus of variations,
one can derive a solution to this optimization called an Euler-Lagrange equa-
tion which becomes the equation of motion of the system. Given a generalized
coordinate q = (q1, q2, . . . , qn) this gives n equations of the form

d
dt (

∂L
∂q̇i

)− ∂L
∂qi

= 0

In fact, this formulation is equivalent to Newton’s second law
−→
F = m−→a , an

alternative method for determining the equation of motion, which we will show
with an example.

Consider a point mass moving in Earth’s atmosphere, neglecting air resis-
tance. The configuration space Q = R3 with a generalized coordinate q =
(x, y, z), where (x, y) represents the planar position along the ground, and z
represents the height of the ball. Thus the Lagrangian formalism becomes

L = 1
2m(ẋ2 + ẏ2 + ż2)−mgz

And the Euler-Lagrangian equations for each x,y,z

ẍ = 0, ÿ = 0, z̈ + g = 0

Compare this to the Newtonian Formulation

−→
F net = m

ẍÿ
z̈

 =

 0
0

−mg


Both formulations thus result in an equivalent equation of motion.

2.2 Relevant Topological Concepts

Definition 2.3 Given a differentiable manifold M, the tangent space at a point
q ∈ M , denoted TqM is a vector space consisting of all tangent vectors to q.
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For example, if M = {(x, y) ∈ R2 : y = x2}, then T(0,0)M is the tangent line
at (0,0), a one dimensional vector space. This happens to be the x-axis.

Definition 2.4 The Tangent Bundle of a Manifold M, denoted TM is the
set of ordered pairs (q, q̇) such that q ∈ M and q̇ ∈ TqM .

The notion of a tangent bundle allows for a definition of a generalized co-
ordinate for a system as well as a generalized velocity. Given a system with
a configuration space Q, a generalized coordinate describes the instantaneous
state of the system. Hence for a moment in time the generalized coordinate
describing that state is some q ∈ Q. The generalized velocity of the system,
defined as q̇ = d

dtq, is some vector in TqQ.
For example, a flat disk in the plane might have a configuration space as

R2 × S1, and at a given moment in time might have a generalized coordinate
q = (x, y, θ). The generalized velocity would then be some q̇ = (ẋ, ẏ, ω) where
(ẋ, ẏ) describes the linear velocity and ω the angular velocity.

Definition 2.5 A Riemann Manifold is a differentiable manifold, M, such
that the tangent space at each point q ∈ M , is also endowed with an inner
product gq, where

gq : TqM × TqM → R

The significance of this in mechanics is that it allows for a definition of v2,
as in T = 1

2mv2.
Earlier we mentioned that frequently the Lagrangian is take to be L = T−U .

T is often a function of generalized velocity and U a function of the generalized
coordinate. Hence, L is actually a function of the tangent bundle of the config-
uration space Q.

Definition 2.6 The Lagrangian, L is a smooth function L : TQ → R,
having units of energy. In particular, the Lagrangian is called natural if L =
1
2gq(q̇, q̇)− U(q) and (Q, gq) forms a Riemann Manifold.

For example, a flat disk in a plane has a lagrangian of

L = 1
2 (mẋ2 +mẏ2 + Iθ̇2)− U(q)

where m is the mass of the disk, I is the moment of inertia through its canonical
axis, and U is some potential function. This can be written as

L = 1
2 q̇

T

m 0 0
0 m 0
0 0 I

 q̇ − U(q)

Thus this lagrangian is natural.

For the remainder of this text we will only consider natural lagrangians.
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2.3 Constraint Distributions

Definition 2.7 A constraint distribution, ∆, in a mechanical system is a subset
of TQ where Q is the configuation space of the system, such that ∆q ⊆ TqQ is
a subspace.

Essentially a constraint distribution restricts either the generalized position
or velocity of the system. Many constraints are linear in velocity. Thus they
are of the form ∑n

k=1 a
j
k(q)q̇k

Where j = 1, . . . ,m, m is the number of constraints, and n is the number of
generalized coordinates.

For example, a sphere rolling without slipping over a plane is a rigid body,
meaning the distances of each point on the sphere are fixed relative to every
other point on the sphere. I.e. the sphere maintains its shape regardless of
where it is located and how it is moving. This is an example of a holonomic
constraint because it is a constraint solely on the positions of each point on the
sphere. As the sphere moves it also exhibits the nonholonomic constraint of
rolling without slipping. This is given by the equation below, which is linear in
velocity.

ẋ+Rωy = 0
ẏ −Rωx = 0

Where ωx and ωy represent the angular velocity of the ball around the x and
y axes respectively.

This constraint is nonholonomic because it cannot be integrated to a con-
straint on position. Intuitively, the ball is known to be rolling but that provides
no indication of where the ball is located in the plane.

To account for constraints, modifications to the Lagrange-Euler equations
are necessary. This requires a generalization of Hamilton’s Principle.

Definition 2.8 The Lagrange-d’Alembert Principle states that a body will
move such that

δ
b∫
a

Ldt = 0

and that the virtual displacements δq will satisfy the constraints.

Without constraints the principle reduces to Hamilton’s case. Like Hamil-
ton’s Principle the Lagrange-d’Alembert Principle still takes variations across
the full range of curves within the configuration space. The resulting curve is
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then projected onto the constraint distribution, ensuring any virtual displace-
ment, δq, satisfies them. An important note is that these two operations are
distinct and noncommuting. It would be incorrect to take variations only across
the constraint subspace. Thus the original Lagrangian is preserved and the
Euler-Lagrange equations of motion are generalized to the Lagrange-d’Alembert
equations of motion or alternatively named Dynamical Nonholonomic equations
of motion. An important assumption in the derivation of this is that the con-
straint force do no work on the system. That is they satisfy

F1δqi + · · ·+ Fnδqn = 0

Using linear algebra analogous to the Lagrange multiplier theorem, it can
be shown that each constraint force thus is of the form

Fi = λ1a
1
i + · · ·+ λmami

where i = 1, . . . , n, and aji is from the constraint equation, given that the
vectors (a11, . . . , a

1
n), . . . , (a

m
1 , . . . , amn ) are linearly independent.

Thus the Lagrange-d’Alembert Equations become

d
dt (

∂L
∂q̇i

)− ∂L
∂qi

=
∑m

j=1 λja
j
i

To clarify this, i is the index of the generalized coordinate, j is the index of the
constraint. And there are n generalized coordinates and m constraint equations
(i.e. Lagrange Multipliers).

2.4 Hybrid Lagrangian Systems

The previous sections have taken variations over smooth curves within the con-
figuration space Q, and therefore assumes only continuous motion of the system.
Hybrid Lagrangian systems involve discontinuous motion such as a collision.

Definition 2.9 The impact surface, S ⊂ Q, is a smooth embedded subman-
ifold of codimension 1.

This can be thought of as a boundary at which a body may collide against.
The key to describing a discontinuous motion is to determine an impact map
(q, q̇−) ∈ TQ 7→ (q, P (q, q̇−)) ∈ TQ.

Determining an explicit formula for this map will require further understand-
ing of the topology of Q.

Definition 2.10 Given a differentiable manifold, M , and a point q ∈ M the
Cotangent Space at q, T ∗

q M , is the dual space of TqM . Further, the Cotangent
Bundle ofM , T ∗M , is the set of all ordered pairs (q, f) s.t. q ∈ M and f ∈ T ∗

q M .

If the system in question involves a natural Lagrangian, then there is a nat-
ural isomorphism between the tangent and cotangent bundles of Q, called the
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musical isomporphisms, ♭ and ♯.

♭ : TQ → T ∗Q, (q, v) 7→ (q, g(v, ·))
♯ : T ∗Q → TQ, ♯ = ♭−

Definition 2.11 Let h : Q → R be smooth. The gradient of h is defined as
∇h = dh♯.

The Weierstrass-Erdman corner conditions allow for a variational approach
to determining an impact map. The impact surface, S, can be locally de-
scribed as the level set of some function h : Q → R, i.e. locally S can be
described as q ∈ Q : h(q) = 0. Defining pi =

∂L
∂q̇ as the generalized momentum,

and H = T + U , the Hamiltonian (total energy), these conditions can be for-
mulated as such

p+ = p− + α · dh
H+ = H−

Note this is not a rigorous definition of the Hamiltonian, but it will suffice
for the purposes of this text. Intuitively the corner conditions given here can
be interpreted as the change in momentum of the collision is normal to the
impact surface at the point of contact, per the multiplier α, and the energy of
the system is conserved. Solving the system given by the corner conditions and
the assumption that the constraint forces do no work thus gives the impact map.

Theorem 2.12 Given a natural nonholonomic hybrid Lagrangian system,
the fully elastic impact map, P , is given by

P (q, q̇) = q̇ − 2 dh(q̇)
g(∇h,∇h)∇h

Using the notation dh(q̇) = ∂h
∂q1

q̇1 + · · ·+ ∂h
∂qn

q̇n

3 Worked Examples

3.1 Bouncing Ellipse

The situation being modelled here is a uniform planar elliptic disk colliding with
a one dimensional wall, which will be set as the y-axis. Before the collision the
motion is easily described, assuming no potential forces and a frictionless plane.
Let m be the mass of the ellipse, I be the moment of inertia with respect to the
z-axis, (x, y) be the position of the center of mass of the ellipse, and θ be the
rotation of the ellipse assumed to be homogeneous.
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Q = R2 × S1

L = 1
2 (mẋ2 +mẏ2 + Iθ̇2)

= 1
2 q̇

TMq̇
with the matrix of the inner product, M , given as

M =

m 0 0
0 m 0
0 0 I


Thus the Euler-Lagrange equations are given as

q̈ = 0
=⇒ q = q̇0t+ q0

For each coordinate of q = (x, y, θ).

To determine an impact map, first we need an impact surface, S, which we
will use as S = {(x, y) ∈ R2 : h(x, y) = 0}, with h(x, y) = x.

Next we must find the point along the ellipse boundary that will make con-
tact with the wall. Thus we introduce a new variable, ϕ, to parameterize the
boundary of the ellipse. For a given θ, setting θ = 0 as the upright ellipse[

X
Y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
a cosϕ
b sinϕ

]
+

[
x
y

]
The point of the ellipse making contact will occur when ∂X

∂ϕ = 0. Denote

this critical angle ϕc(θ).

ϕc(θ) = arctan (− b
a tan θ)

Thus the impact will occur when

h(X,Y ) = x+ a cos (ϕc(θ)) cos θ − b sin (ϕc(θ)) sin θ = 0

This is the equation that is used to determine the impact map.

∂h
∂x = 1
∂h
∂y = 0

∂h
∂θ = Φ(θ)

with Φ(θ) given by

Φ(θ) =
b2 sin θ

a( b2 tan2 θ
a2 +1)

1
2
− a sin θ

( b2 tan θ2

a2 +1)
1
2
+ b2 tan θ sec θ

a( b2 tan θ2

a2 +1)
1
2
− b2 tan θ sec θ

a( b2 tan θ2

a2 +1)
3
2
− b4 tan3 θ sec θ

a3( b2 tan θ2

a2 +1)
3
2

Thus

dh(q̇) = ẋ+Φ(θ)θ̇
∇h =

[
1
m 0 1

IΦ(θ)
]

=⇒ g(∇h,∇h) = 1
m + 1

IΦ(θ)
2
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Which yields an impact map of

ẋ+ = ẋ− − 2C
m

ẏ+ = ẏ−

θ̇+ = θ̇− − 2C
I Φ(θ)

Where C is given by

C = ẋ+Φ(θ)θ̇
1
m+ 1

I Φ(θ)2

3.2 Planar Circular Disk with Frictional Collision

The previous section relied on the assumption that the wall the ellipse collided
with was frictionless, and thus there was no reactionary force tangential to the
ellipse at the moment of contact. For this section we will focus on a frictional
contact, and therefore will restrict it to the case of a circular spinning disk.

Prior to impact, the spinning disk has the same lagrangian and equations of
motion as above.

L = 1
2 (mẋ2 +mẏ2 + Iθ̇2)
q = q̇0t+ q0

for each coordinate in q = (x, y, θ)
And the impact surface is given by the level curve of the same function

h(x, y) = x.
In a perfectly inellastic situation, the impact will absorb the entirety of the

ẋ coordinate of the generalized velocity vector, and the ẏ and θ̇ coordinates will
be orthogonally projected onto the rolling without slipping condition, along the
y-axis, given by

ẏ +Rθ̇ = 0

The subspace induced by this constraint is equivalent to the kernel of the
1-form

ω = dy +Rdθ

or in operator form

[
0 1 R

]
ker(ω) = span

10
0

 ,

 0
−R
1


These basis vectors can then be converted to an orthonormal basis under

the inner product in the lagrangian. This yields
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ê1 =

 1√
m

0
0

 , ê2 = 1√
I+mR2

 0
−R
1


Under the Parrallel Axis Theorem, the quantity I +mR2 is the moment of

inertia around the point of contact with the wall. Denote this as I1.
Thus we can orthogonally project the generalized velocity vector onto this

subspace.  0
ẏ0
θ̇0

 7→ Iθ̇−mẏR
I1

 0
−R
1

 := α

 0
−R
1


In the perfectly inelastic case, the disk will continue to roll along the wall in

this manner.
In the perfectly elastic situation, we can use conservation of energy to de-

termine the resulting rebound of the disk. At exactly the moment of impact,
the ẋ coordinate is still 0, in the elastic case. Thus the same projection onto
the rolling without slipping constraint distribution will occur identically to the
inelastic case, seen here again. 0

ẏ0
θ̇0

 7→ Iθ̇−mẏR
I1

 0
−R
1

 = α

 0
−R
1


The conservation of energy is now applied in order to obtain the resulting

ẋ1 coordinate, denoting the post impact velocity coordinate.

E0 = const.
E0 = 1

2 (mẋ2
0 +mẏ20 + Iθ̇20) =

1
2 (mẋ2

1 +mẏ21 + Iθ̇21)

ẋ2
1 = ẋ2

0 + ẏ20 +
I
m θ̇20 − α2R2 − I

mα2

Where α is the multiplier from above, given by

α = Iθ̇−mRẏ
I1

We can use a couple of explicit examples to demonstrate this finding. Firstly,
the most basic case, is when q̇0 = (ẋ0, 0, 0). The formula returns

ẋ2
1 = ẋ2

0

We can then use intuition from the problem to show ẋ1 = −ẋ0 as would be
expected. This serves as a good sanity check.

A more interesting example would be if the ball was moving normal to the
wall still (i.e. ẏ0 = 0) but had nonzero initial rotation. So now let q̇0 =
(ẋ0, 0, θ̇0). The impact map becomes
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ẋ1 = −[ẋ2
0 + ( I

m − I2R2

I2
1

− I3

mI2
1
)θ̇20]

1
2

ẏ1 = −Rα = −RIθ̇0
I1

θ̇1 = I
I1
θ̇0

A few important notes from this result: For the x velocity coordinate, the
negative root is taken because intuitively the disk will reflect off the wall, and
hence change direction. The y velocity coordinate initially is 0, but becomes
nonzero afterwards. This is expected in a collision where the rotation of the
disk interacts with the boundary wall. The θ velocity coordinate is reduced in
magnitude as this is what propels the disk in the y direction. (I < I1) Thus
some rotational kinetic energy is transferred to translational, which is again
what is expected.

4 Further Study

A natural generalization of these kinds of problems is to change the shape of
either the impact surface or of the moving body. In particular, the problem con-
sidering a frictional impact may have extensive applications is sports modeling
such as modelling a tennis ball’s path, basketball rebounds, or other incidents
with a colliding ball. Additionally further insight may also be gained from
changing the properties of the configuration space to something entirely non-
euclidean, such as a situation that my be found in strong gravitational fields.

5 References

[1] A. Bloch, J. Baillieul, P. Crouch, and J. E. Marsden, Nonholonomic mechan-
ics and control. Interdisciplinary Applied Mathematics. Springer New York,
2008.

[2] W. Clark and A. Bloch, The Bouncing Penny and Nonholonomic Impacts.
arXiv, 2019

10


