
METRIC DIOPHANTINE APPROXIMATION ON NON-DEGENERATE
MANIFOLDS

JUSTIN LIU

Abstract. Metric Diophantine approximation has been a significant area of interest in ana-
lytic number theory in the past century. In this report, we will be focusing on the simultaneous
Diophantine approximation on manifolds. We will first review some classical results in Rn.
Then, we will concentrate on Beresnevich and Yang’s [1] paper which resolves a long-standing
problem about Khintchine’s theorem on manifolds. In our project, we want to generalize some
of these results to the context of p-adic numbers.
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1. Introduction

We first recall the fact that Q is dense in R. That is to say that, for any x ∈ R and ϵ > 0,

there exists a rational number p
q
∈ Q where p ∈ Z and q ∈ N, such that

∣∣∣x− p
q

∣∣∣ < ϵ.

Now, given that we fix x ∈ R and q ∈ N as the denominator of the rational number we wish
to use to approximate x. Just with this information, how small can we make ϵ such that the
above statement is still true?
This leads us to an important classical result: Dirichlet’s Approximation Theorem.

Theorem 1.1. For any x ∈ R and N ∈ N, there exist p, q ∈ Z with 1 ≤ q ≤ N such that∣∣∣∣x− p

q

∣∣∣∣ < 1

qN
. (1.1)

Proof. For some x ∈ R, we let [x] := max{n ∈ Z : n ≤ x} denote the integer part of x and let
{x} := x− [x] denote the fractional part of x. Then, we observe that there are N + 1 numbers

{0x}, {x}, . . . , {Nx} (1.2)

in the unit interval [0, 1). If we then divide the unit interval intoN equal semi-open subintervals,
then by the pigeonhole principle there exists some {q1x}, {q2x} in a single semi-open subinterval

1
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[ u
N
, u+1
N

) for some u ∈ {1, . . . , N}, where 1 ≤ q1 < q2 ≤ N without loss of generality.
Then, we have that

|{q2x} − {q1x}| <
1

N
. (1.3)

We also have that {qx} = pix− [qx], where pi := [qix] ∈ Z, and so

|{q2x} − {q1x}| = |q2x− p2x− (q1x− p1)| = |(q2 − q1)x− (p2 − p1)| (1.4)

Now, we can define q = q2 − q1 and p = p2 − p1, and therefore we get

|qx− p| < 1

qN
, (1.5)

as desired. □

Corollary 1.1. Let x ∈ R \ Q. Then there exist infinitely many coprime p and q in Z with
q > 0 such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
. (1.6)

Remark 1.1. This theorem is true for all x ∈ R if we remove the condition that p and q must
be coprime, or in other words, if we allow approximation by non-reduced fractions.

Proof. Suppose x ∈ R \Q.
The existence of at least one rational p

q
fulfilling this condition is an immediate consequence of

Theorem 1.1, simply by letting N = q. Now, suppose for contradiction that only finitely many
such rationals exist:

p1
q1
, . . . ,

pn
qn
, (1.7)

where for each 1 ≤ i ≤ n, pi and qi are coprime, qi > 0 and∣∣∣∣x− pi
qi

∣∣∣∣ < 1

q2i
. (1.8)

Since x is irrational, we know that x − pi
qi

̸= 0 for all i. Then, we know by the Archimedean

principle that there exists some N ∈ N such that for all i,∣∣∣∣x− pi
qi

∣∣∣∣ > 1

N
. (1.9)

Then, by Theorem 1.1, we know there exist p and q such that∣∣∣∣x− p

q

∣∣∣∣ < 1

qN
≤ 1

q2
, (1.10)

since 1 ≤ q ≤ N .

Therefore, we have that p
q
̸= pi

qi
for all 1 ≤ i ≤ n, but

∣∣∣x− p
q

∣∣∣ < 1
q2
. Therefore, a contradiction

arises, and we conclude that there are infinitely many such rationals. □

2. Review of Results in R

A natural question we can ask is: how small can we make the right hand side of the above
inequality? This is where we introduce the concept of approximating functions.
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Definition 2.1. Given a monotonic function ψ : N → R≥0, x ∈ R is said to be ψ-approximable
if there are infinitely many p ∈ Z and q ∈ N such that∣∣∣∣x− p

q

∣∣∣∣ < ψ(q)

q
. (2.1)

Definition 2.2. Given an approximating function ψ, we denote the set of all ψ-approximable
elements of Rn as Sn(ψ). In other words,

Sn(ψ) :={x ∈ Rn : there are infinitely many (p1, . . . , pn, q) ∈ Zn × N

such that

∣∣∣∣xi − pi
q

∣∣∣∣ < ψ(q)

q
for all 1 ≤ i ≤ n}.

(2.2)

In the special case that ψ(q) = q−t for some t > 0, we will instead denote Sn(ψ) as Sn(ψ).

Remark 2.1. We have by Dirichlet’s Approximation Theorem that

Sn(1/n) = Rn. (2.3)

Theorem 2.1 (Khintchine, 1924). Let m denote the usual Lebesgue measure. Let ψ : N → R≥0

be a monotonic function. Then,

m(Sn(ψ)) =

{
0 if

∑∞
q=1 ψ(q)

n <∞
FULL if

∑∞
q=1 ψ(q)

n = ∞
. (2.4)

We want to find an analog for this result in the case of a manifold in Rn. We restrict our
attention to non-degenerate manifolds, which we define as follows:

Definition 2.3. Let U be an open subset of Rd. A map f : U → Rn is said to be non-degenerate
at x ∈ U if there exists some l ∈ N such that f is l times continuously differentiable on some
sufficiently small ball centered at x, and the partial derivatives of f at x of orders up to l span
Rn. In turn, the map f is non-degenerate if it is non-degenerate at almost every point (in terms
of d-dimensional Lebesgue measure) on U .

For the rest of this paper, we will without loss of generality assume that there is a constant
M ≥ 1 such that

max
1≤k≤m

max
1≤i,j≤d

max
x∈U

max{
∣∣∣∣∂fk(x)∂xi

∣∣∣∣ , ∣∣∣∣∂2fk(x)∂xi∂xj

∣∣∣∣} ≤M. (2.5)

Definition 2.4. A manifoldM of dimension d embedded in Rn is said to be non-degenerate if it
arises from a non-degenerate map f : U → Rn where U is an open subset of Rd and M := f(U).

Remark 2.2. We think of the non-degeneracy condition intuitively as the manifold M being
“sufficiently” curved, in order to develop a Khintchine type theory on M ∩ Sn(ψ).

In 2021, Beresnevich and Yang developed a theory for the convergence case of Khintchine’s
theorem on non-degenerate manifolds; see [1]. They prove the following:

Theorem 2.2. Let n ≥ 2, a submanifold M ⊆ Rn be nondegenerate, ψ be monotonic and∑∞
q=1 ψ(q)

n converges. Then, almost all points on M are not ψ-approximable.

In order to prove Theorem 2.2, we will introduce a new theorem that implies Theorem 2.2.
The focus of the rest of the paper will be on proving this theorem.

Theorem 2.3. Suppose U ⊆ Rd is open, and f : U → Rn is nondegenerate. Then, for any
0 < ϵ < 1, and every t > 0, there is a subset M(ϵ, t) ⊆ U which we call the minor arcs, which
can be written as a union of balls in U of radius ϵ

et/2
satisfying the following properties:
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(1) For every x0 ∈ U such that f is l-nondegenerate at x0 there is a ball B0 centered at x0
and K0, t0 > 0 such that for t ≥ t0,

m(M(ϵ, t) ∩B0) ≤ K0(ϵ
ne3t/2)−

1
d(2l−1)(n+1) (2.6)

(2) For every ball B ⊆ U and for all sufficiently large t, we have that the number of rational
points p/q of denominator 0 < q < et lying ϵ

et
close to f(B \M(ϵ, t)∩U) is less than or

equal to K1ϵ
me(d+1)tm(B), where K1 depends on n and f only.

2.1. Proof of Theorem 2.2 modulo Theorem 2.3. We will use the following two lemmas
to prove Theorem 2.2.

Lemma 2.1. If f(x) ∈ Wn(ψ), then there are infinitely many t ∈ N such that∥∥∥∥f(x)− p

q

∥∥∥∥
∞
<
ψ(et−1)

et−1
, (2.7)

for some (p, q) ∈ Zn × N with et−1 ≤ q < et, where ∥·∥∞ denotes the supremum norm.

Proof. Since x = (x1, . . . , xn) is ψ-approximable, we know that the system∣∣∣∣xi − pi
q

∣∣∣∣ < ψ(q)

q
(2.8)

holds for infinitely many (p1, . . . , pn, q) ∈ Zn×N. For each q, we can find a corresponding t ∈ N
such that et−1 ≤ q < et. Since q is unbounded, we can find infinitely many t ∈ N where this
holds. Finally, ψ is monotonically decreasing, so it follows that∣∣∣∣xi − pi

q

∣∣∣∣ < ψ(q)

q
<
ψ(et−1)

et−1
(2.9)

for all i. □

Lemma 2.2.
∞∑
q=1

ψ(q)n <∞ ⇐⇒
∞∑
q=1

ψ(et)net <∞. (2.10)

Proof. This is an application of the Cauchy condensation test, which says that for a non-
increasing sequence of real numbers f(n), the series

∑∞
n=1 f(n) converges if and only if the

“condensed” series
∑∞

n=0 2
nf(2n) converges. □

Proof of Theorem 2.2 modulo Theorem 2.3. Without loss of generality, let M = f(U), where
f : U → Rn is a nondegenerate immersion on open U ⊆ Rd. Since f is nondegenerate, it suffices
to show that if

∑∞
q=1 ψ

n(q) <∞ and ψ is monotonic, then:

m({x ∈ B0 : f(x) ∈ Sn(ψ)}) = 0 (2.11)

for a sufficiently small ball B0 centered at x0 ∈ U where f is l-nondegenerate at x0 for some
l ∈ N.
Without loss of generality, we assume ψ(q) ≥ q−5/4n. Otherwise, we can replace ψ(q) with
max{ψ(q), q−5/4n}.
Given t > 0, 0 < ϵ < 1 and ∆ ⊆ Rd, we define

R(∆; ϵ, t) := {(p, q) ∈ Zn+1 : 0 < q < et and inf
x∈∆∩U

∥∥∥∥f(x)− p

q

∥∥∥∥
∞
<

ϵ

et
}, (2.12)
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and

N(∆; ϵ, t) = #R(∆; ϵ, t). (2.13)

So, essentially, N(∆; ϵ, t) counts rational points of bounded denominator (0 < q < et) lying
ϵe−t close to f(∆ ∩ U) ⊆M . We define two sets At and Bt, where

At = M(eψ(et−1), t) ∩B0, (2.14)

Bt =
⋃

(p,q)∈R(B0\M(eψ(et−1),t);eψ(et−1,t)

{x ∈ B0 :

∥∥∥∥x− p′

q

∥∥∥∥
∞
<
ψ(et−1)

et−1
} (2.15)

. We know that M(eψ(et−1), t) exists thanks to Theorem 2.3.
Then, by Lemma 2.1, we know that for any T ≥ 1,

{x ∈ B0 : f(x) ∈ Sn(ψ)} =
⋃
t≥T

At ∪
⋃
t≥T

Bt. (2.16)

By our assumption in Theorem 2.3 and that ψ(q) ≥ q−5/4n, we get that:

m(At) ≪ (e(t−1)/4)−
1

d(2l−1)(n+1) , (2.17)

and

m(Bt) ≪ ψ(et−1)me(d+1)(t−1+ · (ψ(e
t−1)

et−1
)d = ψ(et−1)net−1, (2.18)

where m is the d-dimensional Lebesgue measure.

We now apply Lemma 2.2 to get that:

m({x ∈ B0 : x is ψ-approximable}) ≪
∑
t≥T

(e(t−1)/4)−
1

d(2l−1)(n+1) +
∑
t≥T

ψ(et−1)net−1. (2.19)

This tends to 0 as T → ∞, since both of the above series are convergent. Therefore, we
conclude that the Lebesgue measure of ψ-approximable points in B0 is 0, and since x0 and
B0 were arbitrarily chosen, we conclude that almost all points on the manifold M are not
ψ-approximable. □

3. Preliminaries from Convex and Discrete Geometry

3.1. Lattices. In order to understand Theorem 2.3, we have to understand how we formulate
this subset called the minor arcs. To do this, we need an understanding of the discrete algebraic
structure known as the lattice.

Definition 3.1. Let G be a locally compact second countable group, and Λ be a subgroup of G.
We call Λ a lattice in G if Λ is discrete and G/Λ has a finite G-invariant Haar measure, which
means that there exists a finite measure µ in G/Λ such that µ(gA) = µ(A) for any g ∈ G and
any A ⊂ G/Λ.

Definition 3.2. Given the same setup as in Definition 3.1, there exists a homomorphism
∆G : G → R>0 such that µ(Sg) = ∆G(g) · µ(S). ∆G is called the modular function of G.
G is said to be unimodular if ∆G is identically 1. In that case, the measure µ is said to be
right-invariant as well.
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Theorem 3.1. A left invariant Haar measure on G/H is unique up to scalar multiples. The
quotient G/H carries a left invariant measure if and only if

∆G(h) = ∆H(h) (3.1)

for all h ∈ H.

The following lemma is a well-known result:

Lemma 3.1. Show that Zn is a lattice in Rn.

Proof. First, we show Zn is discrete in Rn. It suffices to show that for an arbitrary point in Zn
we can find a neighborhood around that point with no limit points. It is easy to see that using
the product topologies on Zn and Rn, and for any point z = (z1, ..., zm) ∈ Zn, we can simply
take the neighborhood ((z1 − 0.5, z1 + 0.5)× · · · × (zm − 0.5, zm + 0.5)) ⊆ Rn and observe that
there is only one point of Zn (z) that is in this neighborhood. Therefore, Zn is discrete in Rn.
By Theorem 3.1, Rn/Zn carries a left invariant measure if and only if their modular functions
agree on all z ∈ Zn (both are abelian, so both unimodular). In this case, we can use the
Lebesgue measure for both groups, which is both left and right-invariant, and therefore their
modular functions are both 1. Therefore, the left invariant measure µ exists. We just have to
show µ is finite and Zn-invariant.
It is well-known that Rn/Zn is isomorphic to

∏
n S

1, and so the measure of the entire space
would be (2π)n, and any subset of the space would have measure less than or equal to (2π)n, and
we conclude that µ is finite. To show that µ is Zn-invariant, take a subset S ⊆ Rn/Zn, and let
us say that S is isomorphic to (a1, b1)× · · ·× (an, bn) ⊆

∏
n S

1. Then, fix z = (z1, . . . , zn) ∈ Zn,
and we observe that

µ(z + S) = µ((z1 + a1, z1 + bn)× · · · × (zn + an, zn + bn))

= µ((a1, b1)× · · · × (an, bn))

= µ(S).

(3.2)

Therefore, µ is finite and Zn-invariant, and we conclude that Zn is a lattice in Rn. □

Remark 3.1. Any lattice in Rn can be written as gZn, where g ∈ GLn(R), the set of invertible
n × n matrices. Any unimodular lattice looks like gZn, where g ∈ SLn(R), the set of n × n
matrices with determinant ±1.

3.2. Notation. ∥·∥ and ∥·∥∞ will denote the Euclidean and supremum norms on Rn respec-
tively. Given r > 0 and x ∈ Rn, B(x, r) denotes the Euclidean ball of radius r centered at x,
and B(x, r) denotes the ∥·∥∞-ball of radius r centered at x, which is a hypercube.
For the rest of the paper, we write f ≪ g if there exists a constant C such that |f | ≤ Cg
pointwise. We write f ≍ g if f ≪ g and g ≪ f . We also denote G = SL(n + 1,R) and
Γ = SL(n+1,Z). Then, the homogeneous space Xn+1 := G/Γ can be identified with the set of
all unimodular lattices in Rn+1, where the coset gΓ in Xn+1 corresponds to the lattice gZn+1 in
Rn+1.

3.3. Polar Lattices.

Definition 3.3. Given a lattice Λ ∈ Xn+1 and an integer 1 ≤ i ≤ n+ 1, let

λi(Λ) := inf{λ > 0 : B(0, λ) ∩ Λ contains i linearly independent vectors}. (3.3)

It is immediately obvious that λ1(Λ) ≤ · · · ≤ λn+1(Λ), which are the successive minima of
the closed unit ball B(0, 1) with respect to Λ.
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Definition 3.4. Given a lattice Λ ∈ Xn+1, its polar lattice is defined as follows:

Λ∗ = {a ∈ Rn+1 : a · b ∈ Z for every b ∈ Λ}. (3.4)

Definition 3.5. Given a convex body C in Rn+1 symmetric about 0, one defines the polar body

C∗ = {y ∈ Rn+1 : x · y ≤ 1 for all y ∈ C}. (3.5)

Next, we recall [1, Lemma 3.1].

Lemma 3.2. Let g ∈ G. Then

(gZn+1)∗ = (gT )−1Zn+1, (3.6)

where (gT )−1 is the inverse of the transpose of g.

We recall [2, Theorem 23.2] by Gruber.

Theorem 3.2. Let Λ be a lattice in Rn+1. Then, for every 1 ≤ i ≤ n+ 1, we have that

1 ≤ λi(Λ)λn+2−i(Λ
∗) ≤ (n+ 1)!2. (3.7)

Given k ∈ N, we define the following k × k matrix

σk =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 . (3.8)

We have that for every g ∈ G,

λi(gZn+1) = λi(σ
−1
n+1gσZn+1). (3.9)

Given g ∈ G, we define the dual of g as

g∗ = σ−1
n+1(g

T )−1σ. (3.10)

3.4. Defining Major and Minor Arcs. Recall that

R(∆; ϵ, t) = {(p, q) ∈ Zn+1 : 0 < q < et and ∃ x ∈ ∆ ∩ U with f(x) ∈ B(
p

q
,
ϵ

et
)}. (3.11)

We want to interpret the condition of f(x) ∈ B(p
q
, ϵ
et
) in terms of properties of the action of

some gϵ,t ∈ G (see (3.14)) on a certain lattice in Rn+1.
Given y = (y1, . . . , yn) ∈ Rn, we define

U(y) :=

[
In σ−1

n yT

0 1

]
=


1 yn

. . .
...

1 y1
1

 ∈ G. (3.12)
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Given an m× d matrix Θ = [θi,j]1≤i≤m,1≤j≤d ∈ Rm×d, we define

Z(Θ) :=

Im σ−1
m Θσd 0

0 I 0
0 0 1

 =



1 θm,d . . . θm,1 0
. . .

...
. . .

...
...

1 θ1,d . . . θ1,1 0
1 . . . 0 0

. . .
...

...
1 0

1


. (3.13)

Finally, for each g > 0 and 0 < ϵ < 1, we define the following unimodular diagonal matrix

gϵ,t := diag{ϕϵ−1, . . . , ϕϵ−1, ϕe−t}, (3.14)

where

ϕ := (ϵnet)
1

n+1 . (3.15)

Lemma 3.3. For any t > 0, Θ ∈ Rm×d and y ∈ Rn, we have that

gϵ,tU(y)g
−1
ϵ,t = U(etϵ−1y) and gϵ,tZ(Θ)g−1

ϵ,t = Z(Θ). (3.16)

Proof. Using (3.14) and (3.12), we have the following:

gϵ,tU(y)g
−1
ϵ,t =


ϕϵ−1 0 0

. . .
...

...
ϕϵ−1 0

0 . . . 0 ϕe−t



1 yn

. . .
...

1 y1
0 . . . 0 1



ϕ−1ϵ 0 0

. . .
...

...
ϕ−1ϵ 0

0 . . . 0 ϕ−1et



=


ϕϵ−1 ϕϵ−1yn

. . .
...

ϕϵ−1 ϕϵ−1y1
0 . . . 0 ϕe−t



ϕ−1ϵ 0 0

. . .
...

...
ϕ−1ϵ 0

0 . . . 0 ϕ−1et



=


1 etϵ−1yn

. . .
...

1 etϵ−1y1
0 . . . 0 1


= U(etϵ−1y).
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Using (3.14) and (3.13), we have the following:

gϵ,tZ(Θ)g−1
ϵ,t =


ϕϵ−1 0 0

. . .
...

...
ϕϵ−1 0

0 . . . 0 ϕe−t





1 θm,d . . . θm,1 0
. . .

...
...

...
1 θ1,d . . . θ1,1 0

1 0
. . .

...
1 0

0 . . . 0 1




ϕ−1ϵ 0 0

. . .
...

...
ϕ−1ϵ 0

0 . . . 0 ϕ−1et



=



ϕϵ−1 ϕϵ−1θm,d . . . ϕϵ−1θm,1 0
. . .

...
...

...
ϕϵ−1 ϕϵ−1θ1,d . . . ϕϵ−1θ1,1 0

ϕϵ−1 0
. . .

...
ϕϵ−1 0

0 . . . 0 ϕe−t




ϕ−1ϵ 0 0

. . .
...

...
ϕ−1ϵ 0

0 . . . 0 ϕ−1et



=



1 θm,d . . . θm,1 0
. . .

...
...

...
1 θ1,d . . . θ1,1 0

1 0
. . .

...
1 0

0 . . . 0 1


= Z(Θ).

□

Lemma 3.4. Let y ∈ Rn. Then, for any t > 0, any Θ ∈ Rm×d, if y ∈ B(p
q
, ϵ
et
) for some

(p, q) ∈ Zn+1 with 0 < q < et, then∥∥gϵ,tZ(Θ)U(y)(−pσn, q)
T
∥∥ ≤ c0ϕ, (3.17)

where
c0 =

√
n+ 1 max

1≤i≤m
(1 + |θi,1|+ · · ·+ |θi,d|). (3.18)

.

Proof. Note that since y ∈ B(p
q
, ϵ
et
), trivially we have that ||gϵ,tU(y)(−pσn, q)

T ||∞ < ϕ.

gϵ,tU(y)(−pσn, q)
T ||∞ < ϕ =

∥∥∥∥∥∥∥∥

ϕϵ−1(qyn − pn)

...
ϕϵ−1(qy1 − p1)

ϕe−tq


∥∥∥∥∥∥∥∥ <

∥∥∥∥∥∥∥∥∥


ϕϵ−1 ϵ|q|

et
...

ϕϵ−1 ϵ|q|
et

ϕe−tq


∥∥∥∥∥∥∥∥∥ . (3.19)

Then, using Lemma 3.3, we get:

||gϵ,tZ(Θ)U(y)(−pσn, q)
T ||∞ = ||Z(Θ)gϵ,tU(y)(−pσn, q)

T ||
≤ ||Z(Θ)||∞||gϵ,tU(y)(−pσn, q)

T ||
≤ ||Z(Θ)||∞ · ϕ.

(3.20)
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||Z(Θ)||∞ is the operator norm of Z(Θ) as a linear transformation from Rn+1 to itself with the
supremum norm. So, note that ||Z(Θ)||∞ = max1≤i≤m(1 + |θi,1 + · · · + |θi,d|). Therefore, we
have that ||Z(Θ)||∞ ≤ c0, and so we are done.

□

Now, let y = f(x) := (x, f(x)) = (x1, . . . , xd, f1(x), . . . , fm(x)), where f is a non-degenerate
map. For x = (x1, . . . , xd) ∈ U , we define

u(x) := U(f(x)), (3.21)

and let

J(x) := [
∂fi
∂xj

(x)]1≤i≤m,1≤j≤d ∈ Rm×d. (3.22)

Next, for x ∈ U , we define
z(x) := Z(−J(x)), (3.23)

and we let
u1(x) = z(x)u(x). (3.24)

Lemma 3.5. Let x ∈ U . If f(x) ∈ B(p
q
, ϵ
et
) for some (p, q) ∈ Zn+1 with 0 < q < et, then

λ1(gϵ,tu1(x)Zn+1) ≤ c1ϕ, (3.25)

where
c1 =

√
n+ 1(d+ 1)M. (3.26)

Proof. Firstly, if we set Θ = −J(x) and y = f(x), then we get that

Z(Θ)U(y) = z(x)u(x) = u1(x). (3.27)

Secondly, the quantity max1≤i≤m(1+ |θi,1|+ · · ·+ |θi,d| is bounded by (d+1)M from Definition
2.3. This means that c0 ≤ c1, and hence this follows from Lemma 3.3. □

Now, we can finally set up major and minor arcs. For each t ∈ N, we define

bt :=

e
dt

2(n+1) Im

e−
(m+1)t
2(n+1) Id

e
dt

2(n+1)

 ∈ G. (3.28)

Now, we define the ’raw’ set of minor arcs:

M0(ϵ, t) := {x ∈ U : λn+1(btgϵ,tu1(x)Zn+1) > ϕe
dt

2(n+1)}. (3.29)

Now, we define the set of minor arcs as a “thickening” of M0(ϵ, t):

M(ϵ, t) :=
⋃

x∈M0(ϵ,t)

B(x, ϵe−t/2) ∪ U. (3.30)

The set of major arcs is simply the complement of the minor arcs:

M′(ϵ, t) := U \M(ϵ, t). (3.31)

Lemma 3.6. For any t > 0, Θ ∈ Rm×d and x = (x1, . . . , xd) ∈ Rd we have that

btU(x)b−t = U(e−t/2x), (3.32)

btZ(Θ)b−t = Z(et/2Θ). (3.33)
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Proof. The proof involves long matrix multiplications, see the proof of Lemma 3.3 for a similar
proof. □

Lemma 3.7. For any x ∈ U and x′ = (x′1, . . . , x
′
d) ∈ Rd such that the line segment joining x

and x+ x′ is contained in U we have that

u1(x+ x′) = Z(O(∥x′∥)U(O(∥x′∥2))U(x′)u1(x). (3.34)

Proof. The proof is obtained using the Taylor’s expansion of f(x′) and the definition of nonde-
generacy. □

4. Proving Theorem 1.3

4.1. Minor Arcs.

Proposition 4.1. Suppose U ⊆ Rd is open, x0 ∈ U , f : U → Rn be l-nondegenerate at x0.
Then, there is a ball B0 ⊆ U centered at x0 and constants K0, t0 > 0 depending on f and B0

only such that for any 0 < ϵ ≤ 1 and every t ≥ t0, we have that

m(M(ϵ, t) ∩B0) ≤ K0(ϵ
ne

3t
2 )−

1
d(2l−1)(n+1) . (4.1)

Furthermore, M(ϵ, t) can be written as a union of balls in U of radius ϵe−t/2 of intersection
multiplicity ≤ Nd.

Proof. By definition of minor arcs, for any x ∈M0(ϵ, t), we have that:

λn+1(btgϵ,tu1(x)Zn+1) > ϕe
dt

2(n+1) . (4.2)

Additionally, by Theorem 3.2, we have the following:

1 ≤ λ1(b
∗
tg

∗
ϵ,tu

∗
1(x)Zn+1)λn+1(btgϵ,tu1(x)Zn+1) ≤ (n+ 1)!2.

So, we conclude that

λ1(b
∗
tg

∗
t u

∗
1(x)Zn+1) ≤ (n+ 1)!2ϕ−1e−

dt
2(n+1) . (4.3)

Therefore, by the above, we have that for any x ∈ M0(ϵ, t), there exists (a0, a) ∈ Z× Zn \ {0}
such that:

|a0 + f(x)aT | < c2e
−t,

||▽f(x)aT ||∞ < c2ϵ
−1e−t/2,

max{|ad+1, . . . , |an|} < c2ϵ
−1.

Let us first observe that:

b∗tg
∗
t =

e
− dt

2(n+1)

e
(m+1)t
2(n+1) Id

e−
dt

2(n+1) Im

ϕ−1


et

ϵ
. . .

ϵ



= ϕ−1

e
t− dt

2(n+1)

ϵe
(m+1)t
2(n+1) Id

ϵe−
dt

2(n+1) Im

 .
(4.4)
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Keeping in mind that f(x) := (x1, . . . , xd, f1(x), . . . , fm(x)), we also know that:

u∗1(x)

[
a0
aT

]
=

1 −x −(f1(x), . . . , fm(x))
0 Id J(x)
0 0 Im

[
a0
aT

]

=



a0 − x1a1 − · · · − xdad −1 (x)ad+1 − · · · − fm(x)an
a1 +

∂f1
∂x1

(x)ad+1 + · · ·+ ∂fm
∂x1

(x)an
...

ad +
∂f1
∂xd

(x)ad+1 + · · ·+ ∂fm
∂xd

(x)an
ad+1
...
an



=


a0 − f(x)aT

▽f(x)aT

ad+1
...
an

 .

(4.5)

So, multiplying together the left hand sides of (4.4) and (4.5), we get:

b∗tg
∗
t u

∗
1(x)

[
a0
aT

]
= ϕ−1

e
t− dt

2(n+1)

ϵe
(m+1)t
2(n+1) Id

ϵe−
dt

2(n+1) Im



a0 − f(x)aT

▽f(x)aT

ad+1
...
an



=

 ete−
dt

2(n+1 (a0 − f(x)aT )

ϵe
(m+1)t
2(n+1) ▽f(x)aT

ϵe−
dt

2(n+1)
[
ad+1 . . . an

]T
 .

(4.6)

Now, from Theorem 3.2, we have that λ1(b
∗
tg

∗
t u

∗
1(x)Zn+1) ≤ c2ϕ

−1e−
dt

2(n+1) , where c2 = (n+1)!2.
Therefore, we get that: ∥∥b∗tg∗t u∗1(x)Zn+1

∥∥
∞ ≤ c2ϕ

−1e−
dt

2(n+1) .

So, we get the inequalities:

ete−
dt

2(n+1) (a0 − f(x)) ≤ c2ϕ
−1e−

dt
2(n+1)

⇒ (a0 − f(x)) ≤ c2e
−t

ϵe
(m+1)t
2(n+1) ▽f(x)aT ≤ c2ϕ

−1e−
dt

2(n+1)

▽f(x)aT ≤ c2ϵ
−1e−

t(d+m+1)
2(n+1)

⇒ ▽f(x)aT ≤ c2ϵ
−1e−

t
2

ϵe−
dt

2(n+1) max{|ad+1, . . . , |an|} ≤ c2ϕ
−1e−

dt
2(n+1)

⇒ max{|ad+1, . . . , |an|} ≤ c2ϵ
−1
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Now, using the three inequalities above, as well as our upper bound M on all the partial
derivatives of f , for every x′ ∈M(ϵ, t), we want to find a strict upper bound on |a0 + f(x′)aT |.
Using the Taylor expansion of the function a0 + f(x′)aT , one has that for every x′ ∈ M(ϵ, t),∣∣a0 + f(x′)aT

∣∣ < c2e
−t + c2de

−t +
1

2
d2mMc2ϵe

−t ≤ c3e
−t, (4.7)

where c3 is some constant that depends on n and f only. Similarly, using the Taylor’s expansion
of the gradient ∇f(x)aT , one has that for every x′ ∈ M(ϵ, t),∥∥∇f(x′)aT

∥∥
∞ ≤ c2ϵ

−1e−t/2 + dc2e
−t/2 ≤ c3ϵ

−1e−t/2. (4.8)

Using this information, we refer to the quantitative non-divergence estimate on the space of
lattices due to Bernik, Kleinbock and Margulis [3], and we get there exists a ball B0 ⊆ U
centered at some x0 ∈ M(ϵ, t) and a constant E ≥ 1 such that for any choice of

0 < δ ≤ 1, T ≥ 1 and K > 0 satisfying δn < KT n−1, (4.9)

the Lebesgue measure of M(ϵ, t) satisfies the inequality

m(M(ϵ, t) ∩B0) ≤ E(cn+1
3 ϵ−ne−3t/2)−

1
d(2l−1)(n+1)m(B0). (4.10)

□

4.2. Major Arcs.

Proposition 4.2. Suppose U ⊆ Rd is open, f : U → Rn be non-degenerate. Then, for any
0 < ϵ ≤ 1, any ball B ⊆ U and all sufficiently large t, we have that

N(B \M(ϵ, t); ϵ, t) ≤ K1ϵ
me(d+1)Tm(B), (4.11)

where K1 depends on n and f only.

We need some lemmas in order to prove this proposition.

Lemma 4.1. N(∆1 ∪∆2; ϵ, t) ≤ N(∆1; ϵ, t) +N(∆2; ϵ, t).

Proof. The proof of this is trivial. □

Lemma 4.2. For all sufficiently large t > 0 we have that

N(B \M(ϵ, t); ϵ, t) ≤ 2(ϵe−t)−
d
2m(B) max

x0∈M′(ϵ,t)∩B
N(∆t(x0) ∩B; ϵ, t). (4.12)

Proof. We denote
∆t(x0) := B∞(x0, (ϵe

−t)1/2, (4.13)

and
M =

⋂
x∈M0

B2(x, ϵe
−t/2) ∩ U. (4.14)

Fix N such that for sufficiently large t, B can be covered by N hypercubes of sidelength
(ϵe−t)1/2. The volume of each such hypercube would be (ϵe−t)d/2.
Now, we also know that

N(ϵe−t)d/2 ≍ m(B) ≤ 2m(B). (4.15)

So, we have that
N ≤ 2(ϵe−t)−d/2m(B). (4.16)

We observe that any of these hypercubes which intersect M′(ϵ, t) ∩ B can be covered by a
hypercube ∆t(x0) with x0 ∈ M′ ∩B ∩∆. Thus, the collection of the sets ∆t(x0)∩B is a cover
for M′(ϵ, t) ∩B. Let’s say the number of such sets that would form the cover is N(∆; ϵ, t).
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Then, we can observe that

N(B \ ϵ, t; ϵ, t) ≤ 2(ϵe−t)−d/2m(B)N(∆; ϵ, t). (4.17)

Additionally,
N(∆; ϵ, t) ≤ max

x0∈M′∩B
N(∆t(x0) ∩B; ϵ, t). (4.18)

Combining the two inequalities above gets the lemma as desired. □

Lemma 4.3. Let a ball B ⊆ U be given. Then, ∀t > 0 and x0 ∈ M′(ϵ, t) ∩B, we have:

N(∆t(x0) ∩B; ϵ, t) ≪ ϵnet(ϵe−t)−d/2. (4.19)

Proof. Let us assume that N(∆t(x0) ∩ B; ϵ, t) ̸= 0. We take any (p, q) ∈ R(∆t(x0) ∩ B; ϵ, t).

Then by definition, there exists x ∈ ∆t(x0) ∩B such that
∥∥∥f(x)− q

q

∥∥∥
∞
< ϵ

et

Then, by Lemma 4.2, we have that:

∥gϵ,tu1(x)(−pσn, q)∥ ≤ c1ϕ. (4.20)

Since x ∈ ∆t(x0), we have that x0 = x + (ϵe−t)1/2x′, where ∥x′∥ ≤ 1. We know that since
x,x′ ∈ U , the line segment joining them is contained in U as well. So, by Lemma 3.7, we have
that:

u1(x0) = Z(d1(ϵe
−t)1/2)U(d2ϵe

−t)U((ϵe−t1/2x′)u1(x). (4.21)

Then, we have that:

gϵ,tu1(x0) = gϵ,tZ(d1(ϵe
−t)1/2)U(d2ϵe

−t)U((ϵe−t1/2x′)u1(x)

= gϵ,tZ(d1(ϵe
−t)1/2)g−1

ϵ,t gϵ,tU(d2ϵe
−t)g−1

ϵ,t gϵ,tU((ϵe
−t1/2x′)g−1

ϵ,t gϵ,tu1(x)

= Z(d1(ϵe
−t)1/2)U(d2)U((ϵe

−t−1/2x′)gϵ,tu1(x).

(4.22)

Therefore,

gϵ,tu1(x0)(−pσn, q) = Z(d1(ϵe
−t)1/2)U(d2)U((ϵe

−t−1/2x′)gϵ,tu1(x)(−pσn, q). (4.23)

Now, let us denote:
gϵ,tu1(x)(−pσn, q) =: v = (vn, . . . , v1, v0).
Then, by the above, we have:

gϵ,tu1(x0)(−pσn, q) = Z(d1(ϵe
−t)1/2)U(d2)U((ϵe

−t−1/2x′)v

= Z(d1(ϵe
−t)1/2)U(d2)v

′,
(4.24)

where v′ = U((ϵe−t−1/2x′)v = (vn, . . . , vd+1, vd + (ϵe−t−1/2x′dv0, . . . , v1 + (ϵe−t)−1/2x′1v0, v0).

We know from the above that ∥v∥ ≤ c1ϕ. Furthermore, since 0 < q < et, we get |v0| =
ϕe−tq ≤ ϕ. Using the fact that ∥bx′∥ ≤ 1, we know that:
When d < i ≤ m, we have |vi| ≤ c1ϕ, from the fact that ∥v∥ ≤ c1ϕ.
When 1 ≤ i ≤ d, and given that (ϵe−t)−1/2) ≥ 1,

|vi + (ϵe−t)−1/2x′iv0| ≤ |vi|+ (ϵe−t)−1/2 · |x′i| · |v0|
≤ c1ϕ+ (ϵe−t)−1/2) · 1 · ϕ
≤ c1ϕ(ϵe

−t)−1/2 + (ϵe−t)−1/2) · ϕ
= (c1 + 1)ϕ(ϵe−t)−1/2).

(4.25)
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Therefore, denoting [a] as the closed interval [−a, a], in conclusion we get that:

v′ ∈ [c1ϕ]
m × (c1 + 1)ϕ(ϵe−t)−1/2]d × [ϕ]. (4.26)

Then, we get from the definition of v′ that:

gϵ,tu1(x0)(−pσn, q) = Z(d1(ϵe
−t)1/2)U(d2)v

′

∈ [c4ϕ]
m × [c4ϕ(ϵe

−t−1/2]d × [c4ϕ],
(4.27)

for some constant c4 > 0 depending on n and f only. Then, we get that:

btgϵ,tu1(x0)(−pσn, q) ∈ [c4ϕe
h]m × [c4ϕϵ

−1/2eh]d × [c4ϕe
h], (4.28)

where h = dt/2(n+ 1).
Denote Ω = [c4ϕe

h]m × [c4ϕϵ
−1/2eh]d × [c4ϕe

h]
Then, we get that:

btgϵ,tu1(x0)(−pσn, q) ∈ Ω ∩ btgϵ,tu1(x0)Zn+1 ⊆ (c6Ω) ∩ btgϵ,tu1(x0)Zn+1. (4.29)

For any c6 > 1. On the other hand, since x0 ∈ M′(ϵ, t), we have that:

λn+1(btgϵ,tu1(x0)Zn+1) ≤ ϕeh. (4.30)

This implies that there exists a constant c6 > 1 such that c6Ω contains a full fundamental
domain of btgϵ,tu1(x0)Zn+1. Therefore,

#((c6Ω) ∩ btgϵ,tu1(x0)Zn+1) ≪ Ln+1(c6Ω) ≍ ϕn+1ϵ−d/2e(n+1)h. (4.31)

□

5. Understanding QS

Given a prime p, any nonzero rational number x can be written as x = pαr
s
, where r and s

are integers not divisible by p, and α is a unique integer. Then, we define the p-adic norm of
x as |x|p = p−α. Qp is the completion of Q with respect to the p-adic norm.

Remark 5.1. Any x ∈ Qp can be written uniquely as x =
∑∞

n=n0
anp

n, where an ∈ {0, . . . , p−1}
and n0 ∈ Z such that |x|p = p−n0 and an0 ̸= 0.

We use the following notation (where p is some fixed prime):

ZS := Z[1/p] = { a
pk

| a ∈ Z, k ∈ N ∪ {0}}. (5.1)

Let x = (xp, x∞) ∈ QS := Qp × R, then we define |x|S = max{|x1|p , |x2|∞}. Let Λ ⊆ Qn
S is a

lattice. Then, we define Λ∗ = {y ∈ Qn
S | x · y ∈ ZS∀x ∈ Λ}.

The following lemmas are well-known results, but we are re-proving them for the sake of gaining
a better understanding of QS.

Lemma 5.1. Show that Z[1/p] is dense in Qp.

Proof. Say x ∈ Qp. Then, we can write x = a−mp
−m + · · ·+ a0 + a1p+ . . . , where a−m ̸= 0.

Now, fix ϵ > 0. We know there exists n ∈ N such that 1
pn
< ϵ. Fix this n.

Our goal is to find some x0 such that |x− x0| < 1
pn
.
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Let x0 = a−mp
−m + · · ·+ anp

n ∈ Z[1/p]. Then, we have that:

|x− x0|p =
∣∣an+1p

n+1 + . . .
∣∣
p

≤ p−(n+1)

< p−n < ϵ.

(5.2)

So, we’ve shown that for any ϵ-neighborhood around an arbitrary x ∈ Qp, there is another
x ̸= x0 ∈ Z[1/p] in that ϵ-neighborhood. Therefore, Z[1/p] is dense in Qp. □

Lemma 5.2. Z is dense in B(0, 1) ⊆ Qp

Proof. Firstly, we know that Z ⊆ Qp, because for any a ∈ Z, we can write a = pxm where m
does not divide p and x ≥ 0. Then, we observe that |a|p = p−x ≤ 1. So, Z ⊆ B(0, 1). Then, we

can follow a similar proof method to show that Z is dense in B(0, 1). □

Lemma 5.3. Qp does not have a lattice.

Proof. Recall: Let Γ be a subgroup of G. We call Γ a lattice in G if Γ is discrete and G/Γ
has a finite G-invariant volume. It means there exists a finite measure µ in G/Γ such that
µ(gA) = µ(A) for any g ∈ G and any A ⊂ G/Γ.
Suppose by contradiction that there exists some discrete nontrivial lattice Λ ⊆ Qp. That means
that there exists some nontrivial x ∈ Λ.
Then, we know that ⊆ Λ as well. This is because Λ is a subgroup and closed with respect to
addition.
However, we already know that Z is dense in B(0, 1). This means that for any 0 < ϵ < 1 and
any x ∈ Λ, if we consider the ϵ-neighborhood around x, we can find another y ∈ Λ that is in
that neighborhood. This contradicts the premise that Λ is discrete. So, we conclude that Qp

does not have a lattice. □

Lemma 5.4. Z[1/p] ⊆ Qp × R.
Proof. We want to show that Zp has no limit points. Assume for contradiction that there
exists a sequence (an,an) that converges to (x, y) ∈ Qp × R. This means that the sequences
|an+1 − an|p → 0 and |an+1 − an|∞ → 0.

If we think of the p-adic valuation as describing how ”divisible by p” the number is, then
we can think that the more ”divisible by p” it is, the smaller its p-adic norm gets.

So, let us first assume that |an+1 − an|p → 0. Then, this would actually mean that with

the infinity norm, |an+1 − an|∞ → ∞.

Similarly, assume that |an+1 − an|∞ → 0. This means that |an+1 − an|∞ is getting less ”di-
visible by p”, and so we actually get that |an+1 − an|p is a monotonically increasing sequence
which is always positive, and therefore cannot converge to 0.

Therefore, we conclude that such a sequence (an, an) → (x, y) ∈ Qp×R cannot exist. Therefore,
conclude that Zp is discrete in Qp × R. □

6. Generalizing Results to QS

We have not been able to get full results in the case of QS. However, there are some lemmas
which we expect to fully work in this space and not just in Rd.
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Theorem 6.1. Let C be a proper convex body that is o-symmetric. Then, 4d

d!
≤ V (C)V (C∗).

Remark 6.1. This theorem would work for all convex bodies in any arbitrary space.

Proof. Since a non-singular linear transformation does not change V (C)V (C∗), we can assume
that O = {x : |x1|+ · · ·+ |xd| ≤ 1} is inscribed in C and has maximum volume among all such
cross-polytopes.
Since O has maximum volume, C is contained in the cube K = {x : |xi| ≤ 1}. Thus,
O ⊆ C ⊆ K, and by polarity, K∗ ⊆ C∗ ⊆ O∗. Note that K∗ = O. Hence,

(2d)2

(d!)2
= V (O)2 = V (O)V (K∗) ≤ V (C)V (C∗). (6.1)

□

Theorem 6.2. If C is a convex body in Qn
S, then we define

C∗ = {y : |x · y|S ≤ 1 for all x ∈ C}. (6.2)

If L is a lattice in Qn
S, then we define

L∗ = {y ∈ Qn
S | x · y ∈ ZS for all x ∈ L}. (6.3)

Let C be an o-symmetric convex body and L a lattice in Qd
S. Let λi = λi(C,L) and λ∗j =

λj(C
∗, L∗). Then, for k = 1, . . . , d,

1 ≤ λd−k+1λ
∗
k ≤

4d

V (C)V (C∗)
≤ (d!)2. (6.4)

Proof. We know that V (C)V (C∗) ≥ 4d

(d!)2
, and that d(L)d(L∗) = 1 in the setting of Qd

S.

We can choose linearly independent points l1, . . . , ld ∈ L and m1, . . . ,md ∈ L∗ such that for
i, j = 1, . . . , d,

li ∈ λibdC,mj ∈ λ∗jbdC
∗, (6.5)

where bdC is the boundary of C.
Then, ± 1

λi
li ∈ bdC and ± 1

λ∗j
mJ ∈ bdC∗. By the definition of C∗, we have that

± li
λi

· mj

λ∗j
≤ 1 or λiλ

∗
j ≥ ±li ·mj. (6.6)

By the definition of L∗, we then have that for i, j = 1, . . . , d:

λiλ
∗
j ≥ 1 or li ·mj = 0. (6.7)

Let k ∈ {1, . . . , d}. Since m1, . . . ,mk are linearly independent, the set {x : x · m1 = · · · =
x ·mk = 0} is a subspace of Qd

S of dimension d− k. Thus, at least one of the d− k+ 1 linearly
independent points l1, . . . , ld−k+1 is not contained in this subspace.
Hence, we can choose a suitable i and j such that li · mj ̸= 0, where 1 ≤ i ≤ d − k + 1 and
1 ≤ j ≤ k. Then, since 0 < λ1 ≤ · · · ≤ λd <∞, we get that

λd−k+1λ
∗
k ≤ λiλ

∗
j ≤ 1. (6.8)

We know Minkowski’s second fundamental theorem holds for our setup as well. So,

2d

d!
d(L) ≤ λ1 . . . λdV (C) ≤ 2dd(L). (6.9)
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So, we know that λ1 . . . λdV (C) ≤ 2dd(L) and λ∗1 . . . λ
∗
dV (C∗) ≤ 2dd(L∗).

Thus,
(λ1λ

∗
d) . . . (λd−k+1λ

∗
k . . . (λdλ

∗
1)V (C)V (C∗) ≤ 4dd(L)d(L∗). (6.10)

Combining this with the fact that d(L)d(L∗) = 1 and that 1 ≤ λ1λ
∗
d, . . . , λd−k+1λ

∗
k, . . . , λdλ

∗
1,

we get the inequality

λd−k+1λ
∗
k ≤

4d

V (C)V (Cj)
≤ (d!)2. (6.11)

And we are done.
□
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