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1 Introduction

We say a set is “Dedekind-finite” if there is no bijection between it and a proper
subset. A set is “Dedekind-infinite” if it is not Dedekind-finite. If we assume
the Axiom of Choice, being Dedekind-finite is equivalent to being in 1-1 cor-
respondence with a natural number. However, without the Axiom of Choice,
there may exist infinite Dedekind-finite sets; Dedekind-finite sets that contain
more than n elements for all n P N.

These infinite Dedekind-finite sets behave much like very large finite sets
when it comes to polynomials. In this paper, assume polynomials have finitely
many terms and natural number coefficients and exponents unless otherwise
specified. Addition in this context means taking the disjoint union and multi-
plication means taking the Cartesian product. Coefficients are repeated addition
and exponents are repeated multiplication.

First, the following lemma allows us to use another useful definition of
Dedekind-finite:

Lemma 1.1. Let X be a set. The following are equivalent definitions for “X
is Dedekind-finite”:

1



1. There is no 1-1 correspondence between X and a proper subset of X.

2. X has no countably infinite subset.

Proof: We proceed by proof by contrapositive.

p1q ùñ p2q: Suppose there exists a countably infinite subset S of X. Since
S is countable, there exists a bijection g : S Ñ N. Let f : X Ñ X where

fpxq “

#

x x R S

g´1p2gpxqq x P S
. It suffices to show that f is injective but not sur-

jective because then it is a bijection between X and its image, which is a proper
subset of X.

Suppose fpxq “ fpyq. If x, y R S, then we have x “ y. If x, y P S, then
g´1p2gpxqq “ g´1p2gpyqq, so we can apply g to both sides to get 2gpxq “ 2gpyq.
Since g and multiplication by 2 are injective, so is 2g, so x “ y. If x P S, y R S,
then fpxq is in the image of g´1, which is S, and fpyq “ y R S, which contradicts
fpxq “ fpyq. The same goes if x R S, y P S. Thus fpxq “ fpyq ùñ x “ y, so f
is injective.

Consider g´1p1q P S. For all x R S, fpxq “ x R S, so fpxq ‰ g´1p1q. For
all x P S, there exists some n P N such that g´1pnq “ x because g is bijective.
Then,

fpxq “ fpg´1pnqq “ g´1p2gpg´1pnqqq

since g, g´1 are inverses,
“ g´1p2nq

Since 2n ‰ 1 for all n P N and g´1 is bijective, g´1p2nq ‰ g´1p1q for all n P N.
Thus fpxq ‰ g´1p1q. Then g´1p1q is never in the image of f , so f is not
surjective.

p2q ùñ p1q: Suppose there exists a bijection f : X Ñ S where S Ă X. Let
x0 P XzS, which is possible because S is a proper subset. I claim that g : N Ñ S
where gpnq “ fnpx0q (i.e. applying f to x0, n times) is injective. Then grNs is
a countably infinite subset of S (and therefore of X).

Suppose for the sake of induction that gp1q, ¨ ¨ ¨ , gpn ´ 1q are all pairwise
distinct. Then gpnq “ fpgpn ´ 1qq, and gp1q “ fpx0q. Since the image of g is
contained in S and x0 R S, gpn ´ 1q ‰ x0, and since f is bijective, gpnq ‰ gp1q.
Note that gpkq “ fpgpk ´ 1qq for all k “ 2, ¨ ¨ ¨ , n ´ 1. By the inductive hy-
pothesis, gpn ´ 1q ‰ gpk ´ 1q for all k “ 2, ¨ ¨ ¨ , n ´ 1, so since f is bijective,
gpnq ‰ gpkq for all k “ 2 ¨ ¨ ¨ , n´1. Thus gp1q, ¨ ¨ ¨ , gpnq are all pairwise distinct.
Then by induction on n, g is injective.

2



If we assume the Axiom of Choice, infinite cardinal polynomials are very
simple: if at least one of κ, λ is infinite, then κ ` λ “ maxpκ, λq. If at least one
of κ, λ is infinite and neither is 0, then κ ¨ λ “ maxpκ, λq. Then any polynomial
that has an infinite term simplifies down to the largest infinite cardinal that is
the value of one of the variables.

However, we can show that unlike Dedekind-infinite sets, infinite Dedekind-
finite sets behave like sufficiently large finite sets when it comes to polynomials.
In particular, if some polynomial is larger than another for sufficiently large
finite inputs, that inequality will also hold for infinite Dedekind-finite sets. The
following theorems formalize that intuition.

2 Infinite Dedekind-finite sets are transcenden-
tal

Lemma 2.1. Let p, q be distinct finite polynomials in one variable with natural
number coefficients and exponents. Then without loss of generality, there exists
some N P N such that for all n ě N , ppnq ą qpnq. If ppXq ď qpXq for some
infinite X, then X is Dedekind-infinite. In other words, ppxq ą qpxq for all
sufficiently large Dedekind-finite sets x.

Proof: Suppose p, q are distinct polynomials in one variable and for all n ě N ,
ppnq ą qpnq. LetX be an infinite set such that ppXq ď qpXq. SinceX is infinite,
choose N elements from X and order them into a list of length N : x1, ¨ ¨ ¨ , xN .
Since ppXq ď qpXq, let f : ppXq Ñ qpXq be an injection.

With N elements from X, we can generate ppNq points in ppXq; for exam-
ple, if the coefficient on the X2 term in ppXq is 2 and N “ 2, then p0, x1, x2q

and p1, x2, x1q are points in ppXq. We order these points from lowest degree
term to highest, then by coefficient, then lexicographically in Xj for each Xj

term in ppXq. Then we have an ordered list of ppNq points in ppXq using only
combinations of x1, ¨ ¨ ¨ , xN .

Using f , map these ppNq points to an ordered list of ppNq points in qpXq,
where the ordering comes from f . Since ppNq ą qpNq, these ppNq points must
contain points that are not just combinations of x1, ¨ ¨ ¨ , xN in qpXq because
there are only qpNq such points. Then this ordered list of ppNq points in qpXq

must include an element of X that is not among x1, ¨ ¨ ¨ , xN . Pick the first new
element of X that shows up in the list and append it to the ordered list of N
elements from x to get a list of length N ` 1.

Again make an ordered list of ppN ` 1q points in ppXq, and use f to get an
ordered list of ppN ` 1q elements of qpXq. Then take the first new point in X
and extend the ordered list of N ` 1 points in X by that one element. Since
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ppnq ą qpnq for all n ě N , we can repeat inductively to get a countably infinite
sequence of elements in X. Then, X is Dedekind-infinite.

Theorem 2.1. Suppose X is an infinite Dedekind-finite set. Then for any finite
polynomial p with integer coefficients and natural number exponents, ppXq ‰ 0.
In other words, X is transcendental.

Proof: Suppose for the sake of contradiction that ppXq “ 0. We can add the
negative terms to both sides of the equation so we have qpXq “ rpXq where
q, r are finite polynomials with natural number coefficients and natural number
exponents. In particular, q is the polynomial made of the terms of p with pos-
itive coefficients and r is the polynomial made of the terms of p with negative
coefficients.

Since each (nonzero) term of p cannot have both positive and negative coeffi-
cient, q, r do not share any terms of the same power. Then, q, r are distinct finite
polynomials in one variable with natural number coefficients and exponents.
Since qpXq “ rpXq and X is infinite, by lemma 2.1 X is Dedekind-infinite,
which contradicts X being Dedekind-finite.

3 Polynomials in more than one variable

In this paper, an equation has an “integer solution” if there is a solution where
all the variables are integers. Likewise a “Dedekind-finite solution” is where all
the variables are Dedekind-finite.

Theorem 3.1. Let p, q be distinct finite polynomials in (up to) m variables,
x1, ¨ ¨ ¨ , xm each. Suppose there are no integer solutions to ppx1, ¨ ¨ ¨ , xmq “

qpx1, ¨ ¨ ¨ , xmq where xα1 ě n1, ¨ ¨ ¨ , xαk
ě nk where 1 ď α1 ă ¨ ¨ ¨ ă αk ď m

and n1, ¨ ¨ ¨ , nk P N. Then there are no Dedekind-finite solutions where xα1 ě

n1, ¨ ¨ ¨ , xαk
ě nk.

Proof: Order the terms in p, q lexicographically by the powers on the variables.
Suppose there exists a bijection f : ppx1, ¨ ¨ ¨ , xmq Ñ qpx1, ¨ ¨ ¨ , xmq. Pick n1

elements from xα1
and order them in a list, then pick n2 elements from xα2

,
and so on until we have n1, ¨ ¨ ¨ , nk elements from xα1

, ¨ ¨ ¨ , xαk
respectively. We

also have lists of 0 points in the other x’s. Since there are no integer solutions
in this case, we have one of the following cases:

pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q ă qp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q

pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q ą qp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q

Suppose the latter is true. Order the points in ppx1, ¨ ¨ ¨ , xmq first by the
order of the terms, then by coefficient, then by the order on the x’s, then lexico-
graphically within xj

i . Then we have an ordered list of pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q

points in ppx1, ¨ ¨ ¨ , xmq, and we can send them via f to pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q
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points in qpx1, ¨ ¨ ¨ , xmq. Since pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q ą qp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q,
the points in qpx1, ¨ ¨ ¨ , xmq must include at least one new point in one of
x1, ¨ ¨ ¨ , xm, because they can’t be only the combinations of the points we already
have. Take the first such new point in the ordered list of pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q

points and append it to the respective list of points in x1, ¨ ¨ ¨ , xm. Again since
there are no integer solutions, we have an inequality:

pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , 1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q ă qp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , 1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q

pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , 1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q ą qp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , 1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q

If the former was true, we can use the same argument with f´1 to lengthen
one of the lists of elements in x1, ¨ ¨ ¨ , xm. Since at each stage we have ordered
lists of elements with at least n1, ¨ ¨ ¨ , nk elements from xα1

, ¨ ¨ ¨ , xαk
respectively,

we can repeat this step inductively to get countably infinite points in sequence.
By the pigeonhole principle, at least one of the x1, ¨ ¨ ¨ , xm must have countably
infinitely many points, so at least one of them is Dedekind-infinite.

As a special case, suppose we consider “trivial” solutions to be ones where
at least one of x1, ¨ ¨ ¨ , xm is 0. Then let α1 “ 1, ¨ ¨ ¨ , αk “ m and n1 “ ¨ ¨ ¨ “

nk “ 1, so by theorem 3.1 if there are no nontrivial integer solutions, there are
no nontrivial Dedekind-finite solutions.

Theorem 3.2. Let p, q be distinct finite polynomials in (up to) m variables,
x1, ¨ ¨ ¨ , xm each. Suppose ppx1, ¨ ¨ ¨ , xmq ą qpx1, ¨ ¨ ¨ , xmq whenever xα1

ě

n1, ¨ ¨ ¨ , xαk
ě nk. Then the same holds when we allow each of the xi to be

Dedekind-finite.

Proof: Suppose for the sake of contradiction that there exists an injection
f : ppx1, ¨ ¨ ¨ , xmq Ñ qpx1, ¨ ¨ ¨ , xmq and xα1

ě n1, ¨ ¨ ¨ , xαk
ě nk. Since xα1

ě

n1, ¨ ¨ ¨ , xαk
ě nk, create ordered lists of n1, ¨ ¨ ¨ , nk elements from xα1 , ¨ ¨ ¨ , xαk

respectively, as above.

Since pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q ą qp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q, we have an
ordered list of pp0, ¨ ¨ ¨ , n1, ¨ ¨ ¨ , nk, ¨ ¨ ¨ , 0q points in ppx1, ¨ ¨ ¨ , xmq, and we can
map them to the same number of points in qpx1, ¨ ¨ ¨ , xmq via f . Using the
ordering from f , take the first new point in the ordered list and append it to
the respective list of points in x1, ¨ ¨ ¨ , xm.

Since at each stage we have ordered lists of points in x1, ¨ ¨ ¨ , xm with at
least n1, ¨ ¨ ¨ , nk points in xα1

, ¨ ¨ ¨ , xαk
respectively, we can repeat inductively

countably infinitely many times. By the pigeonhole principle, at least one of
the x’s will end up with a countably infinite ordered sequence of points, so that
x is not Dedekind-finite.
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4 Possible extensions

The following are unproven conjectures that may be interesting with regards to
Dedekind-finite sets and polynomials.

Lemma 4.1. Let A be the set of atoms in the basic Fraenkel model, as described
in chapter 4 of Jech’s The Axiom of Choice. There is no injection f : An Ñ

K ˆ An´1 for any K,n P N.

Proof: Suppose for the sake of contradiction that there exists such an injection
f in the model. Then it is supported by some finite E Ă A. Pick a1, ¨ ¨ ¨ , an all
distinct elements of AzE, then fpa1, ¨ ¨ ¨ , anq “ pj, b1, ¨ ¨ ¨ , bn´1q for some j P K,
and b1, ¨ ¨ ¨ , bn´1 P A. Since a1, ¨ ¨ ¨ , an are all distinct, at least one of them
must be distinct from b1, ¨ ¨ ¨ , bn´1, say it is ai.

Let π be a permutation of A that fixes all the elements of A except for
swapping ai with some a1 not in E or b1, ¨ ¨ ¨ , bn´1. π fixes E so it fixes f , so
we have fpa1, ¨ ¨ ¨ , a1, ¨ ¨ ¨ , anq “ pj, b1, ¨ ¨ ¨ , bn´1q, which contradicts f being an
injection.

All that was required of K in this proof was to be a pure set (or well-
orderable, and thus in bijection with an ordinal/pure set). This suggests that
the theorem may be generalizable to polynomials with well-orderable coeffi-
cients. It may also be interesting to look at polynomials with Dedekind-finite
coefficients and exponents.

This proof can also be adapted to the second Fraenkel model by specifying
that all the a’s are from different pairs and none are paired with elements in E,
then swapping ai not paired with any b. It can also be adapted to the Mostowski
model by choosing a permutation that fixes every element of A outside of the
interval that ai is in (where the interval endpoints are the b’s and the elements
of E) but does not fix ai. This suggests that perhaps the theorem can be
generalized to all Dedekind-finite sets.

Conjecture. Suppose fpx, yq, gpx, yq are distinct polynomials and x, y are Dedekind-
finite. There exist k, n P N such that either fpx, yq ă gpx, yq for all y ą kxn or
gpx, yq ă fpx, yq for all y ą kxn.

Partial proof: We can assume without loss of generality that f, g have no
overlapping terms and all non-negative coefficients, because otherwise we can
cancel terms.

Case 1: f, g both have n as the highest power of x and m as the highest
power of y. It is unclear what conditions on x and y would ensure that f ą g
or g ą f .
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Case 2: Without loss of generality, f has a higher power of y than g. I claim
that if y ą xk where k is the largest power of x in g and y is sufficiently large,
then fpx, yq ą gpx, yq.

Let g1 be g but with every power of x replaced with xk and let f 1 be f but
with every power of x replaced with 1. Then g1 is of the form ppyqxk where ppyq

is some polynomial in y with degree less than the highest power of y in f . Also
f 1 is of the form qpyq, a polynomial in y with degree equal to the highest power
of y in f .

Note that g ă g1 because since x ě 1, replacing lower powers of x with xk

only increases the polynomial value, and f 1 ă f because replacing higher powers
of x with 1 only decreases the polynomial value. Then if y ą xk, g1 ă f 1, so
g ă g1 ă f 1 ă f .

While the general case of polynomials in multiple variables may not yield
any interesting results (for instance, there is no useful criterion to determine
when Dedekind-finite sets x ě y without any restriction on x and y), this may
give another criterion to tell when one polynomial is greater than another.

Almost all of the proofs given so far do not depend on the model of Zermelo-
Fraenkel set theory used to generate infinite Dedekind-finite sets, which leads
one to wonder if there are describable differences in arithmetic in different mod-
els’ Dedekind-finite sets. If there are, is there some set in say, the Mostowski
model with the same arithmetic properties as the set of atoms in the basic
Fraenkel model, and so on?

These proofs also all deal with ways that infinite Dedekind-finite sets are
more similar to finite sets than Dedekind-infinite sets arithmetically, but it is
not clear exactly how similar they are, or which differences between infinite
Dedekind-finite sets and finite sets can be detected with polynomials.

Since binomial coefficients can be expressed as polynomials with rational
coefficients, one may also wonder if we can characterize binomial coefficients
with regards to Dedekind-finite sets similarly.
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