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Abstract

We work in the setting of Zermelo-Fraenkel set theory without assuming the Axiom
of Choice. We consider the Dedekind-finite sets as a Boolean algebra together with the
additional structure of comparing cardinality (in the Cantorian sense of injections).
What principles does one need to reason not only about intersection, union, and com-
plementation of Dedekind-finite sets, but also about the relative size of Dedekind-finite
sets? We give a complete axiomatization: They are exactly the same principles as for
reasoning about imprecise probability comparisons, the central one being Generalized
Finite Cancellation.

1 Introduction

Assume that Zermelo-Fraenkel axiomatic set theory (ZF) is consistent, so that it has models.
Recall that the axioms of ZF are as follows:

Definition 1.1 (Axioms of ZF, refer Section 3.2 of [Jec73]). The axioms of ZF are as follows.

A1. Extensionality:
∀u (u ∈ x↔ u ∈ y)→ x = y

A2. Pairing:
∀u ∀v ∃x ∀z (z ∈ x↔ z = u ∨ z = v)

A3. Comprehension: Suppose φ is a formula of set theory. Then

∀p⃗ ∀x ∃y ∀u (u ∈ y ↔ u ∈ x ∧ φ(u, p⃗))1

A4. Union:
∀a ∃b ∀x (x ∈ b↔ ∃y (x ∈ y ∧ y ∈ a))2

A5. Power-Set:
∀a ∃b ∀x (x ∈ b↔ x ⊆ a)3

1p⃗ stands for p1, . . . , pn
2We say that b =

⋃
a

3x ⊆ a means that ∀z (z ∈ x→ z ∈ a)
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A6. Replacement:

(∀x ∈ a) (∃!y) φ(x, y)→ ∃b ∀y (y ∈ b↔ (∃x ∈ a) φ(x, y))

A7. Infinity:
∃a (∅ ∈ a ∧ ∀x (x ∈ a→ x ∪ {x} ∈ a))

A8. Regularity:
(∀s ̸= ∅) (∃x ∈ s) [x ∩ s = ∅]4

In [DHTH20], Ding, Harrison-Trainor, and Holliday work to answer the following ques-
tion: can we completely axiomatize reasoning about the relative size of finite sets, of infinite
sets, and of arbitrary sets in a formal set-theoretic language? Indeed, they answer this ques-
tion for a particular language and definition of relative size (see Definition 2.1 of [DHTH20]).
Note that Ding, Harrison-Trainor, and Holliday worked in the setting where the Axiom of
Choice is true. For example, the axiom (BC3) (see Definition 2.7 of [DHTH20]) says that
any two sets are comparable, which is only true in a set theoretic universe with Choice.

The goal of this paper is to answer a modified version of the above question. First, we
work in the setting of ZF set theory without assuming the Axiom of Choice; and second, we
restrict to the case of Dedekind-finite sets. We answer this question for a particular language
(see Definition 2.1) using Cantorian definition of relative size:

Definition 1.2. Given sets x and y, we say |x| ⩽ |y| if and only if there is an injection from
x into y, and we say |x| = |y| if and only if there is a bijection between x and y.

Of course the Cantor-Schröder-Bernstein Theorem says that if there are injections in
both directions, then there is a bijection; this is true even without the Axiom of Choice.

Theorem 1.3 (The Cantor-Schröder-Bernstein Theorem). If |x| ⩽ |y| and |y| ⩽ |x|, then
|x| = |y|.

On the other hand, it is no longer true that if there is an injection from one set to another,
then there is a surjection the other way; that is, |x| ⩽ |y| is not the same as saying that
there is a surjection from y onto x.

2 Formal Setup

We will be defining a language that can be used to talk about sets and their Boolean
combinations, and to compare their cardinalities.

Definition 2.1. Given a set Φ of set labels, the set terms t and formulas φ of the language
L are generated by the following grammar:

t ::= a | tc | (t ∩ t)
φ ::= |t| ⩾ |t| | ¬φ | (φ ∧ φ)

4Note that ∅ is our symbol for the empty set; its existence follows from (A3) and its uniqueness follows
from (A1). So, s ̸= ∅ is equivalent to saying that ∃x (x ∈ s).
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where a ∈ Φ. The other sentential connectives ∨,→, and ↔ are defined as usual, and we
use φ⊕ ψ as an abbreviation for (φ ∨ ψ) ∧ ¬(φ ∧ ψ). Standard set-theoretic notion may be
defined as follows:

• ∅ := t ∩ tc;

• t ⊆ s := |∅| ⩾ |t ∩ sc|;

• t = s := (t ⊆ s ∧ s ⊆ t) and t ̸= s := ¬(t = s);

• t ⊈ s := ¬(t ⊆ s) and t ⊊ s := (t ⊆ s ∧ s ⊈ t).

We also use |s| ⩽ |t| for |t| ⩾ |s|, |s| > |t| for ¬(|t| ⩾ |s|), and |s| = |t| for |s| ⩾ |t| ∧ |t| ⩾ |s|.

Definition 2.2. A field of sets is a pair ⟨X,F⟩ where X is a nonempty set and F is a
collection of subsets of X closed under intersection and set-theoretic complementation.

We will now be defining our first type of model for the language L: the (pure) model.
This model will involve a field of sets ⟨X,F⟩, along with this “naming” function V which
assigns to each set label, an actual set in F . More formally:

Definition 2.3. A (pure) model is a quadruple N = ⟨W , X,F , V ⟩, where W is a model of
ZF, X is a non-empty set in W , ⟨X,F⟩ is a field of sets in W , and V : Φ→ F .

We say pure model to distinguish these models from the urelement models we introduce
later, whereW is allowed to be a model with urelements. We say a pure model is a Dedekind-
finite model if all of the sets in its field of sets are Dedekind-finite.

Definition 2.4. Given a pure model N = ⟨W , X,F , V ⟩, we define a function V̂ , which
assigns to each set term a set in F , by:

• V̂ (a) = V (a) for a ∈ Φ

• V̂ (tc) = X − V̂ (t)

• V̂ (t ∩ s) = V̂ (t) ∩ V̂ (s)

We then define a satisfaction relation |= as follows:

• N |= |t| ⩾ |s| if and only if W |= |V̂ (t)| ⩾ |V̂ (s)|;

• N |= ¬φ if and only if N ̸|= φ;

• N |= φ ∧ ψ if and only if N |= φ and N |= ψ.

Given a class K of urelement models, φ is valid over K if and only if N |= φ for all
N ∈ K.
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3 Dedekind-finite Sets and Soundness

Recall that we say a set is finite if it bijects onto some n = {0, 1, . . . , n− 1} ∈ N. Moreover,
we say a set is infinite, if it is not finite; i.e., if it does not biject onto any such natural number
n. There are alternative notions of finite and infinite, which in the presence of Choice, are
equivalent to the above.

We say that a set is Dedekind-infinite if it is in bijective correspondence with some proper
subset of itself. So, for example, Z is Dedekind-infinite, because it bijects onto the set of
even integers 2Z. So, we can think of Dedekind-finite sets as sets that are strictly larger than
their proper subsets, or equivalently, as sets that get strictly larger when a single element is
added to them. More formally:

Definition 3.1 (Dedekind-finite Sets). A set x is said to be Dedekind-finite if

∀y ⊊ x, |y| < |x|

In the presence of Choice, a set is Dedekind-finite if and only if it is finite. Although,
even in ZF, every finite set is Dedekind-finite, the converse is not necessarily true. That
is, there may exist infinite but Dedekind-finite sets. So, we must be careful about which
universe we are working in while using these notions.

Now that we have defined what it means for sets to be Dedekind-finite, we can shed some
light on amorphous sets. Intuitively, amorphous sets are infinite, Dedekind-finite sets that
cannot be split into two disjoint infinite sets. More formally:

Definition 3.2 (Amorphous Sets). An infinite set x is said to be amorphous if there do not
exist infinite disjoint sets y, z ⊆ x such that x = y ∪ z.

It is not difficult to prove that every amorphous set is Dedekind-finite, so we leave the
proof as an exercise for the reader.

Now that we have some background on Dedekind-finite sets, we look at some important
results in ZF involving them. We will first look at Subtraction and Division by m; then we
will prove Generalized Finite Cancellation (Theorem 3.6), which relies on these results, and
is, in fact, a generalization of their combination.

Theorem 3.3 (Subtraction, Doyle and Conway [DC94]). For any Dedekind-finite set x, if
|y ⊔ x| = |z ⊔ x|, then |y| = |x|.

We will now look at a version of the Division by m theorem, which is required in our
proof of Generalized Finite Cancellation. This theorem has two common versions: the one
with bijections, which corresponds to dividing an equality by m, and the one with injections,
which corresponds to dividing an inequality by m. The first version was first proved by
Lindenbaum, but the proof was unpublished and lost. A proof for the m = 2 case was given
by Bernstrein [Ber05] and Sierpinski [Sie22]. Later, Sierpinski also gave a proof for dividing
an inequality by two [Sie47]. A proof for the m = 3 case was given by Tarksi [Tar49], which
can be generalized for any m ̸= 0. Finally, an easy-to-read proof for dividing an inequality
by three can be found in Doyle and Conway’s paper [DC94]. The general case of dividing
an inequality will be most useful to us, and so we have the Division by m theorem:
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Theorem 3.4 (Division by m, Lindenbaum (unpublished), Tarski [Tar49]). If |m × A| ⩽
|m×B|, then |A| ⩽ |B|.

Before we finally prove Generalized Finite Cancellation, we require a formal notion of
balanced sequences of sets, which we state as follows:

Definition 3.5. We say that two sequences of sets ⟨E1, . . . , Ek⟩ and ⟨F1, . . . , Fk⟩ are balanced,
and write ⟨E1, . . . , Ek⟩ =0 ⟨F1, . . . , Fk⟩, if and only if for all s, the cardinality of {i | s ∈ Ei}
is equal to the cardinality of {i | s ∈ Fi}; that is, if every s appears the same number of
times on the left side as on the right side.

GFC (Generalized Finite Cancellation) generalizes the balancing of unions of sets in the
natural way. More specifically, it generalizes the fact that if A and B taken together are of
the same size as C and D taken together, and A is at least as big as C, then it must be the
case that D is at least as big as B.

The GFC principal first appeared in work of Rios Insua [Ins92] and Alon and Lehrer
[AL14] on characterisations of relations of imprecise probability. We prove the same principal,
though in a completely different context: We have Dedekind-finite sets instead of events in
a probability space, and we compare using cardinality instead of relative likelihood.

Theorem 3.6 (Generalized Finite Cancellation). Suppose that

⟨A1, . . . , An, E, . . . , E︸ ︷︷ ︸
m

⟩ =0 ⟨B1, . . . , Bn, F, . . . , F︸ ︷︷ ︸
m

⟩,

that B1, . . . , Bn are Dedekind-finite, and that |Ai| ⩾ |Bi| for each i. Then |E| ⩽ |F |.

Proof. Among the elements of ⟨A1, . . . , An, E, . . . , E⟩ there may be repeated elements. We
may replace the ith appearance of each element a in the sequence by the ordered pair (a, i).
In doing so, we obtain a new sequence of pairwise disjoint sets ⟨A′

1, . . . , A
′
n, E1, . . . , Em⟩, and

each set in this sequence is in bijection with the corresponding set of the original sequence.
Similarly, we can replace the second sequence by ⟨B′

1, . . . , B
′
n, F1, . . . , Fm⟩. We still have that

|A′
i| ⩾ |B′

i| for each i, and that the sequences are balanced:

⟨A′
1, . . . , A

′
n, E1, . . . , Em⟩ =0 ⟨B′

1, . . . , B
′
n, F1, . . . , Fm⟩.

Indeed we can now replace A′
1, . . . , A

′
n and B′

1, . . . , B
′
n by their disjoint unions A = A′

1∪· · ·∪
A′

n and B = B′
1 ∪ · · · ∪B′

n. Then |A| ⩾ |B|, and we have balanced sequences

⟨A,E1, . . . , Em⟩ =0 ⟨B,F1, . . . , Fm⟩.

Moreover, B is Dedekind-finite. We will show that |m×E| = |E1∪· · ·∪Em| ⩽ |F1∪· · ·∪Fm| =
|m× F |, from which it follows by dividing by m (Theorem 3.4) that |E| ⩽ |F |.

Fix an injection f : B → A witnessing that |A| ⩾ |B|. We will define an injection
g : E1 ∪ . . . ∪ Em → F1 ∪ . . . ∪ Fm. Given x ∈ E1 ∪ . . . ∪ Em, we must define g(x). By
the balancing assumption, x ∈ B ∪ F1 ∪ . . . ∪ Fm. If x ∈ F1 ∪ . . . ∪ Fm, let g(x) = x.
Otherwise, if x ∈ B, f(x) ∈ A. By the balancing assumption, f(x) ∈ B ∪ F1 ∪ . . . ∪ Fm; if
f(x) ∈ F1 ∪ . . . ∪ Fm, set g(x) = f(x). Otherwise, f(x) ∈ B and so f(f(x)) ∈ A. Continue
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until, for some k, fk(x) ∈ F1 ∪ . . . ∪ Fm and we define g(x) = fk(x). If we never find that
fk(x) ∈ F1 ∪ . . . ∪ Fm, then it must be that x, f(x), f(f(x)), . . . are all in B. Since f is
injective, this sequence has no repetition, and so B contains an ω-sequence. This contradicts
the fact that B is Dedekind finite. So the construction eventually terminates and defines
g(x).

We must argue that g is injective. For distinct x and y in E1∪ · · ·∪Em, consider the two
sequences x, f(x), f(f(x)), . . . , fk(x) = g(x) and y, f(y), f(f(y)), . . . , f ℓ(y) = g(y). Each
element of these two sequences, except the first elements x and y, are in A. Thus x does not
appear anywhere in the sequence for y, and y does not appear anywhere in the sequence for
f . Since f is injective, it must be that g(x) ̸= g(y). Hence g is injective.

Thus we have shown that |E1 ∪ . . .∪Em| ⩽ |F1 ∪ . . .∪Fm|, i.e., that |m×E| ⩽ |m×F |.
Recall that by applying division by m (Theorem 3.4), it follows that |E| ⩽ |F |.

Now that we have formalized some results pertaining to Dedekind-finite sets, we will
define the logic for L (Definition 2.1).

Definition 3.7 (DedFinLogic). The logic for Dedekind-finite sets DedFinLogic is the logic
for L with the following axiom schemas

(D1) All substitution instances of classical propositional tautologies;

(D2) ¬|∅| ⩾ |∅c| (Non-triviality);

(D3) |s| ⩾ |∅| (Positivity);

(D4) |s| ⩾ |s| (Reflexivity);

(D5) |s| ⩾ |t| ∧ |t| ⩾ |u| → |s| ⩾ |u| (Transitivity);

(D6) DedFin(t1, . . . , tn)→ GFCn,m(s1, . . . , sn, e; t1, . . . , tn, f);

and the following rules

(R1) [φ ∧ (φ→ ψ)]→ ψ (Modus Ponens);

(R2) If t = 0 is provable in the equational theory of Boolean algebras, then |∅| ⩾ |t| is a
theorem.

GFCn,m(s1, . . . , sn, e; t1, . . . , tn, f) in the axiom schema (D6) is the formal expression of
the GFC principal and will be defined in an analogous manner to FCn in Definition 2.8 of
[DHTH20].

First, for each k such that 1 ⩽ k ⩽ n, define the term Sk as the union of the terms of
the form s

cs,1
1 ∩ . . .∩ scs,nn ∩ ece,1 ∩ . . .∩ ece,m , where exactly k many ci’s are c and the rest are

empty. Similarly, define Tk by replacing the s’s with t’s and the e’s with f ’s. So, intuitively
Sk denotes the set of elements which are in exactly k many sets among s1, . . . , sn, e, . . . , e︸ ︷︷ ︸

m

.

Then, GFCn,m(s1, . . . , sn, e; t1, . . . , tn, f) is defined by:( n∧
i=1

Si = Ti
)
→

(( n∧
i=1

|si| ⩾ |ti|
)
→ |e| ⩽ |f |

)
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Theorem 3.8 (Soundness). DedFinLogic (3.7) is sound with respect to Dedekind-finite pure
models.

Proof. Note that most of the axiom schemas for DedFinLogic, like non-triviality (D2), re-
flexivity (D4), and transitivity (D5), are clearly valid according to the pure model semantics.
So, in proving the soundness of DedFinLogic, our main task is to show that axiom schema
(D6), i.e. Generalized Finite Cancellation, is valid. This, however, follows from Theorem
3.6. And so, DedFinLogic is Sound with respect to Dedekind-finite pure models.

4 Urelements and Permutation Models

We introduce set theory with atoms, which we will be using as a tool to make some of our
proofs easier to deal with. For example, our completeness proof will pass through set theory
with atoms. Eventually, we will see that the models of set theory with atoms of our interest
and those models without atoms do have a similar structure (see Theorem 4.7).

The set theory with atoms, ZFA, is a modified version of set theory (ZF), and is charac-
terized by the fact that it admits objects other than sets, atoms. Atoms are objects which
do not have any elements.

Definition 4.1 (The Language of ZFA, refer Section 4.1 of [Jec73]). The language of ZFA
consists of = and ∈ and two constant symbols ∅ and A (the empty set and the set of all
atoms). The axioms of ZFA are like the axioms of ZF except for the following changes:

∅. Null set:
¬∃x (x ∈ ∅)

A. Atoms:
∀z (z ∈ A↔ z ̸= ∅ ∧ ¬∃x (x ∈ z))

(Atoms are the elements of A and sets are all objects which are not atoms.)

A1. Extensionality:

(∀ set x)(∀ set y) [∀u (u ∈ x↔ u ∈ y)→ x = y]

A8. Regularity:
(∀ nonempty s) (∃x ∈ s) [x ∩ s = ∅]

Note that ‘s is nonempty’ is not necessarily the same as ‘s ̸= ∅’; it is the same only if s is a
set. Furthermore, some operations like

⋃
x or P(x) make sense only for sets and some like

{x, y} also for atoms. Finally, if we add to ZFA the axiom A = ∅, then we get ZF.

Definition 4.2 (ZFA+AC). The language of ZFA+AC is similar to that of ZFA; however,
ZFA+AC has the following additional axiom:

A9. Choice:

∀F [∅ /∈ F ∧ (∀x, y ∈ F ) (x ̸= y → x ∩ y = ∅)]→ ∃C [(∀x ∈ F )(∃!z ∈ x) (z ∈ C)]
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Note that axiom [A9] has numerous equivalent forms, many of which can be found in Part
I and II of [HR98]

Definition 4.3. Let X and Y be models of ZF. We say ϕ : X → Y is an ∈-isomorphism if
and only if ϕ is a bijection and for all x, y ∈ X , x ∈ y if and only if ϕ(x) ∈ ϕ(y)

Definition 4.4. For any set S we define the cumulative hierarchy above S, Pα(S), induc-
tively as follows

P0(S) = S,

Pα+1(S) = Pα(S) ∪ P(Pα(S)),

Pλ(S) =
⋃
β<λ

Pβ(S) (λ limit)

We will now look at permutation models. Note that the axioms of ZFA do not distinguish
between the atoms, and this is the underlying idea of such permutation models. Furthermore,
they are also used to construct models in which the set of atoms, A, is not well-orderable.

Definition 4.5 (Permutation Models, refer section 4.2 of [Jec73]). Consider set theory with
atoms and let A be the set of atoms. Let π be a permutation of the set A. Using the
hierarchy of Pα(A)’s, we can define πx for every x as follows:

π(∅) = ∅, π(x) = π[x] = {π(y) : y ∈ x}

(either by ∈-recursion or by recursion on the rank of x.) Under this definition π becomes an
∈-automorphism of the universe and one can easily verify the following facts about π:

(a) x ∈ y ⇐⇒ πx ∈ πy;

(b) ϕ(x1, . . . , xn) ⇐⇒ ϕ(πx1, . . . , πxn);

(c) rank(x) = rank(πx);

(d) π{x, y} = {πx, πy} and π(x, y) = (πx, πy);

(e) If R is a relation then πR is a relation and (x, y) ∈ R ⇐⇒ (πx, πy) ∈ πR;

(f) If f is a function on X then πf is a function on πX and (πf)(πx) = π(f(x));

(g) πx = x for every x in the kernel;

(h) (π · ρ)x = π(ρ(x)).

Let G be a group of permutations of A. A set F of subgroups of G is a normal filter on
G is for all subgroups H,K of G:

(i) G ∈ F ;

(ii) if H ∈ F and H ⊆ K, then K ∈ F ;
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(iii) if H ∈ F and K ∈ F , then H ∩K ∈ F ;

(iv) if π ∈ G and H ∈ F , then πHπ−1 ∈ F ;

(v) for each a ∈ A, {π ∈ G : πa = a} ∈ F .

For each x, let symG(x) = {π ∈ G : πx = x}; note that symG(x) is a subgroup of G.
Let G and F be fixed. We say that x is symmetric if symG(x) ∈ F . The class

U = {x : x is symmetric and x ⊆ U}

consists of all hereditarily symmetric objects. So far U is just a class; however, we can prove
that it is in fact a model of ZF (see Theorem 4.1 of [Jec73]). We call U a permutation model.

For our purposes, it suffices to consider the following simple type of permutation models:
Let G be a group of permutations of A. A family I of subsets of A is a normal ideal if for
all subsets E,F of A:

(i) ∅ ∈ I;

(ii) if E ∈ I and F ⊂ E, then F ∈ I;

(iii) if E ∈ I and F ∈ I, then E ∪ F ∈ I;

(iv) if π ∈ G and E ∈ I, then π[E] ∈ I;

(v) for each a ∈ A, {a} ∈ I.

For each x, let fixG(x) = {π ∈ G : πy = y for all y ∈ x}; note that fixG(x) is a subgroup
of G.

Let F be the filter on G generated by the subgroups of fix(E), E ∈ I. F is a normal filer,
and so it defines a permutation model U . Note that x is symmetric if and only if there exists
S ∈ I such that

fix(S) ⊆ sym(x).

We say that S is the support of x.

We now introduce urelement models, which function as the ZFA analogue of our pure
models. Note that we use the term “urelements” instead of “atoms” to distinguish these
objects from the atoms of a Boolean algebra.

Definition 4.6. An urelement model is a quadrupleM = ⟨U , X,F , V ⟩, where U is a model
of ZFA, X is a non-empty set in U , ⟨X,F⟩ is a field of sets in U , and V : Φ → F . We
say that an urelement model is a permutation urelement model if the underlying model U of
ZFA is a permutation model. 5

5We could ask for X to be a non-empty set of atoms, but this adds technical complications to some of
our proofs.
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Theorem 4.7 (The First Embedding Theorem, Theorem 6.1 of [Jec73]). Let Y be a model of
ZFA+AC, let A be the set of all atoms of Y, let K be the kernel of Y and let α be an ordinal
in Y. For every permutation model U ⊆ Y (a model of ZFA), there exists a symmetric
extension U∗ ⊇ K (a model of ZF) and a set Ã ∈ U∗ such that

(Pα(A))U is ∈-isomorphic to (Pα(Ã))U
∗

Theorem 4.8. For each permutation urelement modelM, there is a symmetric pure model
N such thatM≡ N .

Proof. Let M = (U , X,F , V ) be a permutation urelement model. Thus U is a permutation
model of ZFA. We will construct a model U∗ of ZF without atoms, a set X∗ ∈ U∗, and a
field of sets F∗ on X∗ such that there is a bijection x 7→ x∗ from X → X∗, inducing an
isomorphism of Boolean algebras Y 7→ Y ∗ from F → F∗. Moreover, this map will respect
cardinality: we will have that |E| ⩾ |F | in U if and only if |E∗| ⩾ |F ∗| in U∗. Then, defining
V ∗(p) = V (p)∗, we will get that N = (U∗, X∗,F∗, V ∗) satisfies M≡ N .

Let A be the set of all atoms of U and let K be the kernel of U Let β be an ordinal
in U which is sufficiently large that X,F ∈ (Pβ(A))U . Let α = β + 3; note that for any
E,F ⊆ X, and any injection f : E → F , viewing f as a set of ordered pairs we have that
f ∈ (Pα(A))U . Then by The First Embedding Theorem (Theorem 4.7), there is a model of
ZF, U∗ ⊇ K, and a set Ã in U∗ such that

(Pα(A))U is ∈-isomorphic to (Pα(Ã))U
∗

Let ϕ be this map. A vital property of ϕ which we will use implicitly throughout the rest of
the proof is that, for any set S in (Pα(A))U ,

ϕ(S) = {ϕ(x) : x ∈ S}.

That is, ϕ(S) cannot get any new elements which are not in the range of ϕ. This relies not
just on the fact that ϕ is an ∈-isomorphism, but on the particular range of ϕ. (Note that
this fact does not apply to atoms a of U ; in this case, ϕ(a) is a non-empty set.) Another
property of ϕ is that it acts level-by-level: for each γ ⩽ α, ϕ maps

(Pγ(A))U −→ (Pγ(Ã))U
∗
.

For each x ∈ X, define x∗ in U∗ by x∗ = ϕ(x). We let

X∗ = ϕ(X) = {x∗ : x ∈ X}

and for any Y ⊆ X, we have Y ∗ ⊆ X∗ defined by

Y ∗ = ϕ(Y ) = {x∗ : x ∈ Y }.

We also define
F∗ = ϕ(F) = {Y ∗ : Y ∈ F}.

Note that Y 7→ Y ∗ is an isomorphism of Boolean algebras between the fields of sets F and
F∗.
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Now, suppose that |E| ⩾ |F | in U ; that is, suppose that there is an injection f : F → E.
Then ϕ(f) will be an injection from F ∗ = ϕ(F ) to E∗ = ϕ(E) as

f(a) = b⇐⇒ ϕ(f)(ϕ(a)) = ϕ(b).

(Note that f is in the domain of ϕ by choice of α.) Thus |E∗| ⩾ |F ∗|.
Conversely, suppose that |E∗| ⩾ |F ∗|; that is, suppose that there is an injection g∗ :

F ∗ → E∗. First note that g∗ is in the range of ϕ because E∗ and F ∗ are in (Pβ(Ã))U
∗

(we
use here the fact that ϕ maps level-by-level), and so g∗ is in (Pα(Ã))U

∗
. Then let g be the

preimage of g∗ under ϕ, g∗ = ϕ(g). Then, as ϕ is an ∈-isomorphism, g will be an injection
from E to F and so |E| ⩾ |F |.

Note that each pure model is already an urelement model, and so we get:

Corollary 4.9. The logic of urelement models is the same as the logic of pure models.

5 Models for Imprecise Probability and Completeness

In this section, we introduce imprecise probability measures models, or simply, probability
measures models. We notice that the axiom schemas for our language are precisely those
of the imprecise probability measures, and so we use the completeness result for probability
measures models as an intermediate step in proving completeness for our models.

Definition 5.1. A probability measures model is a triple ⟨W,P, V ⟩ such that W is a set of
states, P is a set of probability measures on P(W ), and V : Φ→ P(W ). We define, for any
E,F ∈ P(W ),

E ≾ F ⇐⇒ ∀µ ∈ P, µ(E) ⩽ µ(F ).

Definition 5.2. Given a probability measures model N = ⟨W,P, V ⟩, we define a function
V̂ , which assigns to each set term a set in P(W ), by:

• V̂ (a) = V (a) for a ∈ Φ

• V̂ (uc) = W − V̂ (u)

• V̂ (u ∩ v) = V̂ (u) ∩ V̂ (v)

We then define a satisfaction relation |= with the usual clauses for propositional variables
and Boolean connectives, plus: N |= |v| ⩽ |u| if and only if (V̂ (v)) ≾ (V̂ (u)).

Notice that on the surface it may look like the languages are different; for example, in
imprecise probabilities, we tend to use the x ≾ y notation rather than our standard |x| ⩽ |y|
notation. However, there is clearly a direct correspondence between these.

Theorem 5.3 (Theorem 4 of [HTHI17] ). DedFinLogic (3.7) is sound and complete with
respect to probability measures models.

Theorem 5.4. For each finite probability measures model M, there is a Dedekind-finite
urelement model N such thatM≡ N .
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Proof. Let M = ⟨W,P, V ⟩ be a finite probability measures model. We will construct a
Dedekind-finite urelement model N = (U , X,F , V ∗) such that M≡ N .

In fact, we will define U , X, and F and show that there is a map E 7→ E∗ from P(W )→ F
which is an isomorphism of Boolean algebras such that for E,F ⊆ W ,

E ≾ F ←→ U |= |E∗| ⩽ |F ∗|.

Given s ∈ Φ, and V (s) = E ⊆ W , define V ∗(s) = E∗ ∈ F . It follows from the following two
claims that M≡ N .

Claim 1. If t is a term and V̂ (t) = E, then V̂ ∗(t) = E∗.

Proof. Using 2.4, we will prove this claim by induction on set terms as follows:

V̂ (t) = V (t)
∗7→ V ∗(t) = V̂ ∗(t)

V̂ (tc) = W − V̂ (t)
∗7→ X − V̂ ∗(t) = V̂ ∗(tc)

V̂ (t ∩ u) = V̂ (t) ∩ V̂ (u) = E ∩ F ∗7→ (E ∩ F )∗ = E∗ ∩ F ∗ = V̂ ∗(t) ∩ V̂ ∗(u) = V̂ ∗(t ∩ u)

Claim 2. M |= φ⇐⇒ N |= φ.

Proof. If s and t are terms, then

M |= s ≿ t⇐⇒ V̂ (s) ≿ V̂ (t)⇐⇒ U |= |V̂ ∗(s)| ⩾ |V̂ ∗(t)| ⇐⇒ N |= |s| ⩾ |t|.

Furthermore, if φ and ψ are formulas, then

M |= ¬φ⇐⇒M ̸|= φ⇐⇒ N ̸|= φ⇐⇒ N |= ¬φ;

M |= φ ∧ ψ ⇐⇒M |= φ and M |= ψ ⇐⇒ N |= φ and N |= ψ ⇐⇒ N |= φ ∧ ψ.

We will now define U , X, and F as above, beginning with U . Let Y be a model of
ZFA+AC and let A be the set of urelements in Y . The model U will be a permutation
model (a model of ZFA) defined from Y . Much of our construction will follow the general
argument of Theorem 11.1 of [Jec73], where given a partial order (P,⪯) in the kernel of Y ,
Jech constructs a permutation model U containing sets (Sp)p∈P such that p ⪯ q if and only
if |Sp| ⩽ |Sq| in U .

Consider the poset (P,⪯), where P is the set of probability measures, with ⪯ being the
ordering that no two of them are comparable. Since (P,⪯) is finite, a copy of it is contained
in the kernel of Y .

We then follow the construction of Theorem 11.1 of [Jec73] using (P ,⪯) as our partial
order. Assume that the set A of urelements has cardinality |A| = |P | · ℵ0 and let {aµ,n : µ ∈
P, n ∈ N} be an enumeration of A. For each µ ∈ P , let

Aµ = {aµ,n : n ∈ N}.

Let G be the group of all permutations π of A such that π(Aµ) = Aµ for each µ ∈ P ;
that is, if πaµ,n = πaρ,m then µ = ρ. Let F be the filter on G given by the ideal of finite
subsets of A. Since F is a normal filter on G, it defines a permutation model U consisting
of all hereditarily symmetric elements of Y . Furthermore, each x ∈ U has a finite support
S ⊆ A such that sym(x) ⊇ fix(S).
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Claim 3. Aµ is amorphous, hence Dedekind-finite.

Proof. Suppose Aµ is not amorphous. Then it can be split up into two disjoint infinite sets
Bµ and Cµ. If Bµ is preserved in U , then it must have some finite support S. Furthermore,
we know that any permutation π ∈ fix(S) would fix Bµ. We choose b ∈ Bµ and c ∈ Cµ such
that b, c /∈ S. We then let π be the permutation that swaps b and c and fixes everything else;
that is, π(b) = c, π(c) = b, and π(a) = a for all a ̸= b, c. Note that π fixes each element of S,
and so π fixes Bµ as a set. However, π(b) = c /∈ Bµ, which is a contradiction. An analogous
argument can be made for Cµ as well. So, it must be the case that Aµ cannot be split into
two disjoint infinite sets; that is Aµ must be amorphous.

As a result of this claim, if f is a map whose domain (or range) is a subset of Aµ, then
its domain (or range) must be finite or cofinite in Aµ.

Claim 4. There is a partial injection f : D ⊆ Aµ → Aρ defined on an infinite subset of Aµ

if and only if µ = ρ.

Proof. For the forward direction, suppose µ ̸= ρ and that there is a partial injection φ :
dom(φ) ⊆ Aµ → Aρ in U . Since φ is in U , it must be finitely supported. Let S be a finite
support of φ. We choose a, a′ ∈ dom(φ) ⊆ Aµ such that a, a′ /∈ S. Note that we make this
choice in such a way that a, a′ are in the domain of φ. Call φ(a) = b and φ(a′) = b′. We then
let π be the permutation that swaps a and a′ and fixes everything else; that is, π(a) = a′,
π(a′) = a and π(c) = c for all c ̸= a, a′. Since π fixes φ, we have that

π(b) = π(φ(a)) = φ(πa) = φ(a′) = b′

By definition, since b ̸= a, a′, we have that πb = b. From the above equation it also follows
that πb = b′. So, we conclude that b = b′. However, this would mean that φ(a) = φ(a′),
contradicting the injectivity of φ.

For the converse direction, if µ = ρ, then the identity on Aµ is an injection with empty
support, i.e., an injection in U .

For each atomic event E (i.e., E is a singleton {w}), we can associate a set fµ(E) of size
µ(E) such that for any two distinct E and F , the sets fµ(E) and fµ(F ) are disjoint. Since
any other event is a union of atomic events, once fµ(E) is chosen for each atom E, we can
extend it to all sets by setting

fµ(E) =
⋃

E ⊇ F an atom

fµ(F ).

Then the map E 7→ fµ(E) is a Boolean algebra isomorphism and |fµ(E)| = µ(E).
We then define E∗ to be

E∗ =
⋃
µ∈P

fµ(E)× Aµ.

We also have that E 7→ E∗ is an isomorphism of Boolean algebras.
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Suppose that E ≾ F , that is, for any µ in P , µ(E) ⩽ µ(F ). It follows that |fµ(E)| =
µ(E) ⩽ µ(F ) = |fµ(F )|. So, we have:

|E∗| = |
⋃
µ∈P

fµ(E)× Aµ| ⩽ |
⋃
µ∈P

fµ(F )× Aµ| = |F ∗|.

Now we suppose that U |= |E∗| ⩽ |F ∗|; that is, suppose there is an injection g : E∗ → F ∗

in U .
For each µ ∈ P , we define define an injection hµ : fµ(E) → fµ(F ) witnessing that

µ(E) ⩽ µ(F ). Given x ∈ fµ(E), there is a copy {x}×Aµ in E∗. We first argue that g maps
all but finitely much of {x} × Aµ to some {y} × Aµ in F ∗ 6; we then argue that there is
exactly one such y; and then that two different x’s don’t map to the same y. Finally, we
define hµ(x) to be y, and in doing so, we show that hµ is a well-defined injection.

It is clear that there must be at least one such y such that all but finitely much of {x}×Aµ

maps to {y}×Aµ in F ∗. If this was not the case, and only finitely much of {x}×Aµ mapped
into some {y} × Aµ’s, that would contradict there being only finitely many y’s.

We now argue that there is exactly one such y. For a contradiction, suppose that infinitely
much of {x} × Aµ maps to both {y} × Aµ and {y′} × Aµ in F ∗. This would mean that the
pre-images g−1[{y} × Aµ] and g−1[{y′} × Aµ] are both disjoint infinite subsets of {x} × Aµ,
contradicting that Aµ is amorphous. So, it must be the case that y is unique, i.e. hµ is
well-defined.

We complete this argument by showing that hµ must, in fact, be an injection. So, for
a contradiction, suppose that there are x, x′ in fµ(E) such that infinitely much of both
{x} × Aµ and {x′} × Aµ maps into {y} × Aµ in F ∗. However, this would mean that the
restricted images g[{x}×Aµ] and g[{x′}×Aµ] are both disjoint infinite subsets of {y}×Aµ,
contradicting that Aµ is amorphous. This must mean that different x’s must map to different
y’s, and so hµ is an injection.

Now that we have defined U , we will define X and F

X :=
⋃

E⊆W

E∗.

Finally, we define F as the image of P(W ) under ∗. That is, if the mapping E 7→ E∗ is
preserved, then F = {E∗ | E ⊆ W} will perform the function of our field of sets set in the
urelement model. That is, ⟨X,F⟩ is precisely a field of sets.

Claim 5. If P is finite, then each element of F is Dedekind-finite.

Proof. Recall that E∗ :=
⋃

µ∈P fµ(E) × Aµ. Since each Aµ is Dedekind-finite (Claim 3),
we have that fµ(E) × Aµ is Dedekind-finite. Furthermore, since P is finite, E∗ is a finite
union of Dedekind-finite sets, and so each E∗ is Dedekind-finite; that is, each element of F
is Dedekind-finite.

The model N = (U , X,F , V ∗) as constructed above is a Dedekind-finite urelement model
such that M≡ N , proving our theorem.

6Note that it would be more precise to begin by saying that infinitely much of {x} × Aµ maps to some
{y} × Aµ. However, since each Aµ is amorphous, as shown in Claim 3, all but finitely much of {x} × Aµ

mapping to some {y} ×Aµ would be equivalent to infinitely much of {x} ×Aµ mapping to some {y} ×Aµ.
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Since we have already proven soundness (Theorem 3.8), we complete our characterization
with the following completeness proof. In this proof, we will be relying on two previously
proven results: Theorem 5.4, which proves completeness with respect to urelement models,
and Corollary 4.9, which transfers this to completeness with respect to pure models.

Theorem 5.5 (Completeness). DedFinLogic (3.7) is sound and complete with respect to
Dedekind-finite urelement models and also with respect to Dedekind-finite pure models.

Proof. Recall that Theorem 5.4 says that a Dedekind-finite urelement model can be trans-
formed into a finite probability measures model that satisfies the same formulas according to
the semantics of the latter. So, the completeness of DedFinLogic with respect to urelement
models follows from the completeness of DedFinLogic with respect to probability measures
models (Theorem 5.3).

Furthermore, recall that Corollary 4.9 says that the logic of urelement models is the same
as that of pure models. So, the completeness of DedFinLogic with respect to pure models
follows from the completeness of DedFinLogic with respect to urelement models, which we
have just proven above. Thus, DedFinLogic is complete with respect to Dedekind-finite
urelement models and Dedekind-finite pure models.
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[Sie22] Wac l aw Sierpiński. Sur l’égalité 2m = 2n pour les nombres cardinaux. Funda-
menta Mathematicae, 3:1–6, 1922.

15
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