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Abstract. We construct examples of real conic bundles over P2 whose discriminant curve is a smooth

plane quartic curve ∆. In each isotopy class of smooth plane quartics, we construct an example where the
total space of the conic bundle is rational, and for several isotopy classes we construct examples that are

C-rational but that have topological obstructions to rationality over R. In particular, we show that for five

of the six isotopy classes of the discriminant double cover ∆̃ → ∆ with ∆̃(R) = ∅, there are both rational
and irrational conic bundles. Our examples are double covers of P1 × P2 branched over a bidegree (2, 2)

divisor; these models were previously studied by Frei, the first author, Sankar, Viray, and Vogt.

1. Introduction

A fundamental question in algebraic geometry is the birational classification of algebraic varieties. The
simplest varieties are those that are rational, i.e. birational to projective space. We will be interested in
rationality over the field R of real numbers, and when we write (stable/uni-)rationality without reference to
the ground field, we will mean over R.

A smooth projective curve is C-rational if and only if it has genus 0. Over the real numbers, however,
there are irrational genus 0 curves—pointless conics—and a genus 0 curve C is R-rational if and only if
C(R) 6= ∅. Rationality is also understood in dimension two, but for threefolds the rationality problem
becomes much more complicated. We focus on the case of conic bundles X → P2, which are morphisms
whose generic fibers are conics. Over C the birational isomorphism class of a conic bundle is determined
by its discriminant double cover; over R, this data together with a constant Brauer class determines the
birational isomorphism class. Our case of interest is when the discriminant curve is a smooth plane quartic.

A classical result of Zeuthen [Zeu74] classifies real smooth plane quartic curves into 6 isotopy classes:
empty, one oval, two non-nested ovals, two nested ovals, three ovals, and four ovals. Klein [Kle76] showed that
the topological type of a plane quartic determines the connected component of the moduli space that it lies
in. We show that for five of the six connected components of the moduli space of real smooth plane quartics,
there exist both rational and irrational conic bundles with discriminant curve of this given topological type:

Theorem 1.1. Let CB∗∗/∗ denote the set of geometrically standard conic bundles X → P2 over R with

smooth quartic discriminant curve ∆ of topological type ∗ and discriminant cover ∆̃ of topological type ∗∗.

(1) If ∆̃(R) 6= ∅, then every member of CB∗∗/∗ is rational;
(2) CB∅/∅ contains both rational members and non-unirational members;
(3) CB∅/1 oval contains both rational members and members that are unirational but irrational;
(4) CB∅/2 non-nested ovals, CB∅/2 nested ovals, and CB∅/3 ovals each contain both rational members and mem-

bers that are unirational but not stably rational; and
(5) CB∅/4 ovals contains rational members.

The conic bundles in Theorem 1.1 are all C-rational by work of Iskovskikh [Isk87, Theorem 1]. The
irrational conic bundles we exhibit in part (2) have no real points, and those in part (4) have disconnected
real loci. Irrational examples with ∆(R) one oval and disconnected examples with ∆(R) two non-nested ovals
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were previously constructed in [FJS+, Theorem 1.3]. Part (1) is [FJS+, Section 6.1] and can be shown by

a modification of the argument for C-rationality. We note that any étale double cover ∆̃ → ∆ of a smooth
plane quartic can be realized over R as the discriminant curve of a geometrically standard conic bundle by
[Bru08] and [FJS+, Section 4].

We focus on the case when deg ∆ = 4 because this is the first case where X is geometrically rational
but not necessarily rational over R (see Section 2.1). The conic bundles that we study are double covers of
P1×P2 branched over a (2, 2) divisor, which have the additional structure of a quadric surface bundle via the
first projection. These models were introduced in [FJS+] by Frei, the first author, Sankar, Viray, and Vogt
to study rationality over non-closed fields of conic bundles with smooth quartic discriminant. They used this
model to construct two examples of irrational conic bundles with different obstructions to rationality over
R [FJS+, Theorem 1.3]. In this article, we further analyze these models to construct rational and irrational
examples with a focus on the isotopy class of ∆.

The irrational examples of [FJS+] have ∆(R) one oval or two non-nested ovals. In their one oval example
[FJS+, Theorem 1.3(2)], irrationality is witnessed by the intermediate Jacobian torsor (IJT) obstruction.
This obstruction to rationality is a refinement over non-closed fields of the intermediate Jacobian obstruc-
tion of Clemens–Griffiths, and was recently introduced by Hassett–Tschinkel [HT21b, HT21a] and Benoist–
Wittenberg [BW] (see Section 3.3). However, in the two non-nested ovals example of [FJS+, Theorem 1.3(1)],
the IJT obstruction vanishes but the total space of the conic bundle has two real connected components,
and hence is irrational. On our way to proving Theorem 1.1, the examples that we construct also show that
the failure of the IJT obstruction persists for other types of ∆(R). Namely, we construct an example with
∆(R) = ∅ and an example with ∆(R) three ovals (Proposition 3.10), where the IJT obstruction to rationality
vanishes but the real locus of Y exhibits an obstruction to (stable) rationality.

In addition to constructing isolated examples, we also construct examples of families of conic bundles
with irrational and rational members, and whose discriminant curves have different real isotopy classes. More
precisely, in Examples 5.1, 5.2, and 5.3 we construct families Y → A1

s of real threefolds such that every Ys
has the structure of a conic bundle over P2

R with quartic discriminant curve ∆s such that the real isotopy
class of ∆s, the number of connected components of Ys, and the vanishing of the IJT obstruction for Ys
varies in the family.

1.1. Outline. In Section 2, we review background and context for conic bundles over P2, and we recall the
key features of the double cover construction of [FJS+]. In Section 3, we relate the connected components of
the total space of the conic bundle to those of its discriminant curve (Section 3.1) and construct the irrational
examples of Theorem 1.1(2) and (4) (Section 3.2), and review the intermediate Jacobian torsor obstruction
for conic bundles (Section 3.3). In Section 4, we construct the rational examples of Theorem 1.1 (2)–(5). In
Section 5 we construct examples of families of conic bundles.

Acknowledgements. This research was conducted during the 2022 Research Experience for Undergradu-
ates program at the University of Michigan Department of Mathematics, mentored by the first author. We
are grateful to David Speyer and the University of Michigan math department for organizing the REU pro-
gram and making this project possible. The first author thanks Sarah Frei, Soumya Sankar, Bianca Viray,
and Isabel Vogt for helpful conversations, and János Kollár for the question that motivated this project.
The first author received support from NSF grant DMS-1840234, and the second author was supported by
Karen Smith’s NSF grant DMS-2101075.

2. Preliminaries

2.1. Rationality of standard conic bundles over P2. We first review some preliminary notions about
conic bundle threefolds and rationality. For more details on conic bundle threefolds, see [Pro18, Section 3].
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Let k be a field of characteristic 6= 2. A conic bundle over P2 is a proper flat k morphism π : X → P2

whose generic fiber is a smooth conic over k(P2). The discriminant cover $ : ∆̃ → ∆ parametrizes the
components of the singular fibers of π. A conic bundle is standard if π has relative Picard number one.

The models that we consider will have the property that ∆ is smooth and π : X → P2 is geometrically
standard, i.e. ρ(Xk/P

2
k
) = 1. Then $ is an étale double cover, and the fibers of π are all reduced.

Let W be a smooth projective variety of dimension n over k. Recall that W is said to be rational over
k (or k-rational) if there is a birational map W 99K Pn defined over k, stably rational over k if W × Pm is
k-rational for some m, and unirational over k if there is a dominant rational map Pn 99K W defined over
k. If k ⊂ k′ is a field extension, then k-rationality implies k′-rationality (and similarly for stable rationality
and unirationality), but the converse need not hold, as demonstrated by a pointless real conic. We say that
W is geometrically rational if the base change Wk to the algebraic closure of k is k-rational.

For the majority of this article, we work over R. As mentioned in the introduction, when we say that a
variety is rational without specifying the ground field, we mean R-rationality, not C-rationality.

In order to show that a variety is not rational, one must show that it has an obstruction to rationality.
One obstruction is given by the Lang–Nishimura lemma, which implies that if W is k-rational (or even
k-unrational), then it must contain a k-point. Over the real numbers, the locus W (R) of real points also
provides an obstruction to rationality: the number of real connected components is a birational invariant
of smooth projective real varieties [BCR98, Theorem 3.4.12], so if W (R) is disconnected, then W has an
obstruction to stable rationality over R (see also [CTP90] for an interpretation using unramified cohomology).

Over the complex numbers, rationality of conic bundles over P2 is well understood. Namely, let X → P2

be a geometrically standard conic bundle with smooth discriminant curve ∆. Over C, X is rational if and
only if deg ∆ ≤ 4, or if deg ∆ = 5 and ∆̃ → ∆ is defined by an even theta characteristic. The proof of
rationality in the deg ∆ ≤ 4 case uses results of Iskovskikh showing that conic bundle surfaces with low
degree discriminant are rational, and applies his surface classification to the generic fiber of a pencil of
rational curves in P2 [Isk87, Theorem 1]. In the degree 4 case, one needs to blow down a divisor coming from
a singular fiber of π to reduce to the degree 3 conic bundle surface case. The higher degree results are due
to the combined work of Tyurin, Masiewicki, Panin (deg ∆ = 5), and Beauville (deg ∆ ≥ 6). In addition, if
deg ∆ ≤ 8, then X is unirational over C. We refer the reader to [Pro18, Theorem 9.1 and Corollary 14.3.4]
for an overview of these results.

Over the real numbers, we recall [FJS+, Proposition 6.1], which in particular contains Theorem 1.1(1).
If deg ∆ ≤ 3, then X is rational if and only if X(R) 6= ∅ (for instance this happens if ∆(R) 6= ∅). The
Lang–Nishimura lemma shows necessity of a R-point, and if X admits a R-point then a modification of
the proof over C shows that X is rational. In degree 4, the proof of geometric rationality does not always
descend, even if X(R) 6= ∅, because the singular fibers of π need not be split over R. When ∆̃(R) 6= ∅,
however, the argument over C goes through if the pencil is chosen through the image of a point of ∆̃(R).
Similarly, if X has an R-point away from X∆, then X is R-unirational by a modification of the argument
over C. (See [FJS+, Section 6.1]. More generally, these results hold over any field of characteristic 6= 2.)

2.2. Conic bundle threefolds realized as double covers of P1 × P2. We recall the following models of
conic bundles, which were studied in [FJS+]. Let k be a field of characteristic 6= 2. First, we recall a result
of Bruin that allows us express étale double covers of smooth plane quartics in a particular form.

Theorem 2.1 ([Bru08, Section 3]). Let $ : ∆̃→ ∆ be an étale double cover of a smooth plane quartic. Then

there exist quadratic forms Q1, Q2, Q3 ∈ k[u, v, w] such that ∆̃→ ∆ is of the form

(1)
∆ = (Q1Q3 −Q2

2 = 0),

∆̃ = (Q1 − r2 = Q2 − rs = Q3 − s2 = 0).
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Now let Q1, Q2, Q3 ∈ k[u, v, w] be quadratic forms as in Theorem 2.1, and define the double cover
π̃ : Y → P1

[t0:t1] × P2
[u:v:w] by

(2) z2 = t20Q1 + 2t0t1Q2 + t21Q3.

The second projection π2 : Y → P2 is a conic bundle whose discriminant double cover is defined by (1). The

isomorphism class of Y only depends on the double cover ∆̃→ ∆, not on the choice of the quadrics Qi (see
[FJS+, Section 4]), and so we will denote the double cover given above by Y∆̃/∆, or by Y when the context

is clear. We review the following properties of Y .

Proposition 2.2 ([FJS+, Theorem 2.6, Propositions 4.1 and 4.3]). If Y is the threefold defined in (2), then:

(1) Y is smooth, and the second projection π2 : Y → P2 is a geometrically standard conic bundle with

discriminant cover $ : ∆̃ → ∆. In particular, Y is geometrically rational, and if a smooth fiber of
π2 contains a k point then Y is k-unirational.

(2) The first projection π1 : Y → P1 is a quadric surface bundle. In particular, if π1 has section defined
over k, then Y is k-rational.

(3) If ∆̃(k) 6= ∅, then π1 has a section defined over k.
(4) The Stein factorization of the relative variety of lines is F1(Y/P1)→ Γ→ P1, where Γ is the genus

2 curve defined by

y2 = −det(t2M1 + 2tM2 +M3),

where Mi is the symmetrix 3× 3 matrix corresponding to Qi.
(5) [Wit37, Satz 22] If k ⊆ R and π1 is surjective on real points, then π1 has a section defined over R.

(6) [CTS21, Theorem 3.7.2] If X → P2 is a standard conic bundle with discriminant cover ∆̃→ ∆, then
[(Y∆̃/∆)η]− [Xη] ∈ Im(Br k → Br k(P2)).

In particular, Theorem 2.1 and Proposition 2.2(6) imply that, up to a constant Brauer class, any geo-
metrically conic bundle with smooth quartic discriminant curve is birationally equivalent to one form (2).

Remark. Proposition 2.2(3) shows that a k-point of ∆̃ gives rise to a section of π1. However, not every
section of π1 arises in this way: the rational examples constructed in the proof of Theorem 1.1(2)–(5) all
admits sections of π1 over R.

We now specialize to the case k = R. The images of the Weierstrass points of Γ are the zeroes of
−det(t2M1 + 2tM2 + M3), which give the singular fibers of the quadric surface fibration π1. Let Z denote
the set of real points of −det(t2M1 + 2tM2 +M3) = 0. The signature of the 4× 4 matrix(

t2M1 + 2tM2 +M3 0
0 −1

)
corresponding to the quadric Yt is constant on each interval P1(R) \Z, and at each point of Z the number of
positive eigenvalues changes by ±1.

Note that Yt(R) 6= ∅ if and only if the matrix corresponding to Yt is indefinite. By Witt’s Decomposition
Theorem [EKM08, Section 8] Yt contains lines defined over R if and only if Yt has signature (2, 2).

To each étale double cover ∆̃→ ∆, we also associate a twisted double cover of P1 × P2.

Definition 2.3. Let Q1, Q2, Q3 and ∆ be as in Theorem 2.1. The twisted double cover Y∆̃−/∆ → P1 × P2

associated to ∆̃→ ∆ is defined by the equation

z2 = −t20Q1 + 2t0t1Q2 − t21Q3.
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Since this double cover is of the form in Equation (2) obtained by replacing Q1 and Q3 with −Q1 and
−Q3, the threefold Y∆̃−/∆ satisfies the properties of Proposition 2.2 (with the appropriate substitutions). In

particular, Y∆̃−/∆ → P2 is a conic bundle with discriminant cover $− : ∆̃− → ∆, where

∆̃− = (Q1 + r2 = Q2 − rs = Q3 + s2 = 0)

is the quadratic twist of ∆̃.

3. Conic bundles with topological obstructions to rationality

In this section, we will construct examples of conic bundles Y → P2 where irrationality of Y is witnessed
by the topology of its the real locus. Throughout, we work over the real numbers. We first make some
observations about the real connected components of Y and the real isotopy class of the discriminant curve
∆.

3.1. Real connected components of Y . For a morphism f : V →W of quasi-projective algebraic varieties
over R, we let f(R) : V (R)→W (R) denote the induced map of topological spaces on the sets of real points
(with the Euclidean topology).

If F ∈ R[u, v, w] is a homogeneous polynomial defining a smooth curve of even degree, then the sign of
F (P ) for P ∈ P2(R) is well defined. We denote by (F > 0)R the set of real points for which F (P ) > 0
(similarly for ≥,=,≤, and <). Every connected component of (F = 0)R is an oval, and the complement of
(F = 0)R in P2(R) is a disjoint union of a non-orientable set UF and a finite number of discs [Man20, Section
2.7]. The non-orientable set UF is the exterior of the curve defined by F .

In the case where F defines a smooth quartic curve ∆, Zeuthen [Zeu74] proved the following classification
result for the real isotopy class of ∆. (Recall that ∆ has 28 complex bitangents.) We will sometimes denote
the real locus of the plane curve ∆ by (∆ = 0)R := ∆(R), and we will denote the exterior of ∆ by U∆.

∆(R) ∅ One oval Two nested ovals Two non-nested ovals Three ovals Four ovals
Real bitangents 4 4 4 8 16 28

Lemma 3.1. Let Y = Y∆̃/∆ be as defined in Section 2.2. The number of connected components of Y (R) is

equal to the number of connected components of its image under πi : Y → Pi for i = 1, 2.

Proof. Since πi : Y → Pi is the finite morphism π̃ composed with the projection P1 × P2 → Pi, it follows
from [DK81, Theorem 4.2] and compactness of Pn(R) that πi(R) is a continuous closed map. The claim then
holds since the fibers of πi are positive-dimensional quadrics and in particular have connected real loci. �

Lemma 3.2. If Y∆̃/∆ is as defined in Section 2.2, then Y (R) has at most 3 connected components.

Proof. By Lemma 3.1, it suffices to show that the image of π1(R) has at most 3 components. The signature of
the fibers of π1 can only change at the real branch points of the genus 2 curve Γ defined in Proposition 2.2(4),
so the number of connected components of π1(R) is at most half the number of real branch points and so is
at most 1

2 · 6 = 3. �

Lemma 3.3. In the setting of Section 2.2, the image of π2(R) is (Q1 ≥ 0)R ∪ (Q1Q3 −Q2
2 ≤ 0)R ⊆ P2(R).

Proof. The fiber of π2 above P ∈ P2(R) is the conic corresponding to the symmetric matrixQ1(P ) Q2(P ) 0
Q2(P ) Q3(P ) 0

0 0 −1
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so the fiber contains an R-point if and only if the top 2×2 submatrix is not negative definite. By Sylvester’s
criterion, this submatrix is negative definite if and only if Q1(P ) < 0 and (Q1Q3 −Q2

2)(P ) > 0. �

From Lemma 3.3 and Proposition 2.2(1), it immediately follows that:

Corollary 3.4. If Y∆̃/∆(R) = ∅, then ∆(R) = ∅. If ∆(R) 6= ∅, then Y∆̃/∆ is unirational (over R).

Proposition 3.5. If Y∆̃/∆(R) is disconnected, then ∆(R) must be two or three ovals. More precisely:

(1) If Y∆̃/∆(R) has three connected components, then ∆(R) is three ovals; and

(2) If Y∆̃/∆(R) has two connected components, then ∆(R) is two non-nested ovals or two nested ovals.

Proof. If Q1 is positive definite, then the image of π2(R) is P2(R) by Lemma 3.3, so we may assume that
Q1 is negative definite or indefinite. First suppose Q1 is negative definite. Then the image of π2(R) is
(Q1Q3 − Q2

2 ≤ 0)R, which can only be disconnected if ∆(R) is two or more ovals. If (Q1Q3 − Q2
2 ≤ 0)R is

disconnected, then it has the same number of connected components as ∆(R) and, by Lemma 3.1, it also has
the same number of connected components as Y (R). So by Lemma 3.2, ∆(R) is either two or three ovals.

It remains to consider the case when Q1 is indefinite, so its real locus is one oval. Since (Q1 = 0)R ⊂
(Q1Q3−Q2

2 ≤ 0)R, we have that (Q1 ≥ 0)R∪ (Q1Q3−Q2
2 ≤ 0)R is either equal to (Q1Q3−Q2

2 ≤ 0)R or all of
P2(R). Thus, again using Lemma 3.2 to rule out the four ovals case when Y (R) is disconnected, we conclude
that Y (R) is disconnected if and only if ∆(R) is either two or three ovals, and that in the disconnected case
Y (R) and ∆(R) have the same number of connected components. �

Remark. All cases in Proposition 3.5 occur; see Section 3.2 and Section 5.

Remark. If Y∆̃/∆(R) is disconnected and π1 has a fiber with signature (2, 2), then the real isotopy class of ∆ is

two nested ovals. Indeed, Proposition 3.5 and the fact that Γ has at most 6 real Weierstrass points imply that
the image of Y∆̃/∆(R) in P2(R) is (Q1Q3−Q2

2 ≤ 0)R and that ∆(R) consists of two ovals. After a coordinate

change on P1 we may assume that Q1 has signature (2, 1) (see [FJS+, Theorem 2.6]). Recalling that UQ1

denotes the exterior of the plane conic Q1, the signature assumption on Q1 implies UQ1 = (Q1 > 0)R, and
since UQ1

is not orientable it cannot be contained in a disc. Then UQ1
⊂ (Q1Q3 − Q2

2 ≤ 0)R implies that
U∆ is one of the two connected components of (Q1Q3−Q2

2 < 0)R, which implies the two ovals of ∆ must be
nested.

We now relate the real points of ∆̃ to those of the corresponding curve on the the twisted double cover.

Lemma 3.6. Let ∆̃→ ∆ and ∆̃− → ∆ be as defined in Section 2.2. Then $(R) : ∆̃(R)→ ∆(R) is surjective

if and only if ∆̃−(R) = ∅.

Proof. First, we note that the real points of ∆̃− lie over the locus (∆ = 0)R ∩ (Q1 ≤ 0)R. Now if $(R) is
surjective, then (∆ = 0)R is contained in (Q1 ≥ 0)R, and so (∆ = 0)R∩(Q1 ≤ 0)R = (∆ = 0)R∩(Q1 = 0)R is a

finite set of points (possibly empty). Since ∆̃− is a smooth projective curve, its real locus is homeomorphic to
a (possibly empty) disjoint union of circles [Man20, Section 3.3]. If nonempty, these circles must map finitely

onto a finite number of points, which is impossible, so necessarily ∆̃−(R) 6= ∅. Conversely, if ∆̃−(R) = ∅
then the set (∆ = 0)R \ ((∆ = 0)R ∩ (Q1 = 0)R) = (∆ = 0)R ∩ (Q1 > 0)R is contained in the image of $(R),

and since ∆̃ is a smooth projective curve, it follows that all of (∆ = 0)R is in the image of $(R). �

In particular, if Y∆̃−/∆ is irrational, then ∆̃(R) 6= ∅ and so π1 : Y∆̃/∆ → P1 has a section defined over R.

If $(R) is not surjective, then ∆̃− has an R-point and so Y∆̃−/∆ is rational.
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3.2. Construction of irrational examples. In this section, we construct examples of conic bundles by
giving equations forQ1, Q2, Q3 and taking Y := Y∆̃/∆ and ∆̃→ ∆ to be as defined in Section 2.2. Smoothness

of ∆ and ∆̃ is verified using the Jacobian criterion, and the topological type of ∆(R) is verified with the
Sage code accompanying [PSV11]. The numerical claims about the signatures of the fibers of π1 can be
verified by hand or with the code Quadric-bundle-verifications.sage, which is a Sage implementation
of the Magma code accompanying [FJS+].

Example 3.7 (Pointless example with ∆(R) = ∅). Let Y be the double cover of P1 × P2 constructed in
Section 2.2 for the quartics

Q1 := −u2 − v2 − w2, Q2 := −u2 − v2 + w2, Q3 := −2u2 − 9v2 − 3w2.

Then ∆(R) = ∅, Γ is defined by y2 = t6 + 2t5 + 10t4 + 4t3 + 19t2 + 30t+ 54, and Γ has no real Weierstrass
points. In particular, Γ(R) 6= ∅ is connected. The fibers of π1 all have signature (0, 4), so Y (R) = ∅.

In the following examples, we construct conic bundles with disconnected real loci. As mentioned in
Section 2.1, these conic bundles will not be stably rational over R. Recall from Proposition 3.5 that if Y is
constructed as in Section 2.2 and has disconnected real locus, then ∆(R) must be two or three ovals. The
following examples show that these cases all occur.

[FJS+, Theorem 1.3(1)] have previously given an example where ∆(R) is two non-nested ovals and Y (R)
has two connected components. Here we give examples with two nested ovals and three ovals, Later, in
Section 5 we will give additional examples where Y (R) is disconnected in families (Examples 5.1, 5.2 and
5.3).

Example 3.8 (Disconnected example with ∆(R) two nested ovals). Define

Q1 := u2 + v2 − w2, Q2 := u2 + v2, Q3 := −24u2 − 15v2 + w2,

and let Y be the associated double cover of P1 × P2 constructed in Section 2.2. Then ∆(R) is two nested
ovals, Γ is defined by y2 = t6 + 4t5 − 36t4 − 82t3 + 395t2 + 78t − 360 and has real Weierstrass points over
t = −6,−5,−1, 1, 3, 4. The signatures of the fibers Y[t:1] are:

t −5.5 −3 0 2 3.5 5
Signature (1, 3) (0, 4) (1, 3) (0, 4) (1, 3) (2, 2)

Thus, Y (R) has two connected components.

Example 3.9 (Disconnected example with ∆(R) three ovals). Let Y be as in Section 2.2 for

Q1 := −u2 − v2 − w2, Q2 := −5u2 + 5w2, Q3 := −24u2 + 4v2 − 24w2.

Then ∆(R) is three ovals. The hyperelliptic curve Γ is defined by y2 = t6 − 56t4 + 784t2 − 2304 and has six
real Weierstrass points over t = −6,−4,−2, 2, 4, 6. The signatures of the Y[t:1] are:

t −5 −3 0 3 5 7
Signature (1, 3) (0, 4) (1, 3) (0, 4) (1, 3) (0, 4)

Thus, Y (R) has three connected components.

Remark. In all the examples we have found where Y (R) has two components, it has been the case that Γ has
six real Weierstrass points when ∆(R) is two nested ovals, and four real Weierstrass points when ∆(R) is two
non-nested ovals. By Proposition 3.5, if ∆(R) is three ovals and Y (R) is disconnected, then Γ necessarily
has six real Weierstrass points.

Remark. If X is a smooth complete intersection of two quadrics in P5 that contains a conic C defined over R,
then projection from the conic realizes the blow up of X along C as a conic bundle with quartic discriminant
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curve [HT21b, Remark 13]. Krasnov’s topological classification of intersections of quadrics [Kra18, Theorem
5.4] shows that a conic bundle arising in such a way can have at most two real connected components, so in
particular the conic bundles of Example 3.9 are not birational over R to an intersection of two quadrics.

In the following section, we will also see using [FJS+, Corollary 6.3] that Examples 3.7 and 3.7 cannot
be obtained from an intersection of two quadrics by projection from a conic.

3.3. Failure of the intermediate Jacobian torsor obstruction. The classical intermediate Jacobian
obstruction to rationality, introduced by Clemens–Grifiths in their proof of the irrationality of the cubic
threefold [CG72], states that the intermediate Jacobian of a rational threefold must be isomorphic to a
product of Jacobians of curves. Over non-closed fields, Hassett–Tschinkel [HT21b, Section 11.5] [HT21a,
Sections 3 and 4] and Benoist–Wittenberg [BW, Theorem 3.11] have recently introduced a refinement of
this obstruction involving the torsors over the intermediate Jacobian. Assuming for simplicity that the
intermediate Jacobian is isomorphic to Pic0

Γ/k for a curve Γ of genus ≥ 2, their refinement states that

moreover each torsor over the intermediate Jacobian must be isomorphic to some PiciΓ/k. Following [FJS+],

we refer to this as the intermediate Jacobian torsor (IJT) obstruction.

Since we work over R, when we mention the IJT obstruction we always mean the obstruction over R.

Benoist–Wittenberg showed that the IJT obstruction is not sufficient to characterize rationality by con-
structing an example of a (non geometrically standard) real conic bundleX → S whose intermediate Jacobian
is trivial but such that S(R) is disconnected; hence, X has a Brauer obstruction to (stable) rationality over
R [BW20, Theorem 5.7].

In [FJS+], Frei–Ji–Sankar–Viray–Vogt studied the intermediate Jacobian torsors for geometrically stan-

dard conic bundles, relating them to certain torsors over the Prym variety of the discriminant cover ∆̃→ ∆
[FJS+, Theorem 1.1]. For the double covers described in Section 2.2, they gave an extended description of
these torsors [FJS+, Theorem 4.4]. In this situation, they showed that the intermediate Jacobian of Y is
P := Prym∆̃/∆

∼= Pic0
Γ/k, where Γ is the genus 2 curve defined in Proposition 2.2(4); that there are four

torsors P, P̃ , P (1), P̃ (1) satisfying P̃ + P (1) = P̃ (1) as P -torsors; and that P (1) ∼= Pic1
Γ. In particular, since

Γ has genus 2, then P̃ (1)(R) 6= ∅ implies the vanishing of the IJT obstruction. [FJS+] also gave a geometric

interpretation of the R-points of P̃ (1) as Galois-invariant sets of four points Q1, Q2, Q3, Q4 ∈ ∆̃(C) such that

(1) Q1, Q2, Q3, Q4 does not span a 2-plane in P4, and

(2) $∗(Q1 + Q2 + Q3 + Q4) = ∆ ∩ ` for a line ` ∈ (P2)∨(R). (If ∆̃(R) = ∅ then ` does not meet ∆
transversely in any real points [FJS+, Lemma 5.1].)

Remark. By lower semicontinuity of rank, the property that P̃ (1) has an R-point is an open condition.

Applying this criterion, [FJS+] then showed that IJT obstruction also fails to characterize rationality
for geometrically standard conic bundles over P2 by constructing an example of a conic bundle whose real
locus is disconnected where the IJT obstruction vanishes. In [FJS+, Theorem 1.3(1)], they constructed

Y∆̃/∆ such that there is a Galois-invariant set of four points of ∆̃ spanning a 3-plane in P4 and whose

pushforward under $ is ∆ ∩ (w = 0), thus exhibiting a point on P̃ (1). (In their example Γ(R) 6= ∅, and so
all the intermediate Jacobian torsors are trivial over R.) We use their method to show that the examples we
construct in Section 3.2 also have no IJT obstruction.

Proposition 3.10. All the intermediate Jacobian torsors are trivial over R in Examples 3.7 and 3.9. In
particular, these conic bundles have no IJT obstruction to rationality, and in this case irrationality is exhibited
by the real locus of Y .
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We show that P̃ (1)(R) 6= ∅ in each case, which implies that P ∼= P̃ (1) ∼= Pic0
Γ/R and P̃ ∼= P (1) ∼= Pic1

Γ/R.

Since Γ(R) 6= ∅, then Pic1
Γ/R also has an R-point. We use the line (w = 0) in Example 3.7, and the line

(u+ v + w = 0) in Example 3.9.

Later, in Section 5, we will give examples of families where many of the members have R-points on
P̃ (1), including members where ∆(R) is two non-nested ovals and Y (R) has two components. In these later
examples, the line ` that we use is often a real bitangent of ∆.

In the following examples and in the examples of Section 5, the numerical claims can be verified using the
Sage code in [JJ]. The code that computes the real bitangents of ∆ is due to Plaumann–Sturmfels–Vinzant
and is included in the supplementary material for their paper [PSV11].

Proof for Example 3.7 (no ovals, Y (R) = ∅). The quartic curve ∆ is defined by u4 + 9u2v2 + 7u2w2 + 8v4 +
14v2w2 + 2w4 = 0, and the intersection ∆ ∩ (w = 0) consists of the four complex points

[−i : 1 : 0], [i : 1 : 0], [−2i
√

2 : 1 : 0], [2i
√

2 : 1 : 0].

One verifies that the set

[i : 1 : 0 : 0 : i
√

7], [−i : 1 : 0 : 0 : −i
√

7],

[2i
√

2 : 1 : 0 :
√

7 :
√

7], [−2i
√

2 : 1 : 0 :
√

7 :
√

7].

of four points of ∆̃ is Gal(C/R)-invariant and maps to ∆ ∩ (w = 0). Since

det


i 1 0 i

√
7

−i 1 0 −i
√

7

2i
√

2 1
√

7
√

7

−2i
√

2 1
√

7
√

7

 = −56
√

2 6= 0,

the four points above span a 3-plane in P4, so P̃ (1)(R) 6= ∅. �

Proof for Example 3.9 (three ovals, Y (R) three connected components). Using Ptilde1.sage in the accom-
panying code [JJ], one verifies that

[−0.09772 + 0.360004i : −0.90228− 0.360004i : 1 : 0.22782− 1.27135i : 0.49668 + 4.31595i]

[−0.09772− 0.360004i : −0.90228 + 0.360004i : 1 : 0.22782 + 1.27135i : 0.49668− 4.31595i]

[−0.70228 + 2.58711i : −0.29772− 2.58711i : 1 : 3.44913 + 0.303445i : 10.81703 + 4.31595i]

[−0.70228− 2.58711i : −0.29772 + 2.58711i : 1 : 3.44913− 0.303445i : 10.81703− 4.31595i]

is a set of Gal(C/R)-invariant points in ∆̃ that maps to ∆ ∩ (u+ v + w = 0), and that the determinant of
−0.09772 + 0.360004i −0.90228− 0.360004i 0.22782− 1.27135i 0.49668 + 4.31595i
−0.09772− 0.360004i −0.90228 + 0.360004i 0.22782 + 1.27135i 0.49668− 4.31595i
−0.70228 + 2.58711i −0.29772− 2.58711i 3.44913 + 0.303445i 10.81703 + 4.31595i
−0.70228− 2.58711i −0.29772 + 2.58711i 3.44913− 0.303445i 10.81703− 4.31595i


is ≈ 280.57996 6= 0. Therefore, the four points above span a 3-plane in P4, and so P̃ (1)(R) 6= ∅. �

Remark. One can check that in Example 3.8, any Galois-invariant set of four points of ∆̃ mapping to ∆ ∩ `
spans a 2-plane in P4 for ` = (w = 0) or if ` is a real bitangent of ∆. These exhibit points of P (1)(R) (see
[Bru08, Lemma 4.1], [FJS+, Section 2.3]). We have not been able to construct an example where ∆(R) is

two nested ovals, Y (R) is disconnected, and P̃ (1) has a point.
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4. Construction of rational examples

In this section, we construct examples of double covers and twisted double covers as in Section 2.2 where
the quadric surface bundle π1 has a section, which by Proposition 2.2(2) implies rationality of Y . The section

will either be exhibited by a real point on ∆̃ (Proposition 2.2(3)) or by a signature computation to show
that π1 is surjective on real points (Proposition 2.2(5)). In the following examples, smoothness of ∆ and

∆̃ is verified using the Jacobian criterion, and the topological type of ∆(R) is verified with the Sage code
accompanying [PSV11]. The numerical claims about the signatures of the fibers of π1 can be verified by
hand or with the code Quadric-bundle-verifications.sage in [JJ], which is a Sage implementation of
the Magma code accompanying [FJS+].

Example 4.1 (Rational examples with ∆(R) = ∅). Let Q1, Q2, Q3 be as in Example 3.7, and let Y = Y∆̃−/∆

be the twisted double cover defined in Definition 2.3. Then ∆(R) = ∅, and Γ is defined by y2 = −t6 + 2t5 −
10t4 + 4t3− 19t2 + 30t− 54. We note that Γ(R) = ∅, so in particular Γ has no real Weierstrass points. Every
fiber of π1 has signature (3, 1), so π1 has a section and Y is R-rational by Proposition 2.2(5).

One can check that in this example, P ∼= P̃ (1) ∼= Pic0
Γ/R (see Section 3.3). The torsors P̃ ∼= P (1) ∼=

Pic1
Γ/R are non-trivial because Γ(R) = ∅; by [FJS+, Proposition 6.4] this also shows that Y is not obtained

from an intersection of two quadrics by projection from a conic. (One can also check that the quadrics
Q′1 := 2u2 + 3v2 + 5w2, Q′2 := u2 + 2v2 + 3w2, and Q′3 := 2u2 + 4v2 + 2w2 give a similar example.)

Example 4.2 (Rational example with ∆(R) one oval).

(1) (∆̃(R) is empty.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := −3u2 − 10uv + 3v2 − 8uw + 8vw − w2, Q2 := u2 − 2uv − 3v2 + 2vw + 3w2,

Q3 := −2u2 + 6uv + v2 − 6uw − 6vw − 3w2.

Then ∆(R) is one oval, and we claim that ∆̃(R) is empty. For this, since ∆(R) is connected, and
the zero locus (Q1 = 0)R is contained in (Q1Q3 − Q2

2 ≤ 0)R, so it suffices to check that ∆ has an
R-point P such that Q1(P ) < 0. Indeed, one verifies that this is satisfied by P in the support of
∆ ∩ (v + w = 0).

Every fiber of π1 has signature (1, 3), and so π1(R) is surjective. Thus, Y is rational.
One can check that Γ has no real Weierstrass points and that Γ(R) = ∅.

(2) (Image of ∆̃(R) is one oval.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := 12u2 + 96uv + 36v2 − 7w2, Q2 := 36u2 + 180uv + 36v2 − w2,

Q3 := 90u2 + 96uv + 36v2 + 7w2.

Then [0 : 1 : 0 : 6 : 6] exhibits a Q-point of ∆̃, so Y∆̃/∆ is Q-rational by Proposition 2.2(3). (We also

note that in this example, Y∆̃−/∆(R) is connected, but Y∆̃−/∆(R)→ P1(R) is not surjective.)

Example 4.3 (Rational example with ∆(R) two non-nested ovals).

(1) (∆̃(R) is empty.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := −5u2 + 10uv + 5v2 + 10uw + 8vw, Q2 := u2 − 10uv − 2v2 + 10vw + 4w2,

Q3 := 2u2 − 4uv − 4v2 − 8uw + 8vw + 2w2.

Then ∆(R) is two non-nested ovals, and we claim that ∆̃(R) = ∅. For this, we work on the chart
(w 6= 0). One can verify that
• The lines `1 := (v = 0) and `2 := (v = 1) are disjoint from (∆ = 0)R; and
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• The set (∆ = 0)R ∩ (Q1 < 0)R contains one R-point (u, v) with v = 1
2 that lies above `1 and

below `2 and another R-point (u, v) with v = −1 lying below `1.
In particular, both connected components of (∆ = 0)R contain points where Q1 is negative. Since
(Q1 ≤ 0)R is connected and (Q1 = 0)R ⊂ (Q1Q3 −Q2

2 ≤ 0)R, this shows that Q1 is not positive for
all p ∈ (∆ = 0)R. See Figure 1 for a visual depiction.

One can check that Γ has two real Weierstrass points over [t : 1] with t ≈ 0.39460, 1.22782, and
the fibers Y[1:1] and Y[2:1] have signatures (2, 2) and (1, 3), respectively. Therefore π1(R) is surjective.

(2) (Image of ∆̃(R) is one oval.) Define ∆̃→ ∆ and Y as in Section 2.2 for the quadrics

Q1 := 2u2 − 9v2 + 12uw − 68vw + 70w2, Q2 := u2 − 6v2 + 15uw − 19vw − 10w2,

Q3 := u2 − 8v2 − 50uw + 51vw − 16w2.

Then [3 : 1 : 0 : 3 : 1] exhibits a Q-point of ∆̃, so Y is Q-rational by Proposition 2.2(3). The curve

∆̃− also contains Q-points, as shown by [2 : 1 : 0 : 1 : −2]. So by Lemma 3.6, the map $(R) is not
surjective and so its image is one oval.

(3) (Image of ∆̃(R) is two ovals) Let Q1, Q2, Q3, be as in part (1), and define Y∆̃−/∆ as in Definition 2.3.

By Lemma 3.6, the map $−(R) is surjective, so in particular Y∆̃−/∆ is R-rational.

Figure 1. The regions (Q1Q3−Q2
2 ≤ 0)R (in blue) and (Q1 ≥ 0)R (in red) of Example 4.3(1)

(left) and Example 4.4(1) (right) on the affine open chart (w 6= 0).

Example 4.4 (Rational example with ∆(R) two nested ovals).

(1) (∆̃(R) is empty.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := −4u2 − 2uv − 2v2 − 10uw + 4vw − 4w2, Q2 := u2 − 4uv − 3v2 − 6uw + 2vw + 2w2,

Q3 := −u2 − 6uv + 8uw − 6vw − 3w2.

Then ∆(R) is two nested ovals, and we claim that ∆̃(R) is empty (see Figure 1).

To show ∆̃(R) = ∅, we work on the chart (w 6= 0) and define the box B := {(u, v) | − 2 ≤ u ≤
−1, 3.5 ≤ v ≤ 4.5}. One can verify that the boundary of B is disjoint from (∆ = 0)R, that the
set (∆ = 0)R ∩ (Q1 < 0)R ∩ B contains an R-point (u, v) with v = 4 and −2 < u < −1, and the
set (∆ = 0)R ∩ (Q1 < 0)R contains an R-point in the complement of B whose v-coordinate is 1. In
particular, there are points on both connected components of (∆ = 0)R where Q1 is negative. Since
(Q1 ≤ 0)R is connected and (Q1 = 0)R ⊂ (Q1Q3 −Q2

2 ≤ 0)R, we have that Q1 is not positive for all
P ∈ (∆ = 0)R.
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Γ has no real Weierstrass points, and all fibers of π1 have signature (1, 3), so π1(R) is surjective.
Thus Y is rational.

(2) (Image of ∆̃(R) is one oval.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := 2u2 − 9v2 + 13w2, Q2 := u2 − 6v2 − 3w2, Q3 := u2 − 8v2 + 6w2

Then ∆ has real isotopy class two nested ovals, and [3 : 1 : 0 : 3 : 1] exhibits a Q-point of ∆̃, so Y is
Q-rational by Proposition 2.2(3).

Since [2 : 1 : 0 : 1 : −2] exhibits a Q-point of ∆̃−, Lemma 3.6 implies that $(R) is not surjective.
Thus, the image of $(R) is one oval.

(3) (Image of ∆̃(R) is two ovals.) Let Q1, Q2, Q3 be as in Example 3.8, and let Y∆̃−/∆ be the associated

twisted double cover (Definition 2.3). Since the threefold Y∆̃/∆ of Example 3.8 is irrational over R,

then $−(R) is surjective and in particular Y∆̃−/∆ is R-rational. (Note that ∆̃− does not contain

any Q-points, as it has no Q2-points.)

Example 4.5 (Rational example with ∆(R) three ovals).

(1) (∆̃(R) is empty.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := −3u2 − 4uv + v2 + 10uw + 4vw − 2w2, Q2 := 5u2 + 4uv − 2v2 + 8uw − 6vw + 5w2,

Q3 := −2u2 + 2uv − 3v2 − 8uw + 2vw − 2w2.

Then ∆(R) is three ovals, and we claim that ∆̃(R) = ∅.
For this, we work on the chart (w 6= 0). Define the boxes B1 := {(u, v) | −0.5 ≤ u ≤ 0, 0 ≤ v ≤ 1}

and B2 := {(u, v) | − 30 ≤ u ≤ −2, 0 ≤ v ≤ 17}. One can verify that the boundary of each Bi is
disjoint from (∆ = 0)R, and that
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B1 contains an R-point (−0.125, v) with 0 < v < 1;
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B2 contains an R-point (−4, v) with 0 < v < 17; and
• The set (∆ = 0)R ∩ (Q1 < 0)R contains an R-point (0.125, v) disjoint from both B1 and B2.

In particular, there exists a point on each of the three connected components of (∆ = 0)R where Q1

is negative. Since (Q1 ≤ 0)R is connected and (Q1 = 0)R ⊂ (Q1Q3 −Q2
2 ≤ 0)R, this shows that Q1

is not positive for all p ∈ (∆ = 0)R.
The associated genus 2 curve Γ has equation y2 = 39t6 + 102t5− 1335t4 + 1114t3 + 47t2 + 20t− 32

and has four real Weierstrass points over [t : 1] where t ≈ −7.60663, 0.31045, 0.95547, 4.06172. One
can check that the fibers of Y[t:1] have signatures as in the table below, so π1(R) is surjective.

t −3 0.5 2 6
Signature (1, 3) (2, 2) (1, 3) (2, 2)

(2) (Image of ∆̃(R) is one oval.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := −4u2 + 2v2 + 2w2, Q2 := 3u2 − v2 − 3w2, Q3 := −2u2 + 2v2 + 2w2.

Then ∆(R) is three ovals and [0 : 1 : 1 : 2 : −2] exhibits a Q-point of ∆̃, so Y is Q-rational by
Proposition 2.2(3). We will show that the image of $(R) is one oval in part (3).

(3) (Image of ∆̃(R) is two ovals.) Let Q1, Q2, Q3 be as in part (2), and let Y∆̃−/∆ and ∆̃− → ∆ be as

defined in Definition 2.3. We claim that the image of $−(R) is two of the connected components
of ∆(R), and in particular Y∆̃−/∆ is R-rational. To show this, we work on the chart (w 6= 0) of P2.

Define the boxes B1 := {(u, v) | − 2.5 ≤ u ≤ −0.5,−0.6 ≤ v ≤ 0.6} and B2 := {(u, v) | 0.5 ≤ u ≤
2.5,−0.6 ≤ 0.6}. One can verify that the boundary of each Bi is disjoint from (∆ = 0)R and that
• The set (∆ = 0)R ∩ (−Q1 ≥ 0)R ∩B1 contains the R-points (−1, 0), and
• The set (∆ = 0)R ∩ (−Q1 ≥ 0) ∩B2 contains the R-points (1, 0).
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It follows that the set (∆ = 0)R ∩ (−Q1 ≥ 0)R in P2(R) has at least two connected components.

Since ∆(R) is three ovals and ∆̃(R) 6= ∅, as shown in part (2) by the Q-point [0 : 1 : 1 : 2 : −2], we
have that the image of $−(R) cannot be all three ovals. From this, we conclude that the image of
$−(R) is two ovals. This also shows that the image of $(R) in part (2) is one oval.

(4) (Image of ∆̃(R) is three ovals.) Let Q1, Q2, Q3 be as defined in Example 3.9 and Y∆̃−/∆ as defined

in Definition 2.3. Since −Q1 is positive definite, ∆̃(R) surjects onto ∆(R) and so Y∆̃−/∆ is rational.

Figure 2. The regions (Q1Q3−Q2
2 ≤ 0)R (in blue) and (Q1 ≥ 0)R (in red) of Example 4.6(1)

(left) and (3) (right) on the affine open chart (w 6= 0).

Example 4.6 (Rational examples with ∆(R) four ovals).

(1) (∆̃(R) is empty.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := u2 + 10v2 − 8w2, Q2 := 10u2 − 4w2, Q3 := −2u2 − 5v2 + 3w2.

Then ∆(R) is four ovals, and we claim that ∆̃(R) = ∅. For this, we work on the chart (w 6= 0). Define
disjoint boxes B1 := {(u, v) | 0.5 ≤ u ≤ 1, 0.5 ≤ v ≤ 1}, B2 := {(u, v) | −1 ≤ u ≤ −0.5, 0.5 ≤ v ≤ 1},
B3 := {(u, v) | − 1 ≤ u ≤ −0.5, −1 ≤ v ≤ −0.5}, and B4 := {(u, v) | 0.5 ≤ u ≤ 1, −1 ≤ v ≤ −0.5}.
Then, one can verify that the boundary of each Bi is disjoint from (∆ = 0)R, and that
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B1 contains an R-point (0.6, v) with 0.5 < v < 1;
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B2 contains an R-point (−0.6, v) with 0.5 < v < 1;
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B3 contains an R-point (−0.6, v) with −1 < v < −0.5; and
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B4 contains an R-point (0.5, v) with −1 < v < −0.5.

In particular, this shows that there are points on all four connected components of (∆ = 0)R where
Q1 is negative. Since (Q1 ≤ 0)R is connected and (Q1 = 0)R ⊂ (Q1Q3 −Q2

2 ≤ 0)R, this shows that
Q1 is not positive for all p ∈ (∆ = 0)R. See Figure 2 for a visual depiction.

The genus 2 curve Γ∆̃/∆ is defined by y2 = 80t6 + 1680t5 + 1370t4 − 1600t3 − 645t2 + 380t − 30

and has 6 real Weierstrass points over the points [αi : 1] ∈ P1(R) where −21 < α1 < −2 < α2 <
−1 < α3 < 0 < α4 < 0.1 < α5 < 0.5 < α6. The fibers Y[t:1] have signatures

t −21 −2 −1 0 0.1 0.5
Signature (2, 2) (1, 3) (2, 2) (1, 3) (2, 2) (1, 3)

so π1(R) is surjective, and in particular Y∆̃/∆ is R-rational.
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(2) (Image of ∆̃(R) is one oval.) Let ∆̃→ ∆ and Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := −8uv − v2 + 10uw − 10vw − 2w2, Q2 := 5u2 + 8uv − 3v2 − 8uw − 2w2,

Q3 := −5u2 − 4uv + 3v2 + 4vw.

Then ∆(R) is four ovals, and we claim that the image of $(R) is one oval, which implies that

∆̃(R) 6= ∅ so Y∆̃/∆ is R-rational. (In this example ∆̃(Q2) = ∅, so ∆̃(Q) = ∅.)
To show that the image of $(R) is one oval, we note that (∆ = 0)R does not meet the line (w = 0),

and we work on the chart (w 6= 0). Define disjoint boxes B1 := {(u, v) | − 4 ≤ u ≤ −3, 2 ≤ v ≤
3}, B2 := {(u, v) | − 1 ≤ u ≤ 0,−1 ≤ v ≤ 1}, B3 := {(u, v) | − 1 ≤ u ≤ 0,−3 ≤ v ≤ 1.5}, and
B4 := {(u, v) | 0.5 ≤ u ≤ 3, 0 ≤ v ≤ 3}. Then, one can verify that the boundary of each Bi is disjoint
from (∆ = 0)R and that
• The set (∆ = 0)R ∩ (Q1 ≥ 0)R ∩B1 contains an R-point (−3.5, v) with 2 < v < 3,
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B2 contains an R-point (u,−0.5) with −1 < u < 0,
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B3 contains an R-point (u,−2) with −1 < u < 0, and
• The set (∆ = 0)R ∩ (Q1 < 0)R ∩B4 contains an R-point (2, v) with 0 < v < 3.

This shows that there are points on three connected components of (∆ = 0)R where Q1 is negative,
and there are points on the last connected components of (∆ = 0)R where Q1 is positive. Since
(Q1 = 0)R ⊂ (Q1Q3 −Q2

2 ≤ 0)R is connected, this means that exactly one connected component of
(∆ = 0)R lies in (Q1 ≥ 0)R. It follows that the image of $(R) is one oval.

(3) (Image of ∆̃(R) is two ovals.) Define ∆̃→ ∆ and Y as in Section 2.2 for the quadrics

Q1 := −2u2 − 2v2 + w2, Q2 := 4u2 − 9v2 − vw + 2w2, Q3 := −3u2 + 9v2 + 8vw + 4w2

Then [0 : 0 : 1 : 1 : 2] exhibits a Q-point of ∆̃, so Y is Q-rational by Proposition 2.2(3).
To show that the image of $(R) is two ovals, it suffices for us to show that only two connected

components of (∆ = 0)R is contained in (Q1 ≥ 0)R. (See Figure 2.)
For this, we work on the chart (w 6= 0). Define disjoint boxes B1 := {(u, v) | −1 ≤ u ≤ 1, 0.1 ≤ v ≤

1}, B2 := {(u, v) | − 1 ≤ u ≤ 1,−0.8 ≤ v ≤ −0.2}, B3 := {(u, v) | − 10 ≤ u ≤ −1.1,−6 ≤ v ≤ −0.9},
and B4 := {(u, v) | 1.1 ≤ u ≤ 10,−6 ≤ v ≤ −0.9}. Then, one can verify that the boundary of each
Bi is disjoint from (∆ = 0)R and that
• The set (∆ = 0)R ∩ (Q1 ≥ 0)R ∩B1 contains the R point (0, 3/5),
• (∆ = 0)R ∩ (Q1 ≥ 0)R ∩B2 contains an R point (0, v) with −0.8 < v < −0.2,
• (∆ = 0)R ∩ (Q1 < 0)R ∩B3 contains an R-point (−2, v) with −6 < v < −0.9, and
• (∆ = 0)R ∩ (Q1 < 0)R ∩B3 contains an R-point (2, v) with −6 < v < −0.9.

In particular, this shows that there are points on two connected components of (∆ = 0)R where Q1

is positive, and there are points on the two other connected components of (∆ = 0)R where Q1 is
negative. Since (Q1 = 0)R ⊂ (Q1Q3−Q2

2 ≤ 0)R is connected, this means that exactly two connected
components of (∆ = 0)R lies in (Q1 ≥ 0)R, so the image of $(R) is two ovals.

(4) (Image of ∆̃(R) is three ovals.) Let Y∆̃/∆ be as defined in Section 2.2 for the quadrics

Q1 := −4u2 − uv + 9v2 − 19uw + 6vw − 20w2, Q2 := 4u2 − 14uv + 6v2 + 21uw + 38vw + 38w2

Q3 := u2 − 6uv + 4v2 − 21uw + 28vw + 49w2.

Then ∆(R) is four ovals and [0 : 1 : 0 : 3 : 2] exhibits a Q-point of ∆̃, so Y is Q-rational by

Proposition 2.2(3). Define ∆̃− as in Definition 2.3. One can verify that the image of ∆̃−(R) is one
oval, similar to what’s done in Example 4.6(2), and one concludes that the image of $−(R) is three

ovals. Note that ∆̃−(R) is also Q-rational as [2 : 1 : 0 : 3 : −2] exhibits a Q-point of ∆̃−(R).
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(5) (Image of ∆̃(R) is four ovals.) Let Q1, Q2, Q3 be as in Example 4.6(1), and let ∆̃− → ∆ and

Y∆̃−/∆ be as defined in Definition 2.3. Moreover, the map $−(R) : ∆̃−(R)→ ∆(R) is surjective by

Lemma 3.6, so Y∆̃−/∆ is R-rational. (In this example ∆̃−(Q5) = ∅, and so ∆̃−(Q) = ∅.)

5. Families of conic bundles with rational and non-rational members

In Sections 3 and 4, we used the double covers of P1×P2 defined in Section 2.2 to construct examples of
irrational and rational conic bundles. We next give two examples of these double covers in one-parameter
families, where the rationality of Y (and number of real connected components) and the real topological
type of the discriminant curve vary in the family. We also exhibit interesting behavior of the intermediate
Jacobian torsor (IJT) obstruction to rationality. Namely, in Example 5.1 we expect that the IJT obstruction
vanishes for every smooth member; Example 5.2 has both rational and irrational members for which the IJT
obstruction vanishes, but also contains irrational members for which we cannot show that the IJT obstruction
vanishes; and Example 5.3 contains rational members, but we are not able to show that the IJT obstruction
vanishes for any irrational members.

Recall that the IJT obstruction and P̃ (1) were defined in Section 3.3. In the examples below, the numerical
claims about P̃ (1) can be verified using the code in [JJ]. The code that computes the real bitangents of ∆ is
due to Plaumann–Sturmfels–Vinzant and is included in the supplementary material for their paper [PSV11].
Recall also that since rank is a lower semicontinuous function for matrices, the existence of an R-point on
P̃ (1) is an open condition.

In the following proofs, the numerical claims about −detMt,s, its discriminant, and the resultant of the
partial derivatives ∂u∆s, ∂v∆s, ∂w∆s can be verified by hand or using the Macaulay2 code Section-5-singular
-members.m2 in [JJ]. Smoothness of ∆ and ∆̃ and the claims about the signatures of the fibers of π1 can be
verified by hand or using the code Quadric-bundle-verifications.sage, which is a Sage implementation
of the Magma code accompanying [FJS+].

We first give an example of a family whose fibers include rational members with ∆(R) two nested ovals,
rational members ∆(R) two non-nested ovals, and irrational members with ∆(R) two non-nested ovals.

Example 5.1. Let Y → A1
s be the family of real conic bundle threefolds defined by the equation

z2 = t20(su2−5v2+4uw−5vw−2w2)+2t0t1(u2+v2+10uw+2vw+3w2)+t21(−u2−v2−10uw−2vw−4w2).

Then a general member Ys has the structure of a geometrically standard conic bundle over P2 with smooth
quartic discriminant curve ∆s (and hence is C-rational), and

(1) Ys(R) is disconnected and therefore Ys is not stably rational for s ∈ (−∞, β1);
(2) Ys is rational for s ∈ (β2,∞);
(3) Ys(R) is connected but the map π1,s(R) is not surjective for s ∈ (β1, β2). In particular there is no

known rationality construction for Ys over R; and
(4) Every interval on which ∆s is smooth contains values of s such that Ys has no IJT obstruction.

Moreover, the IJT obstruction vanishes for every for s ∈ (−∞,−1] ∪ (β2,∞) with ∆s,Ys smooth.

The quartic curve ∆s is singular for s = −5, β1, β2, β3. For values of s with ∆s and Ys smooth, the number
of real connected components of Ys and the real isotopy class of ∆s are:

s (−∞,−5) ∪ (−5, β1) (β1, β2) (β2, β3) (β3,∞)
Ys(R) Two components One component One component (rational) One component (rational)
∆s(R) Two non-nested ovals One oval Two nested ovals Two non-nested ovals
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Here 2
5 < β1 < β2 <

1
2 < β3 and the βi are the real roots of the discriminant of −det(t2M1,s + 2tM2 +M3),

where M1,s,M2,M3 are the 3× 3 symmetric matrices corresponding to su2 − 5v2 + 4uw − 5vw − 2w2, u2 +
v2 + 10uw + 2vw + 3w2,−u2 − v2 − 10uw − 2vw − 4w2, respectively.

We expect that in fact the IJT obstruction vanishes for Ys for every s ∈ (−∞,∞) such that ∆s is smooth.

Proof of properties in Example 5.1. Each fiber Ys is the double cover of P1 × P2 associated to the quadrics

Q1,s := su2−5v2+4uw−5vw−2w2, Q2 := u2+v2+10uw+2vw+3w2, Q3 := −u2−v2−10uw−2vw−4w2

as constructed in Section 2.2. For each s, let Γs be the associated genus two curve as defined in Proposi-
tion 2.2(4). Define the matrix Mt,s := t2M1,s + 2tM2 +M3. Then

−detMt,s =

(
−15s

4
− 20

)
t6 +

(
24s− 399

2

)
t5−

(
25s+

1089

4

)
t4 +(10s+546)t3−(3s+360)t2 +134t−22.

The discriminant of the polynomial −detMt,s is a degree 9 polynomial in s with three real roots β1, β2, β3,
whose values are approximately

β1 ≈ 0.417608, β2 ≈ 0.469848, β3 ≈ 45.0611.

One then verifies that the genus two curve Γs has four real Weierstrass points for s < β1, two real Weierstrass
points for β1 < s < β2, no real Weierstrass points for β2 < s < β3, and two real Weierstrass points for β3 < s.
We now compute the signatures of the fibers of π1,s : Ys → P1 for s in each of these intervals.

(1) For s < β1: Γs has four real Weierstrass points (note that when s = − 16
3 one of these is over [1 : 0]).

The signatures of the fibers of π1,s have the sequence (0, 4), (1, 3), (0, 4), (1, 3), and therefore Ys(R)
has connected components.

(2) For β1 < s < β2: Γs has two real Weierstrass points, and the signature sequence is (1, 3), (0, 4).
Hence Ys(R) is connected; however, π1 is not surjective on real points and hence does not admit a
section over R.

(3) For β2 < s < β3: Γs has no real Weierstrass points, and every fiber has signature (1, 3). Hence π1,s

has a section defined over R, and in particular Ys is rational over R. One can also check that ∆̃s

has an R-point for s in this interval.
(4) β3 < s: Γs has two real Weierstrass points, and the signature sequence is (1, 3), (2, 2). Therefore π1,s

has a section defined over R, and in particular Ys is rational over R. One can also check that ∆̃s

has an R-point for values of s in this interval.

We now compute the locus where ∆s is singular. The resultant of the partial derivatives of ∆s is a degree
17 polynomial in s with four real roots s = −5, β1, β2, β3. The real isotopy class of ∆s is constant in each
interval of A1(R) \ {−5, β1, β2, β3}, so it suffices to check at a single point on each interval. Using the Sage

code accompanying [PSV11], one verifies that ∆s has real rigid isotopy class

(1) Two non-nested ovals for s < −5 and −5 < s < β1,
(2) One oval for β1 < s < β2,
(3) Two nested ovals for β2 < s < β3, and
(4) Two non-nested ovals for β3 < s.

We also note that Y−5(R) has two connected components, and that Ys(R) is connected for s ∈ {β1, β2, β3}.
It remains to show that for s ∈ (−∞,−5) ∪ (−5,−1), the IJT obstruction vanishes for Ys. We will

exhibit a point on P̃ (1) for these values of s. The intersection ∆s ∩ (w = 0) is given by the equation
(su2 − 5v2)(−u2 − v2)− (u2 + v2)2 = 0 and consists of the four complex points

[1 : −i : 0], [1 : i : 0], [2 :
√
s+ 1 : 0], [−2 :

√
s+ 1 : 0].
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First suppose −5 < s < −1. Then
√
s+ 5 ∈ R and

√
s+ 1,

√
−s− 5 6∈ R, so

[1 : i : 0 :
√
s+ 5 : 0], [1 : −i : 0 :

√
s+ 5 : 0],

[2 :
√
s+ 1 : 0 :

√
−s− 5 : −

√
−s− 5], [2 : −

√
s+ 1 : 0 : −

√
−s− 5 :

√
−s− 5]

is a set of four Gal(C/R)-invariant points of ∆̃ mapping to ∆s ∩ (w = 0). These span a 3-plane in P4 since

det


1 i

√
s+ 5 0

1 −i
√
s+ 5 0

2
√
s+ 1

√
−s− 5 −

√
−s− 5

2 −
√
s+ 1 −

√
−s− 5

√
−s− 5

 = 8i
√
s+ 5

√
−s− 5 ∈ R \ {0}

and so the above set of points on ∆̃ exhibits an R-point on P̃ (1).

If s < −5, then
√
−s− 5 ∈ R and

√
s+ 1,

√
s+ 5 6∈ R, so

[1 : i : 0 :
√
s+ 5 : 0], [1 : −i : 0 : −

√
s+ 5 : 0],

[2 :
√
s+ 1 : 0 :

√
−s− 5 : −

√
−s− 5], [2 : −

√
s+ 1 : 0 :

√
−s− 5 : −

√
−s− 5]

is a set of four Gal(C/R)-invariant points mapping to ∆s ∩ (w = 0) and gives an R-point on P̃ (1) since

det


1 i

√
s+ 5 0

1 −i −
√
s+ 5 0

2
√
s+ 1

√
−s− 5 −

√
−s− 5

2 −
√
s+ 1

√
−s− 5 −

√
−s− 5

 = −4
√
s+ 5

√
s+ 1

√
−s− 5 ∈ R \ {0}.

When s = −1, one can check using the Sage code Ptilde1.sage in [JJ] that P̃ (1) contains an R-point
over ∆−1 ∩ (u+ 10w = 0). For s ∈ (β2,∞), the IJT obstruction vanishes because Ys is rational. (Moreover,

on P̃ (1) has an R-point on (β3,∞) because Γs(R) 6= ∅ and so all the intermediate Jacobian torsors are trivial,

see Section 3.3. One can also check that P̃ (1) has a point for many values of s ∈ (β2, β3), e.g. 1
2 , 1.) It

remains to exhibit values of s in the intervals (−1, β1) and (β1, β2) for which P̃ (1) has a point. Using the code
Ptilde1-bitangents.sage in [JJ], one verifies this for − 1

2 , 0 ∈ (−1, β1). For the interval (β1, β2), one can

check using Ptilde1.sage in [JJ] that s = 45
100 has a point on P̃ (1) mapping to ∆∩ (u+ 1

10v+ 1
5w = 0). �

The next example contains members where Y (R) has one, two, or three connected components.

Example 5.2. Let Y → A1
s be the family of real conic bundle threefolds defined by the equation

z2 = t20(−u2 − v2 + suv − w2) + 2t0t1(−5u2 + 5w2) + t21(−24u2 + 4v2 − 24w2).

Then a general fiber Ys has the structure of a geometrically standard conic bundle over P2 with smooth
quartic discriminant curve ∆s (and hence is C-rational). The quartic curve ∆s is singular over ten points

s = ±β1,±β2,±β3,±β4,±7/
√

3, and

(1) Ys is rational for s ∈ (−∞,−β4) ∪ (β4,∞);
(2) Ys(R) is connected but the map π1,s(R) is not surjective for s ∈ (−β4,−β2) ∪ (β2, β4). Hence there

is no known rationality construction for Ys over R; and
(3) Ys(R) is disconnected and hence Ys is not stably rational for s ∈ (−β2,−β2).

For smooth ∆s and Ys, the number of connected components of Ys(R) and the isotopy class of ∆s(R) are:

s (−∞,−β4) ∪ (β4,∞) (−β4,−β2) ∪ (β2, β4) (−β2,−β1) ∪ (β1, β2) (−β1, β1)
Ys(R) One component (rational) One component Two components Three components
∆s(R) Two nested ovals One oval Two non-nested ovals Three ovals
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Here 1 < β1 < β2 < β3 < β4 < 4 and the βi are the positive real roots of the discriminant of − det(t2M1,s +
2tM2 + M3), where M1,s,M2,M3 are the 3 × 3 symmetric matrices corresponding to −u2 − v2 + suv −
w2,−5u2 + 5w2,−24u2 + 4v2 − 24w2, respectively.

In this example, every interval on which ∆s is smooth except the intervals (−β4,−β2) and (β2, β4)
contains points s such that the IJT obstruction vanishes for Ys. We expect that the real IJT obstruction
vanishes for Ys for every s 6∈ (−β4,−β2) ∪ (β2, β4) such that ∆s is smooth. For s ∈ (−β4,−β2) ∪ (β2, β4),

we are not able to exhibit an R-point on P̃ (1)—it is likely that Ys has an IJT obstruction to R-rationality
in these intervals.

Proof of properties in Example 5.2. Ys is the double cover of P1 × P2 associated to the quadrics

Q1,s := −u2 − v2 + suv − w2, Q2 := −5u2 + 5w2, Q3 := −24u2 + 4v2 − 24w2

as constructed in Section 2.2. Let Γs be the associated genus two curve as defined in Proposition 2.2(4).
Define the matrix Mt,s = t2M1,s + 2tM2 +M3. Then

−detMt,s =

(
1− s2

4

)
t6 +

5s2

2
t5 − (6s2 + 56)t4 + 784t2 − 2304.

The discriminant of −detMt,s is a degree 14 polynomial with eight real roots s = ±β1,±β2,±β3,±β4 with

β1 ≈ 1.1067, β2 = 8
3

√
5/3 ≈ 3.44265, β3 =

√
15 ≈ 3.87298, β4 ≈ 3.9724.

We now compute the signatures of the fibers of π1,s.

(1) s < −β4: Γs has two real Weierstrass points over t = 4, 6, and the fibers of π1,s have signatures in
the sequence (1, 3), (2, 2). In particular π1,s is surjective on real points and has a section over R, so

Ys is rational over R. One can also check that ∆̃s(R) 6= ∅.
(2) −β4 < s < −

√
15: Γs has four real Weierstrass points, and the fibers have signature sequence

(1, 3), (0, 4), (1, 3), (2, 2). In particular, Ys(R) is connected but π1,s is not surjective on real points
and hence does not have a section defined over R.

(3) −
√

15 < s < − 8
3

√
5/3: Γs has four real Weierstrass points, and the fibers have signature sequence

(1, 3), (0, 4), (1, 3), (2, 2). In particular, Ys(R) is connected but π1,s is not surjective on real points
and hence does not have a section defined over R.

(4) − 8
3

√
5/3 < s < −β1: Γs has four real Weierstrass points (when s = −2 one of the Weierstrass points

is over [1 : 0]), and the fibers have signature sequence (1, 3), (0, 4), (1, 3), (0, 4). In particular Ys(R)
has two connected components and hence is not stably rational over R.

(5) −β1 < s < β1: Γs has six real Weierstrass points, and the signatures of the fibers of π1,s have the
sequence (0, 4), (1, 3), (0, 4), (1, 3), (0, 4), (1, 3). Thus Ys(R) has three components.

(6) β1 < s < 8
3

√
5/3: Γs has four real Weierstrass points (when s = 2 one of the Weierstrass points is

over [1 : 0]), and the fibers have signature sequence (1, 3), (0, 4), (1, 3), (0, 4). Therefore Ys(R) has
two connected components.

(7) 8
3

√
5/3 < s <

√
15: Γs has four real Weierstrass points, and the fibers have signature sequence

(1, 3), (0, 4), (1, 3), (2, 2). In particular, Ys(R) is connected but π1,s is not surjective on real points
and hence does not have a section defined over R.

(8)
√

15 < s < β4: Γs has four real Weierstrass points, and the fibers have signature sequence
(1, 3), (0, 4), (1, 3), (2, 2). In particular, Ys(R) is connected but π1,s is not surjective on real points
and hence does not have a section defined over R.

(9) β4 < s: Γs has two real Weierstrass points over t = 4, 6, and the signature sequence of the fibers is
(1, 3), (2, 2). In particular π1,s is surjective on real points and has a section over R, so Ys is rational

over R. One can also check that ∆̃s(R) 6= ∅.
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We note that Y±β1 have disconnected real loci, and that Y±√15(R) are connected but the morphisms π1,±
√

15

are not surjective on real points.

The quartic curves ∆s are smooth away from the roots of the resultant R3(∂u∆s, ∂v∆s, ∂w∆s), which

one can compute is a degree 22 polynomial with ten real roots s = ±β1,±β2,±β3,±β4,±7/
√

3. We now
determine the real isotopy class of the quartic curve ∆s using the Sage code accompanying [PSV11]. It

suffices to check one point on each interval of A1(R)\{±β1,± 8
3

√
5/3,±

√
15,±β4,±7/

√
3}, and we find that

the real rigid isotopy class of ∆s is:

(1) Two nested ovals for s < −7/
√

3 and −7/
√

3 < s < −β4,

(2) One oval for −β4 < s < −
√

15,

(3) One oval for −
√

15 < s < − 8
3

√
5/3,

(4) Two non-nested ovals for − 8
3

√
5/3 < s < −β1,

(5) Three ovals for −β1 < s < β1,

(6) Two non-nested ovals for β1 < s < 8
3

√
5/3,

(7) One oval for 8
3

√
5/3 < s <

√
15,

(8) One oval for
√

15 < s < β4, and

(9) Two nested ovals for β4 < s < 7/
√

3 and 7/
√

3 < s.

It remains to show that each interval of A1(R)\{±β1,±β2,±β3,±β4,±7/
√

3} except (−β4,−β3), (−β3,−β2),
(β2, β3), and (β3, β4) contains values of s such that the IJT obstruction vanishes for Ys. First, we note
that Ys is rational and Γs has real points for s ∈ (−∞,−β4) ∪ (β4,∞) with ∆s smooth, so the IJT ob-

struction vanishes and moreover P̃ (1) has a real point. One the remaining intervals, one can show using
Ptilde1-bitangents.sage in [JJ] that P̃ (1) has a point for the following values of s: −3,−2 ∈ (−β2,−β1);
−1, 0 ∈ (−β1, β1); and 2, 3 ∈ (β1, β2). �

Finally, we give an example of a family containing members whose discriminant curves are four ovals,
and members with disconnected real loci.

Example 5.3. Let Y → A1
s be the family of real conic bundle threefolds defined by the equation

z2 = t20(su2 + v2 − w2) + 2t0t1

(
−43

57
u2 − 93

14
v2 +

85

39
w2

)
+ t21

(
8

57
u2 − 221

14
v2 +

50

13
w2

)
.

We claim that a general fiber Ys has the structure of a geometrically standard conic bundle over P2 with
smooth quartic discriminant curve ∆s. Furthermore, the quartic curve ∆s is singular over six real points
s = β1, β2, β3, β4, β5, ζ, and

(1) Ys(R) is disconnected and hence Ys is not stably rational for s ∈ (−∞, β1) ∪ (β1 < s < β2);
(2) Ys(R) is connected but the map π1,s(R) is not surjective for s ∈ (β2, β3) ∪ (β3, β4). Hence there is

no known rationality construction for Ys over R; and
(3) Ys is rational for s ∈ (β4, ζ) ∪ (ζ, β5) ∪ (β5,∞).

Here −5
2 < β1 < β2 < β3 < β4 < β5 < 17

4 are the βi’s that are the real roots of the discriminant

of −det(t2M1,s + 2tM2 + M3) where M1,s,M2,M3 are the 3 × 3 symmetric matrices corresponding to
su2 + v2 − w2, − 43

57u
2 − 93

14v
2 + 85

39w
2, and 8

57u
2 − 221

14 v
2 + 50

13w
2 respectively.

For s such that ∆s and Ys are smooth, the number of real connected components of Ys and the real
isotopy class of ∆s are:

s (−∞, β2) (β2, β4) (β4, β5) (β5,∞)
Ys(R) Two components Connected Connected (rational) Connected (rational)
∆s(R) Two nested ovals Two non-nested ovals Four ovals Three ovals
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In this example, we are not able to exhibit an R-point of P̃ (1) for s ∈ (−∞, β4). For s ∈ (β4,∞) with ∆s

and Ys smooth, we have that Ys is rational and Γs(R) 6= ∅; hence, P̃ (1)(R) 6= ∅ for these s.

Proof of properties in Example 5.3. Each fiber of Y → A1
s is the double cover of P1×P2 with the associated

quadrics

Q1,s := su2 + v2 − w2, Q2 := −43

57
u2 − 93

14
v2 +

85

39
w2, Q3 :=

8

57
u2 − 221

14
v2 +

50

13
w2

as defined in Section 2.2. Let Γs be the associated genus two curve as defined in Proposition 2.2(4). Define
the matrix Mt,s = t2M1,s + 2tM2 +M3. Then

−detMt,s = st6 −
(

4817

273
s+

86

57

)
t5 −

(
−6967

182
s− 416446

15561

)
t4 −

(
−32735

273
s+

133897

2223

)
t3

−
(
−425

7
s+

2731606

15561

)
t2 − 1163570

15561
t+

3400

399
.

The discriminant of −detMt,s ∈ Q[s][t] is a degree 9 polynomial in s with five real roots β1, β2, β3, β4, β5

whose values are approximately

β1 ≈ −2.253001, β2 ≈ −1.491244, β3 ≈ 0.10422, β4 ≈ 0.289804, β5 ≈ 4.05482.

We will now compute the signatures of the fibers of π1,s. It suffices for us to check one point in each
interval of A(R) \ {β1, β2, β3, β4, β5}. We find that:

(1) s < β1 and β1 < s < β2: Γs has six real Weierstrass points and the fibers of π1,s has signatures in
sequence (0, 4), (1, 3), (2, 2), (1, 3), (0, 4), (1, 3). In particular, this shows that Ys(R) has two connected
components. Thus, Ys is irrational over R.

(2) β2 < s < β3 and β3 < s < β4: Γs has six real Weierstrass points (when s = 0 one of these is
over [1 : 0]) and the fibers of π1,s has signatures in sequence (2, 2), (1, 3), (2, 2), (1, 3), (0, 4), (1, 3). In
particular, π1,s is not surjective on real points and hence does not have a section defined over R.

(3) β4 < s < β5: Γs has six real Weierstrass points and the fibers of π1,s has signatures in sequence
(2, 2), (1, 3), (2, 2), (1, 3), (2, 2), (1, 3). In particular, π1,s is surjective on real points and has a section

defined over R, so Ys is rational. (One can also check ∆̃s(R) 6= ∅.)
(4) β5 < s: Γs has four real Weierstrass points and the fibers of π1,s has signatures in sequence

(2, 2), (1, 3), (2, 2), (1, 3). In particular, π1,s is surjective on real points and has a section defined

over R, so Ys is rational. (One can also check ∆̃s(R) 6= ∅.)

Before determining the real isotopy class of ∆s, we compute the locus where ∆s is singular. The resultant
of the partial derivatives of ∆ is a degree 17 polynomial with six real roots s = β1, β2, β3, β4, ζ, β5, where
ζ ≈ 1.08788. So the isotopy class of ∆s, is constant on each interval of A(R) \ {β1, β2, β3, β4, β5, ζ}, and
using the Sage code accompanying [PSV11] we find that the real isotopy class of ∆s is:

(1) Two nested ovals for s < β1 and β1 < s < β2,
(2) Two non-nested ovals for β2 < s < β3 and β3 < s < β4,
(3) Four ovals for β4 < s < ζ and ζ < s < β5, and
(4) Three ovals for β5 < s.

�

References

[BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36 of Ergebnisse der Math-

ematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998.
Translated from the 1987 French original, Revised by the authors.



EXAMPLES OF REAL CONIC BUNDLES WITH QUARTIC DISCRIMINANT CURVE 21

[Bru08] Nils Bruin. The arithmetic of Prym varieties in genus 3. Compos. Math., 144(2):317–338, 2008.
[BW] Olivier Benoist and Olivier Wittenberg. Intermediate Jacobians and rationality over arbitrary fields. arXiv e-prints,

page arXiv:1909.12668.

[BW20] Olivier Benoist and Olivier Wittenberg. The Clemens-Griffiths method over non-closed fields. Algebr. Geom.,
7(6):696–721, 2020.

[CG72] C. Herbert Clemens and Phillip A. Griffiths. The Intermediate Jacobian of the cubic threefold. Ann. of Math.,

95(2):281–356, 1972.
[CTP90] J.-L. Colliot-Thélène and R. Parimala. Real components of algebraic varieties and étale cohomology. Invent. Math.,

101(1):81–99, 1990.
[CTS21] Jean-Louis Colliot-Thélène and Alexei N. Skorobogatov. The Brauer-Grothendieck group, volume 71 of Ergebnisse der

Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics

and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, 2021.
[DK81] Hans Delfs and Manfred Knebusch. Semialgebraic topology over a real closed field. I. Paths and components in the

set of rational points of an algebraic variety. Math. Z., 177(1):107–129, 1981.

[EKM08] Richard Elman, Nikita Karpenko, and Alexander Merkurjev. The algebraic and geometric theory of quadratic forms,
volume 56 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence,

RI, 2008.

[FJS+] Sarah Frei, Lena Ji, Soumya Sankar, Bianca Viray, and Isabel Vogt. Curve classes on conic bundle threefolds and
applications to rationality. arXiv e-prints, page arXiv:2207.07093.

[HT21a] Brendan Hassett and Yuri Tschinkel. Cycle class maps and birational invariants. Comm. Pure Appl. Math.,

74(12):2675–2698, 2021.
[HT21b] Brendan Hassett and Yuri Tschinkel. Rationality of complete intersections of two quadrics over nonclosed fields.

Enseign. Math., 67(1-2):1–44, 2021. With an appendix by Jean-Louis Colliot-Thélène.
[Isk87] V. A. Iskovskikh. On the rationality problem for conic bundles. Duke Math. J., 54(2):271–294, 1987.

[JJ] Lena Ji and Mattie Ji. Code accompanying “Examples of real conic bundles with quartic discriminant curve”. https:

//github.com/lena-ji/ConicBundles.
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[Zeu74] Hieronymus Georg Zeuthen. Sur les différentes formes des courbes planes du quatrième ordre. Mathematische Annalen,
7:410–432, 1874.

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043

Email address: lji@alumni.princeton.edu

URL: http://www-personal.umich.edu/~lenaji

Brown University, Department of Mathematics, Box 1917, 151 Thayer Street, Providence, RI 02912, USA

Email address: matthew ji@brown.edu

https://github.com/lena-ji/ConicBundles
https://github.com/lena-ji/ConicBundles

	1. Introduction
	2. Preliminaries
	3. Conic bundles with topological obstructions to rationality
	4. Construction of rational examples
	5. Families of conic bundles with rational and non-rational members
	References

