
Federated Learning on Medical Applications

Sizhuang He, Mentored by Professor Maria Han Veiga

August 2022

Abstract

In this REU project, we focus on a machine learning paradigm called
federated learning and its applications on medical data. Federated learn-
ing was proposed as a communication efficient way of learning from de-
centralized data that is believed to protect data privacy [2].

We explored federated learning on I.I.D. and non-I.I.D. data. A defen-
sive mechanism against corrupted client is put forward. Finally, we exper-
imented federated learning on the BRAZPD Dataset, a medical dataset
[5].

1 Introduction

Traditional machine learning frameworks require a centralized data center where
all training data are stored. However, this may not be feasible in many appli-
cations where data privacy is emphasized. Thus, federated learning, a machine
learning framework where all data never leave client devices and different clients
jointly train a global machine learning model, is introduced [2].

In federated learning, there are generally two parties of interest, the clients
and the server. Each of the clients hold a local training dataset, which is never
uploaded to the server. Training takes place in a distributive manner over the
clients. The server is a communication center that aggregates the local updates
to the machine learning model computed by the clients [2].

For a typical machine learning problem, assume we are given a dataset S of
n data points, the goal is to find model parameters ω ∈ Rd to minimize a chosen
objective function, also called the empirical risk, defined as

L : Rd → R, L(ω) =
1

n

n∑
i=1

ℓ(xi, yi, ω) (1)

where ℓ(xi, yi, ω) is the loss on one data point (xi, yi) ∈ S, with model parameter
ω.

In the setting of federated learning, the goal is also to minimize L(ω) but the
data points are partitioned into K clients. We denote Pk as the set of indices

1



of data points owned by client k. Let nk be the size of Pk and
∑K

k=1 nk = n.
Then we have

L(ω) =

K∑
k=1

nk

n
Lk(ω) where Lk(ω) =

1

nk

∑
i∈Pk

ℓ(xi, yi, ω) (2)

And some simple algebra shows the definition of L(ω) in Eq.(2) matches that
in Eq.(1). Lk(ω) can be interpreted as the local empirical risk of client k, which
is analogous to Eq.(1).

The partition Pk is worth more focus in the federated setting. If we form Pk

by randomly distribute the data points to the clients, we have for each client
k, EPk

[Lk(ω)] = L(ω), indicating each Lk(ω) is a good approximation of L(ω)
[2]. This is referred to as the I.I.D. assumption [2]. In reality, data distribution
may vary greatly across different clients and when above setting does not hold,
we refer to it as the non-I.I.D. setting.

A very important optimization algorithm widely used in machine learning is
the Stochastic Gradient Descent algorithm (SGD). It is natural to consider the
local dataset of each client as a batch of data in the SGD setting. This gives rise
to the FederatedSGD algorithm [2]. In FederatedSGD, in a global round t, each
client k computes gk = ∇Lk(ωt), the local gradient of the model parametrized
by ωt. Then the server aggregates all gradients and the update rule [2] is

ωt+1 = ωt − η

K∑
k=1

nk

n
gk (3)

Equivalently, we can formulate the update rule in Eq.(3) in the following way

ωt+1 =

K∑
k=1

nk

n
(ωt − ηgk) (4)

Let ωk
t+1 = ωt − ηgk = ωt − η∇Lk(ωt), then the update rule becomes

ωt+1 =

K∑
k=1

nk

n
ωk
t where ωk

t+1 = ωt − η∇Lk(ωt) (5)

For each client k, ωk
t+1 can be viewed as the local model by doing one local

gradient update to the global model ωt with the client’s local data. The server
then aggregates the local models and compute a weighted average of them and
this is equivalent to aggregating local gradients. Inspired by this, we can do more
local computation during each training round since communication between
clients and the server is the bottleneck in most cases [2]. This is termed as the
FederatedAveraging algorithm (FedAvg) [2] as shown in Algorithm 1

One scenario where federated learning may be particularly useful is the med-
ical settings. Medical data are usually scattered in a large number of clinics and

2



Algorithm 1: FedAvg. K: number of clients indexed by k, B: size
of local minibatches, C: fraction of active clients, E: number of local
epochs, η: learning rate

Server executes:
initialize ω0

for each round t = 1, 2, ... do
s← max(C ·K, 1)
St ← a random set of s clients
for each client k ∈ St in parallel do

ωk
t+1 ← ClientUpdate(k, ωt)

ωt+1 ←
∑K

k=1
nk

n ωk
t+1

end for

end for
ClientUpdate(k,ω), for each client k
B ← split Pk into small batches of size B
for epoch i from 1 to E do

for one batch of data b ∈ B do
ω ← ω − η∇ℓ(ω; b)

end for

end for
return ω

hospitals and are highly privacy sensitive. Thus, training machine learning mod-
els on medical data is always limited by the availability of adequate datasets [4].
Federated learning can provide a way to learn decentralized data from a large
number of clients without breaking data privacy. One example of such medical
datasets is the BRAZPD [5].

The BRAZPD dataset was collected in a nationwide cohort study on peri-
toneal dialysis (PD) in Brazil from December 2004 to January 2011 [5]. A
total of 9005 patients, 5707 of which remained in the study after 90 days, from
122 medical centers took part in this study. The researchers recorded patients’
biomedical measurements, such as Potassium, Glucose, Phosphate, etc. on a
monthly basis. The duration that each patient stayed in the study was also
recorded, indicating the final outcome of the petiant since the main cause of
dropping out the study is death (54%) [3].

2 Methods

In this REU project, we first explored federated learning on the Iris dataset.
Then we applied the idea of federated learning to the BRAZPD dataset [5].

3



2.1 Experiments on the Iris Dataset

The Iris dataset is a commonly used public machine learning dataset for clas-
sification tasks [1].It contains 3 classes, Iris Setosa, Iris Versicolour and Iris
Virginica, one class of which is linearly separable from the rest while the other
2 are not. Each class contains 50 instances. Each instance has four attributes
and the goal is to classify the instance given the attributes [1].

First, we constructed two different data partition methods of the Iris Dataset,
I.I.D. and non-I.I.D. and compared the performance of FedAvg on classifying
iris instances.

Then we explored the scenario where certain clients may contain corrupted
data, that is its data may be very noisy. This may be the result of an adver-
sarial attack or very poor measurements and training on the noisy local dataset
will result in a very badly-performing local model, which will harm the global
model during the averaging process. It is thus important to set up a defensive
mechanism to detect the presence of such corrupted clients and try to minimize
the effect of their influence.

We modify the original FedAvg by adding a validation stage to each client
after a local model is trained. The local datasets of each client is split randomly
into a training set and a validation set according some predetermined ratio r.
Immediately after each client finished training on its training set (the validation
set is left untouched during training), the client validates its local model on its
validation set and report metrics such as loss and accuracy to indicate how well
the newly trained local model is doing on the validation set. Models trained on
very noisy training sets are expected to perform very badly on the validation set
because noises are considered to be purely random and not predictable. Then
the server will adjust the weights of each client model according to the metrics
reported. The algorithm is shown in Algorithm 2.

4



Algorithm 2: FedAvg with weight adjustments. K: number of clients
indexed by k, B:size of local minibatches, C: fraction of active clients,
E: number of local epochs,η: learning rate, r ratio to split the local
datasets
Server executes:

initialize ω0

for each round t = 1, 2, ... do
s← max(C ·K, 1)
St ← a random set of s clients
m← empty array
for each client k ∈ St in parallel do

ωk
t+1,mk ← ClientUpdate(k, ωt)

wk ←CalculateWeights(nk, mk)
end for

w =
∑K

k=1 ωt+1 ←
∑K

k=1
wk

w ωk
t+1

end for
ClientUpdate(k,ω), for each client k
Tk,Vk ← split Pk according to r
B ← split Tk into small batches of size B
for epoch i from 1 to E do

for one batch of data b ∈ B do
ω ← ω − η∇ℓ(ω; b)

end for

end for
mk ← LocalValidation(ω, Vk)
return ω, lk, ak

LocalValidation(ω, Vk), for each client k
Test model ω on Vk
m← chosen metric
return m

CalculateWeights(nk, mk)
return a computed weight

We experimented on two different CalculateWeights, apart from the orig-
inal FedAvg. One way is to adjust according to validation loss and the other is
according to validation accuracy.

No adjustments (FedAvg) The CalculateWeights function is as shown in
Algorithm 3. There is no mechanism in detecting corrupted clients in FedAvg.

Algorithm 3: No adjustments

CalculateWeights(nk, mk)
return nk

5



Adjust weights according to validation loss The CalculateWeights func-
tion is as shown in Algorithm 4.The weight of a certain client is proportional
to its dataset size and inversely proportional to the validation loss of its local
model, since badly-performing models tend to report a larger validation loss.

Algorithm 4: Adjust weights according to validation loss. mk is the
validation loss of client k
CalculateWeights(nk, mk)

return nk

mk

Adjust weights according to validation accuracy The CalculateWeights
function is as shown in Algorithm 5. The weight of a certain client is propor-
tional to its dataset size and the validation accuracy of its local model, since
badly-performing models tend to report a smaller validation accuracy.

Algorithm 5: Adjust weights according to validation accuracy. mk is
the validation accuracy of client k

CalculateWeights(nk, mk)
return nk ·mk

2.2 Experiments on the BRAZPD Dataset

We further explored federated learning on the BRAZPD dataset. As described
above, a total number of 122 clinics or hospitals took part in the study. This
distributed nature of the BRAZPD dataset makes it suitable for federated learn-
ing.

The BRAZPD dataset includes 1000 features, including non-time-series fea-
tures and time-series features. Time-series features are biochemical substances
that are measured on a timely basis, such as blood glucose every month. Non-
time-series features are ones that are only measured at the start the study. The
duration for which a certain patient stays in the study is also recorded [5].

We are generally interested in predicting whether a patient stays in the study
after one year from the beginning, given the baseline feature set. The baseline
feature set consists of several non-time-series features, including age, region,
BMI, etc. The complete baseline set is included in the appendix.

3 Result

3.1 Performance of FedAvg on I.I.D. and non-I.I.D. data

I.I.D. setting In the I.I.D. setting, we randomly partition the data points to
3 clients. Then we used local minibatch sizes B = 10, number of local epochs
E = 30, number of global communication rounds t = 30, fraction of active
clients C = 1. The cross entropy loss function is usd as the loss function.
For each client model, we used a fully connected neural network with 2 hidden

6



layers, each containing 200 neurons, (2NN). The FedAvg gives a test accuracy
of 98.33%.

Non-I.I.D. setting In the non-I.I.D. setting, data points are partitioned into
3 clients with respect to the label. In this way, all data points of the same client
belong to almost the same class and those of different clients belong to different
classes. With the same set of hyper-parameters and model architectures as in
the I.I.D. setting, the FedAvg also gives a test accuracy of 98.33%.

Researchers found empirically that FedAvg can still reach the same test ac-
curacy in the non-I.I.D . setting as in the I.I.D. setting if trained for more
communication rounds [2]. For example, with C = 0.1,K = 100, B = 10, E = 1
and 2NN on MNIST, a handwritten digit classification dataset, FedAvg reached
a test accuracy of 97% within 86 communication rounds in the I.I.D. setting
and 664 rounds in the non-I.I.D. setting [2]. We may conclude that when given
enough computation power, FedAvg is considered to be robust to data partition.
This explains our experimental result. Since the Iris dataset is relatively small,
with only 150 instances while MNIST, which the researchers used, has 70000,
50 communication rounds is more than the threshold to produce good outcome
even in the non-I.I.D setting.

3.2 Client weight adjustment

We are more interested in non-I.I.D. partition in this case because in reality
the non-I.I.D. setting is more common. We used the non-I.I.D. data partition
and the same set of hyper-parameters as described in Section 3.1. To simulate
the existence of a corrupted client, one client is randomly chosen and noise that
follows a Gaussian distribution of mean µ = 0 and standard deviation σ = 300
is added to the local dataset of that client. This is considered as a relatively
large noise since the origin data points are pre-processed so that most of them
are of order 100.

The experimental results are shown in Table 1.

FedAvg Adjust with loss Adjust with accuracy
Test Accuracy 38.33% 63.33% 70.00%

Table 1: Test Accuracy for different weight adjustment methods

Since FedAvg has no defense mechanism against corrupted clients, it only
successfully classified 38.33% of the test dataset. This is dramatic decline in
performance since FedAvg achieved a 98.33% test accuracy with the same set
of hyper-parameters without corrupted clients. Both weight adjustment mecha-
nisms improved the test accuracy greatly. Adjusting with accuracy outperforms
adjusting with loss. One possible explanation is that the loss function is usually
sensitive to outliers. Loss functions essentially measure how far a predicted la-
bel deviates from the true label. Therefore, it is possible that a few mislabeled
data points contribute to a large proportion of the loss function. However, since

7



we are dealing with a classification task here, what’s more representative of a
model’s performance is the proportion of data points it correctly classifies.

3.3 Federated Learning on the BRAZPD dataset

To explore how federated learning performs on the BRAZPD dataset, we trained
and tested federated learning models on three scenarios, referred to as grouping,
non-grouping and no-FL. Each patient in the BRAZPD dataset are assigned an
integer representing the clinic or hospital he/she belongs to [5]. In the grouping
scenario, we group clinics to data centers and form ten small data centers with
similar sizes by sorting the table with respect to the clinic index and split into
ten groups, simulating data centers, in a balanced manner. Patient data are
stored in data centers, where local training takes place. There is a server that
communicates model parameters with the data centers. In the non-grouping
scenario, patient data are stored within the clinics or hospitals. Local training
and testing also takes place in the clinics and hospitals. A global server aggre-
gates model parameters and coordinate the global training. The no-FL scenario
refers to the centralized scenario where no federated learning is applied.

The way the dataset is split into the training set and test set may influence
the performance of the machine learning model trained on the training set.
Chances are that if the training dataset does not represent the entire data
distribution good enough, the consequent machine learning model may perform
badly. To minimize this, a five-fold cross validation process is adapted in the
experiments.

In the five-fold cross validation training process, the entire dataset is split
into five subsets, with balanced sizes. Then, five separate training processes
take place. In each process, one of the five subsets is chosen as the test set and
the rest combine to be the training set.A federated learning model is trained on
the training set and tested on the test set. This ensures all data have at some
time of the training been used as the test set and the mean F1 score of five
models is calculated and adopted as a criterion of the learning process.

In each experiment, we use the 2NN model architecture as described in
previous experiments. The number of local training epochs is chosen to be
E = 30. The number of global communication rounds is set to be t = 500 since
predicting on the BRAZPD dataset is considered quite complicated. Other
hyperparameters include batch size B = 10 and learning rate η = 0.01.

The mean F1 score and standard deviations are as shown in Table 2. Detailed
results are included in the appendix.

Grouping Non-grouping No-FL
F1 score 0.578 ± 0.120 0.614 ± 0.122 0.633 ± 0.106

Table 2: FL results on the BRAZPD

Since only non-time-series features are taken into consideration in these ex-
periments, the F1 scores are all considered acceptable. The case where no

8



federated learning is applied reports the highest F1 score among the three. Ap-
plying federated learning makes the performance very slightly worse but still
acceptable. The non-grouping case produces a slightly better F1 score. A possi-
ble explanation is that the grouping algorithm depends on the specific indexing
of the clinics which may not be random enough.

4 Conclusion

In this REU project, we first tested FedAvg with I.I.D. and non-I.I.D. data par-
tition on the Iris Dataset. The results indicates that if trained for more global
rounds, FedAvg on non-I.I.D. data can return a model that reaches similar test
accuracy with that on I.I.D. data. Then we put forward a defensive mechanism
against corrupted client by validating local models on local validation datasets
and adjusting the weights of each local models in the global model update.
Finally, we explored federated learning on the BRAZPD Dataset. We find fed-
erated learning generally performs as good compared to traditional centralized
learning.

9



A Appendix

Baseline features: ’CenterSizenpatients’, ’Age’, ’IncidentinPD’, ’Prevalentin-
PDNet’, ’Primaryrenaldisease’, ’PreviousHD’, ’Previoustx’, ’DaviesScore’, ’Pe-
ripheralarterydisease’, ’Cancer’, ’Stroke’,’Hypertension’, ’HIV’, ’HCV’, ’HBC’,
’Gender’, ’Race’, ’Familyincome’, ’predialysiscare’, ’timeofpredialysiscare’, ’Ed-
ucationdic4y’, ’Region’, ’Centerexperiencepatientyear’, ’BMI’, ’Distancefrom-
center’

GitHub Repository https://github.com/SizhuangHe/FL-REU

10



References

[1] R. A. Fisher. “The Use of Multiple Measurements in Taxonomic Problems”.
In: Annals of Eugenics 7.7 (1936), pp. 179–188.

[2] H. Brendan McMahan et al. “Federated Learning of Deep Networks using
Model Averaging”. In: CoRR abs/1602.05629 (2016). arXiv: 1602.05629.
url: http://arxiv.org/abs/1602.05629.

[3] Thyago Proença de Moraes et al. “Characterization of the Brazpd ii Cohort
and Description of Trends in Peritoneal Dialysis Outcome across Time Pe-
riods”. In: Peritoneal Dialysis International 34.7 (2014). PMID: 25185014,
pp. 714–723. doi: 10.3747/pdi.2013.00282. eprint: https://doi.org/
10.3747/pdi.2013.00282. url: https://doi.org/10.3747/pdi.2013.
00282.

[4] Nicola Rieke et al. “The Future of Digital Health with Federated Learning”.
In: CoRR abs/2003.08119 (2020). arXiv: 2003 . 08119. url: https : / /
arxiv.org/abs/2003.08119.

[5] Neimar da Silva Fernandes et al. “The Brazilian Peritoneal Dialysis Mul-
ticenter Study (BRAZPD) : characterization of the cohort.” In: Kidney
international. Supplement 108 (2008), S145–51.

11


